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Abstract

Generating virtual object shadows consistent with the

real-world environment shading effects is important but

challenging in computer vision and augmented reality ap-

plications. To address this problem, we propose an end-to-

end Generative Adversarial Network for shadow generation

named ARShadowGAN for augmented reality in single light

scenes. Our ARShadowGAN makes full use of attention

mechanism and is able to directly model the mapping rela-

tion between the virtual object shadow and the real-world

environment without any explicit estimation of the illumina-

tion and 3D geometric information. In addition, we collect

an image set which provides rich clues for shadow genera-

tion and construct a dataset for training and evaluating our

proposed ARShadowGAN. The extensive experimental re-

sults show that our proposed ARShadowGAN is capable of

directly generating plausible virtual object shadows in sin-

gle light scenes. Our source code is available at https:

//github.com/ldq9526/ARShadowGAN .

1. Introduction

Augmented reality (AR) technology seamlessly inte-

grates virtual objects with real-world scenes. It has broad

application prospects in the fields of medical science, ed-

ucation and entertainment. In a synthetic AR image, the

shadow of the virtual object directly reflects the illumina-

tion consistency between the virtual object and the real-

world environment, which greatly affects the sense of re-

ality. Therefore, it is very critical to generate the virtual ob-

ject shadow and ensure it consistent with illumination con-

straints for high-quality AR applications.

Automatically generating shadows for inserted virtual

∗This work was co-supervised by Chengjiang Long and Chunxia Xiao.

Figure 1. An example of casting virtual shadow for an inserted

object in a single light scene. From left to right: the original image,

the synthetic image without the virtual object shadow, the virtual

object mask and the image with virtual object shadows.

objects is extremely challenging. Previous methods are

based on inverse rendering [32] and their performances

highly depend on the quality of the estimated geometry, il-

lumination, reflectance and material properties. However,

such an inverse rendering problem is very expensive and

challenging in practice. What’s worse, any inaccurate es-

timation may result in unreasonable virtual shadows. We

aim to explore a mapping relationship between the virtual

object shadow and the real-world environment in the AR

setting without explicit inverse rendering. A shadow im-

age dataset with clues to AR shadow generation in each im-

age is desired for training and evaluating the performance of

AR shadow generation. However, existing shadow-related

datasets like SBU [41], SRD [38], and ISTD [44] , contain

pairs of shadow image and corresponding shadow-free im-

age, but most of the shadows lack occluders and almost all

shadows are removed in shadow-free images. Such shadow

datasets do not provide sufficient clues to generate shadows.

Therefore, it is necessary to construct a new shadow dataset

for AR applications.

In this work, we construct a large-scale AR shadow im-

age dataset named Shadow-AR dataset where each raw im-

age contains occluders, corresponding shadows and inserted

3D objects from public available datasets like ShapeNet [3].

We first annotate the real-world shadows and their corre-

sponding occluders, and then determine the illumination

and geometric information with camera and lighting cal-
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ibration. Then we can apply 3D rendering to produce

shadow for an inserted 3D object and take it as the ground-

truth virtual shadow for both training and evaluation.

We observe that a straightforward solution like an image-

to-image translation network cannot achieve plausible vir-

tual shadows since it does not pay sufficient attention for

handling the more important regions like real-world shad-

ows and corresponding occluders. This observation in-

spires us to leverage the spatial attention information for

real-world shadows and corresponding occluders to gener-

ate shadows for inserted virtual objects.

In this paper, we propose a generative adversarial net-

work for directly virtual object shadow generation, which

is called ARShadowGAN. As illustrated in Figure 1, AR-

ShadowGAN takes a synthetic AR image without virtual

shadows and the virtual object mask as input, and directly

generates plausible virtual object shadows to make the AR

image more realistic. Unlike inverse rendering-based meth-

ods [22, 23] perform geometry, illumination and reflectance

estimation, our proposed ARShadowGAN produces virtual

shadows without any explicit inverse rendering. Our key

insight is to model the mapping relationship between the

virtual object shadow and the real-world environment. In

other words, ARShadowGAN automatically infers virtual

object shadows with the clues provided by the real-world

environment.

We shall emphasize that we adopt the adversarial train-

ing process [10] between the generator and the discrimi-

nator to generate an AR shadow image. With the number

of epoches increases, both models improve their function-

alities so that it becomes harder and harder to distinguish a

generated AR shadow image from a real AR shadow image.

Therefore, after a certain large number of training epochs,

we can utilize the learned parameters in the generator to

generate an AR shadow image.

To sum up, our main contributions are three-fold:

• We construct the first large-scale Shadow-AR dataset,

which consists of 3,000 quintuples and each quintuple

consists of a synthetic AR image without the virtual

object shadow and its corresponding AR image con-

taining the virtual object shadow, a mask of the vir-

tual object, a labeled real-world shadow matting and

its corresponding labeled occluder.

• We propose an end-to-end trainable generative adver-

sarial network named ARShadowGAN. It is capable

of directly generating virtual object shadows without

illumination and geometry estimation.

• Through extensive experiments, we show that the pro-

posed ARShadowGAN outperforms the baselines de-

rived from state-of-the-art straightforward image-to-

image translation solutions.

2. Related Work

The related work to shadow generation can be divided

into two categories: with or without inverse rendering.

Shadow Generation with Inverse Rendering. Previous

methods are based on inverse rendering to generate virtual

object shadows, which require geometry, illumination, re-

flectance and material properties. Methods [39, 36, 48, 1]

estimate lighting with known marker, which fail when the

marker is blocked. Methods [22, 23, 25] estimate all the

required properties, but inaccurate reconstruction results in

odd-looking results. In recent years, deep learning has

made significant breakthroughs, especially in visual recog-

nition [13, 18, 26, 28, 17, 30, 27, 29, 16], object detec-

tion and segmentation [9, 42, 31], and so on. In particu-

lar, deep learning-based methods [7, 45, 8, 6, 14, 49] have

been developed to estimate HDR illumination from a single

LDR image but few of them work well for both indoor and

outdoor scenes, and the rendering requires user interaction.

Such heavy time and labor cost make this kind of methods

infeasible for automatic shadow generation in AR.

Shadow Generation without Inverse Rendering. In

recent years, generative adversarial network (GAN) [10]

and its variants such as cGAN [33] and WGAN [2] have

proven been applied successfully to various generative tasks

such as shadow detection and removal [44, 46, 5, 50], of

course also can be extended for shadow generation as a

particular style transfer. It is worth mentioning that Hu

et al.’s Mask-ShadowGAN [15] conducts shadow removal

and mask-guided shadow generation with unpaired data at

the same time. Zhang et al. extended image completion

cGAN [19] to ShadowGAN [51] which generates virtual

object shadows for VR images in which the scenes are syn-

thesized with a single point light. Nonetheless, these meth-

ods dose not account for the occluders of real shadows. Un-

like the previous methods, our proposed ARShadowGAN

makes full use of spatial attention mechanism to explore the

correlation between occluders and the corresponding shad-

ows to cast plausible virtual shadows for inserted objects.

3. Shadow-AR Dataset

To cast shadow for an inserted virtual object in a sin-

gle light scene, we need to explore a mapping relationship

between the virtual object and the shadow in the AR set-

ting. A necessary shadow image dataset with shadow clues

for generating virtual shadow in each image is desired for

training and evaluating the performance of virtual shadow

generation. However, existing shadow-related datasets have

many limitations. SBU [41] and UCF [52] consist of pairs

of shadow images and corresponding shadow masks but no

corresponding shadow-free images. SRD [38], UIUC [12],

LRSS [11] and ISTD [44] contain pairs of shadow im-

age and corresponding shadow-free image, but most of the
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(a) (b) (c) (d) (e) (f)

Figure 2. An illustration of two image examples in our Shadow-AR dataset. (a) is the original scene image without marker, (b) is the

synthetic image without virtual object shadow, (c) is the mask of the virtual object, (d) is the real-world occluder, (e) is the real-world

shadow, and (f) is the synthetic image containing the virtual object shadow.

M

Light Source

Camera

Figure 3. An illustration of data annotation. A 3D Cartesian co-

ordinate system M is established at the square marker. The camera

pose is calculated by marker recognition. The light source position

or direction is calibrated in the coordinate system M.

shadows lack occluders and almost all shadows are removed

in shadow-free images. Such shadow datasets do not pro-

vide sufficient clues to generate shadows. Therefore, we

have to construct a Shadow-AR dataset with shadow images

and virtual objects.

3.1. Data Collection

We collect raw images taken with a Logitech C920 Cam-

era at 640×480 resolution, where scenes are taken with dif-

ferent camera poses. We keep real-world shadows and the

corresponding occluders in photos because we believe that

these can be used as series clues to shadow inference. We

choose 9 models from ShapeNet [3], 4 models from Stan-

ford 3D scanning repository and insert them into photos to

produce different images of foreground (model) and back-

ground (scene) combinations. Our Shadow-AR dataset con-

tains 3,000 quintuples. Each quintuple consists of 5 images:

a synthetic image without the virtual object shadow and its

corresponding image containing the virtual object shadow,

a mask of the virtual object, a labeled real-world shadow

matting and its corresponding labeled occluder. Figure 2

shows examples of our image data.

3.2. Mask Annotation and Shadow Rendering

We need to collect supervised information containing

the real-world shadow matting, the corresponding occluder

mask, and the synthetic images with plausible virtual ob-

ject shadows. Note that insertion of a virtual 3D object re-

quires geometric consistency and the virtual object shadow

needs to be consistent with the real-world environment.

This means that we need to calibrate the camera pose and

the lighting in the real-world environment at the same time,

which is very challenging. For convenience, we use a sim-

ple black-white square marker to complete the data anno-

tation. As is shown in Figure 3, we establish such a 3D

Cartesian coordinate system M at the square marker as

the world coordinate system.

Clues annotation. As is shown in Figure 2.(c)-(d),

we annotate the real-world shadows and their correspond-

ing occluders, which help to inference the virtual object

shadow. We annotate real-world shadows with Robust-

Matting software and annotate occluder with the LabelMe

tool [43].

Camera and lighting calibration. We perform the

square marker recognition and tracking by adaptive thresh-

old with Otsu’s [35] segmentation. With the extracted

four marker corner points, camera poses are calculated by

EPnP [24]. For indoor scenes, we consider a single domi-

nant light and model it as a point light source with a three-

dimensional position. To determine the most dominant light

source, we manually block or turn off each indoor light

(usually point or area light) sequentially and choose the one

gives the most visible shadow. Then, we manually mea-

sure the dominant light geometric center coordinate Xm as

the light position (as is shown in Figure 3). For outdoor

scenes, the main light source is the sun and we model it as

a directional light source. We measure the sunlight direc-

tion using interest point correspondences between a known
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(a) occluder area distribution (b) real-world shadow area distribution

(c) virtual object area distribution (d) virtual object location distribution

Figure 4. Statistics of virtual objects and real-world clues. We

show that our dataset have reasonable property distributions.

straight edge and its shadow.

Rendering. With the calibrated camera and lighting, we

render 3D objects and the corresponding shadows. We ren-

der 3D objects with Phong shading [37]. We experimen-

tally set ambient lighting as white with normalized intensity

0.25 for indoor and 0.35 for outdoor. We add a plane at the

bottom of the 3D object and perform shadow mapping [47]

along with alpha blending to produce shadows. To make the

generated shadows have consistent appearances with real-

world shadows, we apply a Gaussian kernel (5×5, σ = 1.0)

to blur the shadow boundaries to get soft shadow borders.

Figure 4 shows statistical analysis of distribution prop-

erties of our dataset. The area distribution is expressed as

the ratio between the target (shadows, occluders or virtual

objects) area and image area. As we can see, majority of oc-

cluders falls in range of (0.0, 0.3], majority of shadows falls

in range of (0.0, 0.2] and majority of virtual objects falls in

range of (0.0, 0.2]. We found that clues falling in (0.4, 0.6]
occupy most of the image area, making it difficult to insert

virtual objects. Similarly, inserted objects with too large

area will block important clues. There are almost no such

cases in our data set. In addition, we analyze the spatial dis-

tribution of virtual objects, we compute a probability map

(Figure 4 (d)) to show how likely a pixel belongs to a virtual

object. This is reasonable as virtual objects placed around

human eyesight usually produce the most visual pleasing

results.

4. Proposed ARShadowGAN

As illustrated in Figure 5, our proposed ARShadowGAN

is an end-to-end network which takes a synthetic image

without virtual object shadows and the virtual object mask

as input, and produces the corresponding image with virtual

object shadows. It consists of 3 components: an attention

block, a virtual shadow generator with a refinement module,

and a discriminator to distinguish whether the generated vir-

tual shadow is plausible.

4.1. Attention Block

The attention block produces attention maps of real

shadows and corresponding occluders. The attention map

is a matrix with elements ranging from 0 to 1 which indi-

cates varying attention of the real-world environments. The

attention block takes the concatenation of the image with-

out virtual object shadows and the virtual object mask as

input. It has two identical decoder branches and one branch

predicts the real shadow attention map and the other one

predicts the corresponding ocluder attention map.

There are 4 down-sampling (DS) layers. Each DS layer

extracts features by a residual block [13] which consists of

3 consecutive convolution, batch normalization and Leaky

ReLU operations and halves the feature map with an aver-

age pooling operation. Then, features extracted by DS lay-

ers are shared by two decoder branches. The two decoder

branches have the same architecture. Each decoder consists

of 4 up-sampling (US) layers. Each US layer doubles the

feature map by nearest interpolation followed by consec-

utive dilated convolution, batch normalization and Leaky

ReLU operations. The last feature map is activated by a

sigmoid function. Symmetrical DS-US layers are concate-

nated by skip connections.

4.2. Virtual Shadow Generator

The virtual shadow generator produces plausible virtual

object shadows. It consists of a U-net followed by a refine-

ment module. The U-net with 5 DS-US layers produces a

coarse residual shadow image and then it is fine-tuned by

the refinement module with 4 consecutive composite func-

tions [18]. The final output is the addition of the improved

residual shadow image and the input image.

In the virtual shadow generator, DS layers are the same

as those in the attention block while US layers use convo-

lutions instead of dilated ones. Each composite function

produces 64 feature maps.

4.3. Discriminator

The discriminator distinguishes whether the virtual

shadow shadows are plausible, thereby assisting the train-

ing of generator. We designed the discriminator in the form

of Patch-GAN [20].

The discriminator contains 4 consecutive convolution

with valid padding, instance normalization and Leaky

ReLU operations. Then, a convolution produces the last

feature map which is activated by sigmoid function. The

final output of the discriminator is the global average pool-

ing of the activated last feature map. In ARShadowGAN,

the discriminator takes the concatenation of image without
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Figure 5. The architecture of our proposed ARShadowGAN. It consists of an attention block, a virtual shadow generator with a refinement

module and a discriminator. Attention block has two branches producing attention maps of real-world shadows and occluders. The attention

maps are leveraged by virtual shadow generator to produce a coarse residual shadow image. The coarse shadow image is fine-tuned by the

refinement module. The final output is the addition of input image and the fine-tuned residual shadow image.

virtual object shadows, virtual object masks and the image

with virtual object shadows as input.

4.4. Loss functions

Attention Loss. We use standard squared loss to mea-

sure the difference between the predicted attention maps

and the ground truth masks. Lattn is defined as follows:

Lattn = ‖Arobj(x,m)−Mrobj‖
2

2

+ ‖Arshadow(x,m)−Mrshadow‖
2

2
,

(1)

where Arshadow(·) is the output attention map for real shad-

ows and Arobj(·) is the output attention map for real ob-

jects based on the input synthetic image x without virtual

object shadows and the virtual object mask m. Note both

Mrobj and Mrshadow are the ground truth binary maps of

the real-world shadows and their corresponding occluders.

For Mrobj , 1 indicates that the pixel belongs to real objects

and 0 otherwise. Similarly, 1 in Mrshadow indicates the

pixel in the real shadow regions and 0 not.

Shadow Generation Loss. Lgen is used to measure the

difference between the ground truth and the generated im-

age with virtual object shadows. The shadow generation

loss consists of three weighted terms, i.e., L2, Lper and

Ladv , and the total loss is:

Lgen = β1L2 + β2Lper + β3Ladv, (2)

where β1, β2 and β3 are hyper-parameters which control the

influence of terms.

L2 is the pixel-wise loss between the generated im-

age and the corresponding ground truth. It is worth men-

tioning that our ARShadowGAN produces a coarse resid-

ual shadow image to generate a coarse virtual shadow im-

age ȳ = x + G(x,m,Arobj ,Arshadow). We further im-

prove the residual image to form the final shadow image

ŷ = x+R(G(x,m,Arobj ,Arshadow)) through the refine-

ment module R(·). Therefore, we can define L2 as follows:

L2 = ‖y − ȳ‖2
2
+ ‖y − ŷ‖2

2
, (3)

where y is the corresponding ground truth shadow image.

Lper is the perceptual loss [21], which measures the

semantic difference between the generated image and the

ground truth. We use a VGG16 model [40] pre-trained on

ImageNet dataset [4] to extract feature. The feature is the

output of the 4th max pooling layer (14 × 14 × 512), i.e.

the first 10 VGG16 layers are used to compute feature map.

Lper is defined as follows:

Lper = MSE(Vy, Vȳ) + MSE(Vy, Vŷ), (4)

where MSE is the mean squared error, and Vi = VGG(i)
is the feature map extracted by the well-trained VGG16

model.

Ladv describes the competition between the generator

and the discriminator, which is defined as follows:

Ladv = log(D(x,m, y)) + log(1−D(x,m, ŷ)), (5)

where D(·) is the probability that the image is “real”. Dur-

ing the adversarial training, the discriminator tries to maxi-

mize Ladv while the generator tries to minimize it.

4.5. Implementation details

Our ARShadowGAN is implemented in TensorFlow

framework. In ARShadowGAN, all the batch normalization

and Leaky ReLU operations share the same hyper parame-

ters. We set decay as 0.9 for batch normalization and leak as

0.2 for Leaky ReLU. All images in our dataset are resized

to 256× 256 by cubic interpolation for training and testing.
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Synthetic images and virtual object masks are normalized to

[−1, 1] while labeled clue images are normalized to [0, 1].
We randomly divide our dataset into three parts: 500 for at-

tention block training, 2,000 for virtual shadow generation

training and 500 for testing.

We adopt a two-stage training. At the 1st stage, we train

the attention block alone with the 500 training set. We opti-

mize the attention block by minimizing Lattn with ADAM

optimizer. Learning rate is initialized as 10−5 and β is set

to (0.9, 0.99). The attention block is trained for 5000 itera-

tions with batch size 1. At the 2nd stage, the attention block

is fixed and we train virtual shadow generator and the dis-

criminator with the 2,000 training set. We set β1 = 10.0,

β2 = 1.0, β3 = 0.01 for Lgen. We adopt ADAM opti-

mizer to optimize the generator and discriminator. The op-

timizer parameters are all same as those in the 1st phase.

The virtual shadow generator and discriminator is trained

for 150,000 iterations with batch size 1. In each iteration,

we alternately optimize the generator and discriminator.

5. Experiments

To evaluate the performance of our proposed ARShad-

owGAN, we conduct experiments on our collected Shadow-

AR dataset. We calculate the average error on the testing

set for quantitative evaluation. We calculate the root mean

square error (RMSE) and structural similarity index (SSIM)

with generated shadow images and the ground truth to mea-

sure the global image error. We calculate the balanced error

rate [34] (BER) and accuracy (ACC) with generated shadow

masks and ground truth shadow masks, which are obtained

with ratio threshold, to measure the shadow area and bound-

ary error. In general, the smaller RMSE and BER, the larger

SSIM and ACC, the better the generated image. Note that

all the images for visualization are resized to 4:3.

5.1. Visualization of Generated Attentions

Attention maps are used to assist the virtual shadow gen-

erator. As is shown in Figure 6, real-world shadows and

their corresponding occluders are suggested more attention.

It is worth mentioning that the virtual object itself is not a

clue, and the mask prevents the virtual object from receiv-

ing more attention as real-world shadows and occluders. To

verify the role of the mask, we replace the mask with a full

black image which indicates no virtual object. The result is

also shown in the 2nd and 4th row of Figure 6.

5.2. Comparison to Baselines

To our best knowledge, there are no existing methods

proposed to directly generate AR shadows for inserted ob-

ject without any 3D information. We still choose the follow-

ing methods as baselines to compete since we can extend

and adapt them on the our task:

Figure 6. Examples of attention maps. From left to right: input im-

ages without virtual object shadows, input masks, attention maps

of real-world shadows and their corresponding occluders. Corre-

sponding cases without masks are also shown.

Pix2Pix [20] is a cGAN trained on paired data for gen-

eral image-to-image translation. It is directly applicable to

our shadow generation task. We make the Pix2Pix output

shadow image directly.

Pix2Pix-Res is a variant of Pix2Pix whose architecture is

the same as Pix2Pix but outputs the residual virtual shadow

image like our ARShadowGAN.

ShadowGAN [51] synthesizes shadows for inserted ob-

jects in VR images. ShadowGAN takes exactly the same

input items as our ARShadowGAN and generates shadow

maps which are then multiplied to the source images to pro-

duce final images. We calculate shadow maps from our data

to train ShadowGAN and we evaluate ShadowGAN with

the produced final images.

Mask-ShadowGAN [15] performs both shadow re-

moval and mask-guided shadow generation. We adapt this

framework to our task. Gs and Gf are two generators of

Mask-ShadowGAN and we adjust Gs to perform virtual

shadow generation while Gf to perform mask-guided vir-

tual shadow removal.

For fair comparison, we train all the models on the same

training data with same training details and evaluate on the

same testing data.

Models RMSE SSIM S (%) A (%) ACC (%)

Pix2Pix 9.514 0.938 41.468 27.358 90.631

Pix2Pix-Res 8.043 0.959 29.597 26.476 96.689

ShadowGAN 8.041 0.961 28.347 24.547 97.122

Mask-ShadowGAN 7.493 0.959 23.261 21.131 98.443

ARShadowGAN 6.520 0.965 22.278 19.267 98.453

Table 1. Results of quantitative comparison. In the table, S repre-

sents BER of virtual shadow regions and A represents BER of the

whole shadow mask. The best scores are highlighted in bold.

Quantitative comparison results are shown in Table 1.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7. Visualization comparison with different methods. From left to right are input image (a), input mask (b), the results of Pix2Pix

(c), Pix2Pix-Res (d), ShadowGAN (e), Mask-ShadowGAN (f), ARShadowGAN (g), and ground-truth (h).

(a) input image (b) input mask (c) w/o Attn (d) w/o ℒ𝑎𝑑𝑣 (e) w/o Refine (f) ARShadowGAN (g) ground truth

Figure 8. Examples of qualitative ablation studies of network modules.

Examples of qualitative comparison are shown in Figure 7.

As we can see, the overall performances of Pix2Pix-Res and

ShadowGAN are better than Pix2Pix, which indicates that

the target of the shadow map or the residual shadow image

makes the network focus on shadow itself rather than the

whole image reconstruction. Mask-ShadowGAN performs

a little better than Pix2Pix-Res and ShadowGAN, but it still

produces artifacts. ARShadowGAN outperforms baselines

with much less artifacts in terms of shadow azimuth and

shape, which is partially because the attention mechanism

enhances the beneficial features and make the most of them.

Models RMSE SSIM S (%) A (%) ACC (%)

w/o Attn 7.175 0.962 23.162 21.079 98.446

w/o Refine 7.050 0.961 23.087 21.024 98.450

w/o Ladv 7.781 0.959 29.093 26.354 97.487

w/o Lper 8.001 0.963 29.576 26.399 97.152

w/o L2 9.696 0.924 50.748 30.829 88.548

ARShadowGAN 6.520 0.965 22.278 19.267 98.453

Table 2. Results of ablation studies. The best scores are high-

lighted in bold.

5.3. Ablation Studies

To verify the effectiveness of our loss function and net-

work architecture, we compare our ARShadowGAN with

its ablated versions:

• w/o Attn: we remove the attention block.

• w/o Refine: we remove the refinement module.

• w/o Ladv: we remove the discriminator (β3 = 0).

• w/o Lper: we remove Lper from Equation 2 (β2 = 0).

• w/o L2: we remove L2 from Equation 2 (β1 = 0).

For models without attention blocks, the input to the vir-

tual shadow generator is adjust to the concatenation of syn-

thetic image (without virtual object shadows) and the object

mask. We train these models on training set. Quantitative

results of ablation studies are shown in Table 2 and exam-

ples of qualitative ablation studies are shown in Figure 8

and Figure 9.

Network modules. As we can see, our full model

achieves the best performance. As is shown in Figure 8,

the model without a discriminator mostly produces odd-

looking virtual object shadows because the generator has

not yet converge, which indicates that adversarial train-

ing does speed up the convergence of the generator. Our

full model outperforms the version without attention block

in overall virtual object shadow azimuth, which indicates

that the attention block helps preserve features useful for

shadow inference. The model without refinement module

produces artifacts in the shadow area, suggesting that the

refinement module fine-tunes virtual shadows from details

by nonlinear activation functions.

Loss functions. As we can see, our full loss func-

tion achieves the best performance. As is shown in Fig-

ure 9, Lper has an important role in constraining the shadow
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(a) input image (b) input mask (c) w/o ℒ2 (d) w/o ℒ𝑝𝑒𝑟 (e) ARShadowGAN (f) ground truth

Figure 9. Examples of qualitative ablation studies of loss function.

shape. However, Lper is a global semantic constraint rather

than a detail, so the pixel-wise intensity and noise are not

well resolved. L2 maintains good pixel-wise intensity but

produces blurred virtual object shadows which are not good

in shape. Lper + L2 outperforms both Lper and L2, which

indicates that Lper and L2 promote each other.

Figure 10. Robustness testing. From left to right: input images,

input masks, attention maps of real-world shadows and their cor-

responding occluders and output images.

5.4. Robustness Testing

We test our ARShadowGAN with new cases outside

Shadow-AR dataset in Figure 10 to show the robustness.

All the images, model buddha, vase and mug are new and

without the ground truth. The case with the model inserted

in the real shadow is shown in the 3rd row. Cases of multi-

ple light sources and multiple inserted models are shown in

the 4th and 5th row. Visualization results shows that AR-

ShadowGAN is capable of producing plausible shadows.

6. Limitations

ARShadowGAN is subject to the following limitations:

(1) ARShadowGAN fails when there are large areas of

dark or few clues. Examples are shown in Figure 11.

Figure 11. Failure cases of large dark areas and few clues. From

left to right: input images without virtual shadows, input masks,

attention maps of real-world shadows and their corresponding oc-

cluder and output images.

(2) ARShadowGAN only produces planar shadows

which do not intersect with real-world shadows and do not

exhibit multiple light source characteristics.

(3) ARShadowGAN does not change the shading of the

inserted object.

Limitation (1) is because ARShadowGAN relies on

clues to infer virtual object shadows while large dark ar-

eas seriously interfere with clues. Limitations (2) and (3)

exist because the training data does not contain such exam-

ples. Extending the Shadow-AR dataset is a possible way

to solve limitations (2) and (3).

7. Conclusion and Future Work

In this work, we construct a dataset and propose AR-

ShadowGAN to directly generate plausible virtual object

shadows consistent with real-world shading effects without

any explicit estimation of the illumination and the geometry.

The future work includes addressing the self-shading prob-

lem of inserted objects and extending the current Shadow-

AR dataset and ARShadowGAN for more complex cases.
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