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Abstract We present a noise resilient probabilistic model
for active learning of a Gaussian process classifier from
crowds, i.e., a set of noisy labelers. It explicitly models both
the overall label noise and the expertise level of each indi-
vidual labeler with two levels of flip models. Expectation
propagation is adopted for efficient approximate Bayesian
inference of our probabilistic model for classification, based
on which, a generalized EM algorithm is derived to esti-
mate both the global label noise and the expertise of each
individual labeler. The probabilistic nature of our model
immediately allows the adoption of the prediction entropy
for active selection of data samples to be labeled, and active
selection of high quality labelers based on their estimated
expertise to label the data. We apply the proposed model for
four visual recognition tasks, i.e., object category recogni-
tion, multi-modal activity recognition, gender recognition,
and fine-grained classification, on four datasets with real
crowd-sourced labels from the Amazon Mechanical Turk.
The experiments clearly demonstrate the efficacy of the pro-
posed model. In addition, we extend the proposed model with
the Predictive Active Set Selection Method to speed up the
active learning system, whose efficacy is verified by conduct-
ing experiments on the first three datasets. The results show
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our extended model can not only preserve a higher accuracy,
but also achieve a higher efficiency.
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1 Introduction

As research on visual recognition evolves gradually towards
an experimental science, partly due to the success of the intro-
duction of the machine learning approach to computer vision
(Burl et al. 1995; Burl and Perona 1998; Fergus et al. 2005;
Liu et al. 2008; Sanchez and Perronnin 2011; Krizhevsky
et al. 2012; Lin et al. 2011), collecting labeled visual datasets
at large scale from crowd-sourcing tools such as the Ama-
zon Mechanical Turk has become a common practice (Deng
et al. 2009; Vijayanarasimhan and Grauman 2014). Although
it is cheap to obtain a large quantity of labels through crowd-
sourcing, it has been well known that the collected labels
could be very noisy. So it is desirable to model the expertise
levels of the labelers to ensure the quality of the labels (Deng
et al. 2009; Vijayanarasimhan and Grauman 2014; Ambati
et al. 2010). The higher the expertise level a labeler is at, the
lower the label noises he/she will produce.

Previous works for modeling the labelers’ expertise
mainly adopted two approaches. The first approach attempts
to evaluate the labelers by adopting a pre-labeled gold stan-
dard dataset (Ambati et al. 2010). When a labeler is constantly
generating contradicting labels on data samples from the
gold standard dataset, all labels from that labeler may be
discarded as he/she is highly likely to be an irresponsi-
ble one. The second approach addresses this issue through
evaluating the labels by collecting multiple labels for each
data sample (Deng et al. 2009; Vijayanarasimhan and Grau-
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man 2014). Then online or postmortem majority voting, or
majority model consistency check is conducted to obtain the
more likely ground-truth label of the data sample. The basic
assumption is that the majority of the labelers are behaving
in good faith.

The first approach is able to evaluate the labelers online,
which is desirable. But it needs to pre-label a set of data to
serve as the gold standard, which may be an obstacle by itself.
The second approach focuses on the label noise. It does not
explicitly evaluate the labelers, although it may be extended
to do so by online tracking how often a labeler is contradict-
ing with the majority. Notwithstanding their demonstrated
success, these two approaches are rather ad hoc. There lacks
a principled approach to jointly model the global noise level
of the labels and the expertise level of each individual labeler,
in the absence of gold standard labels, which is what we want
to achieve in this paper.

We present a Bayesian model which explicitly models
the global noise level of the labels and the expertise level
of each individual labeler from crowds (i.e., a group of
noisy labelers). These two different statistics are modeled
hierarchically with two levels of flip models (Minka 2001).
Expectation Propagation (EP) (Minka 2001) is adopted to
conduct approximate Bayesian inference of the posterior of
the latent classification function. A generalized Expectation
Maximization (GEM) algorithm is developed to estimate
both quantities. The resulting classifier is more resilient to
label noises, adapting to the expertise of labelers.

Another potential improvement that can be made to
current crowdsourcing labeling system such as Amazon
Mechanical Turk (AMT) is to actively guide the labelers
for more efficient labeling. The proposed Bayesian model
enables not only active selection of data samples to be
labeled, but also active selection of quality labelers. These
are enabled by the probabilistic nature of our model and
the explicit modeling of both the global label noise and the
expertise of each individual labeler, thereby allowing entropy
based uncertainty measure to be readily adopted for these
purposes.

Therefore, the proposed Bayesian model is able to actively
collect multiple copies of crowd-sourced labels with min-
imal human efforts. As recapped in Fig. 1, the main loop
consists of (1) a general Expectation Maximization proce-
dure with an embedded Expectation Propagation algorithm
to learn a Gaussian process classifier by a joint treatment of
multiple copies of labels, (2) ranking all the candidate unla-
beled samples based on the prediction entropy, (3) assigning
the actively selected sample to the top K quality online label-
ers, (4) incorporating their responses to obtain new labeled
data, and (5) retraining the classifier.

In order to obtain high classification accuracy with com-
putational cost as low as possible, we extend our proposed
model with the Predictive Active Set Selection Method

Henao and Winther (2010; 2012). Firstly we randomly select
a subset from the whole labeled data and consider it as an
initial “active set”. And then we iteratively update the active
set based on the predictive/cavity distribution inferred by a
Gaussian process classifier newly trained upon the previous
active set. At each iteration, hyperparameter optimization is
carried out on the whole labeled data. We alternate between
active set updates and hyperparameter estimation through
several passes over the whole labeled data. From this per-
spective, we still make full use of all the labeled information.

Several aspects distinguish our work from previous active
learning based labeling (Vijayanarasimhan and Grauman
2014), Kapoor et al. (2007, 2009), (Loy et al. 2012; Ebert
et al. 2012). First of all, our work deals with active learning
with multiple labelers, a topic which has not been suffi-
ciently explored before. Secondly, we do not assume that
the labels provided by the labelers are absolutely correct. In
other words, the labeler may label an example incorrectly.
Most previous work on active learning has assumed that the
labels provided by the human oracle are noise free. Thirdly,
our model allows online evaluation of the expertise of the
labelers without relying on any additional pre-labeled gold
standard data. Hence we can select more responsible labelers
and reduce the noise level of the labels we collected.

The main contributions of this paper are: (1) a Bayesian
probabilistic formulation to learn a Gaussian process clas-
sifiers from multiple noisy labels, which models both the
global label noise and the expertise of each individual labeler;
(2) an active learning system which determines which users
to label which unlabeled examples; and (3) an extended
model with the Predictive Active Set Selection Method to
speed up the active learning system. We apply our proposed
model on datasets with real noisy labels obtained from the
Amazon Mechanical Turk on four visual recognition tasks,
i.e., object category recognition, gender recognition, multi-
modal activity recognition, and fine-grained classification.
The results clearly demonstrate the efficacy of our proposed
model.

We shall point out that the foundation of the proposed
algorithm in this paper is firstly published in our paper in
Long et al. (2013). This paper extends our initial work in sev-
eral ways: (1) we have added more detailed discussion of the
technical formulation and algorithm derivation; (2) the com-
putational efficiency of the proposed algorithm is improved
by leveraging a predictive active set selection method; (3) the
recognition accuracy of the proposed algorithm is improved
by exploiting a parameterized kernel in the learning process;
(4) the selection of labelers is enabled in the experiments
with real crowd-sourced labels on the visual datasets; (5) we
add experiments on a fine-grained visual category recogni-
tion dataset to further validate the efficacy of the proposed
method; (6) we compare the proposed model with the com-
peting models using all the labeled data; and (7) we also
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Fig. 1 Illustration of our active visual recognition system with expertise estimation in Crowdsourcing

evaluate the proposed method with different number of ini-
tial labeled examples.

The rest of the paper is arranged as follows: Sect. 2 reviews
the related work; Sect. 3.1 presents our Bayesian probabilis-
tic model; Sect. 3.2 describes the inference with Expectation
Propagation; In Sect. 3.3, we discuss the EM-EP to infer both
the soft scores for the data points and the label ratings for the
labelers. In Sect. 4, we introduce the active learning strategy.
Our model is extended with the Predict Active Set Selection
Method to speed up the active learning system as stated in
Sect. 5. The experiments are presented in Sect. 6 and fur-
ther discussions are taken in Sect. 7. Finally we draw the
conclusion and present potential future work in Sect. 8.

2 Related Work

Related works can be grouped into five categories includ-
ing Human in the loop for computer vision, noise resilient
Gaussian process classifiers, approximate Bayesian infer-

ence methods, sparse approximations in Gaussian process
classification, and active learning with crowd-sourced labels.

2.1 Human in the Loop for Computer Vision

Ever since the publication of the ESP games (von Ahn and
Dabbish 2004; von Ahn et al. 2006) for generating annota-
tions for images, there have been a lot of active research in
the computer vision community to harvest human knowledge
from crowds, and in particular, research in visual recogni-
tion. For example, Parikh and Zitnick (2010, 2011), Parikh
(2011), Zitnick and Parikh (2012), Parikh et al. (2012) have
studied various factors in a visual recognition system using
crowd-sourced human debugging, including the impacts of
features, algorithms, and data (Parikh and Zitnick 2010), the
weakest link in a person detector (Parikh and Zitnick 2011),
the role of local and global information (Parikh 2011), the
role of contour in image understanding (Zitnick and Parikh
2012), and the role of appearance and contextual information
(Parikh et al. 2012) for image recognition.
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Some other representative works engaging human in the
loop for visual recognition include the Visipedia project
Branson et al. (2010, 2011), (Wah et al. 2011; Welinder and
Perona 2010a), which studies how to build systems and mod-
els to engage human (e.g., those from crowds) in various
recognition tasks, either in terms of questions and answers,
or relabeling. Some more recent work also studies how to
bootstrap a fine-grained visual recognition system by actively
querying answers from crowds with binary questions (Patter-
son et al. 2013), and identify discriminative features for more
accurate fine-grained visual category recognition using the
Bubble game (Deng et al. 2013). There also exists work on
interactive object detection and tracking that use active learn-
ing (Yao et al. 2012; Vondrick and Ramanan 2011). Most of
these works just focus on modeling the output from crowds.
They do not attempt to further model the individual expertise
of each human ocracle in the modeling and learning process
while analyzing the visual content.

2.2 Noise Resilient Gaussian Process Classifiers

Gaussian process classifier (GPC) is a family of nonpara-
metric Bayesian kernel classifiers derived from the Gaussian
process priors over hidden functions, with the signs of those
continuous outputs to determine the class labels (Williams
and Barber 1998; Gibbs and Mackay 2000). A Gaussian
process classifier is composed of a Gaussian process prior
and a likelihood model which defines the probability of
the data label given the hidden function. Given a set of
labeled data samples, the output of the hidden functions
of these labeled samples would be constrained. To predict
the label of a new data, one needs to integrate over all the
values of the hidden functions over the labeled data points,
which are often intractable when the likelihood model is not
Gaussian. A noise resilient likelihood model, namely flip
noise model, is introduced in Minka (2001) to better handle
label noises in the Gaussian process classifier. More recently,
(Kim and Ghahramani 2008) exploited the flip noise model
to explicitly handle outlier labels using a Gaussian process
classifier.

2.3 Approximate Bayesian Inference Methods

Various approximate inference algorithms have been pro-
posed to solve the inference problem in Gaussian process
when the exact inference is analytically intractable.

For example, Williams and Barber adopted Laplace
approximation (Williams and Barber 1998) to approximate
the posterior as a multi-variate Gaussian. The integral is
hence replaced by the mode of the Gaussian. Neal (1997)
resorted to Markov chain Monte Carlo to approximate the
integral to the mean over a set of samples generated from the
posterior distribution. Variational approximation is adopted

by Gibbs and Mackay (2000). Opper and Winther (1999)
adopted the TAP (Thouless et al. 1977) style mean field
approximation to obtain the integral. In the case of Gaussian
process classifier, the TAP style mean field approxima-
tion (Opper and Winther 1999) is equivalent to the more
general Expectation Propagation for approximate inference,
which is firstly proposed by Minka (2001). An EM algo-
rithm built on top of EP is proposed to estimate the label
noise levels. None of these aforementioned methods ever
considered the case where a data sample has multiple
copies of noisy labels, which is the focus of our proposed
approach.

2.4 Sparse Approximations in Gaussian Process
Classification

The computational cost of inference in a Gaussian process
classifier scales cubically with the size of the training set,
which makes it not ideal for large datasets. A considerable
amount of research efforts focus on sparse approximations
(Quinonero-candela et al. 2005; Lawrence et al. 2003; Seeger
2002; Naish-Guzman and Holden 2007; Seeger et al. 2003;
Snelson and Ghahramani 2006a; Titsias 2009; Yan and Qi
2010) to address this issue. Generally, the existing techniques
attempt to reduce the computational cost from O(N 3) to
O(N N 2

ws) , where Nws < N , N is the size of the whole
training data and Nws is the size of a working set consisting
of a subset of the training data or a pseudo-input set (Snelson
and Ghahramani 2006a).

The principle of determining a subset from the entire train-
ing data is to preserve those more informative data points that
contribute more to high classification accuracy and to discard
those less informative ones. In contrast, building a pseudo-
input set attempts to reduce the difference in distribution
between the classifier using all N points and the one using
only M points, by estimating the location of an auxiliary
set in the input space. However, as the size of the auxiliary
set increases, more and more parameters need to be learned,
which makes it infeasible for large scale datasets (Snelson
and Ghahramani 2006b). Worse still, the latter approach is
sensitive to overfitting as a result of the large number of free
parameters in the model.

Some recent research work studies from the perspective
of a Bayesian framework. Zhang et al. (2011) developed an
efficient MCMC algorithm, in which sparsity is enforced
in an explicit treatment and a full Bayesian method is
carried out. The main computational burden is therefore
reduced to be similar to or the same as other sparse kernel
methods possibly with a larger pre-factor due to sampling.
Henao and Winther (2010, 2012) proposed a framework,
namely, the Predictive Active Set Selection Method for
Gaussian Process (PASS-GP), which uses an active sub-
set of training data to learn a GPC. The subset is “active”
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because it is iteratively updated based on the relative impor-
tance of each data point, which is measured with the
cavity/predictive distribution inferred by the newly learned
GPC.

2.5 Active Learning with Crowd-Sourced Labels

Several previous works have explored active learning from
noisy crowd-sourced labels (Ambati et al. 2010; Vijaya-
narasimhan and Grauman 2014) in different domains, where
the two aforementioned approaches are exploited to handle
label noise.

To better mitigate label noises online in the absence of gold
standard labels, Donmez et al. (2009, 2010) have explored
confidence interval based estimation and the sequential
Bayesian estimation method to evaluate the label quality of
the annotators in both stationary and non-stationary cases.
Zhao et al. (2011) proposed an incremental relabeling mech-
anism which employed active learning to not only select
the unlabeled data to be labeled by crowds, but also select
already labeled data samples to be relabeled until sufficient
confidence is built. Raykar et al. (2009), Raykar and Yu
(2012) proposed a probabilistic model, which assumes inde-
pendence of the annotator judgement given the true label,
and alternatively conducts model learning and performance
evaluation of the multiple annotators.

Dekel and Shamir (2009a) adapted the formulation of
support vector machines (SVMs) to identify low quality or
malicious annotators, which assumes that each annotator is
either good or bad. Later, they (Dekel and Shamir 2009b) pro-
posed a method for pruning low-quality labelers by using the
model trained from the entire labeled dataset from all labelers
as ground truth. Chen et al. (2010) proposed to identify good
annotators by spectral clustering in the worker space. The
assumption is that good labelers will behave similarly. Yan
et al. (2012, 2011) presented a Bayesian model and adopted
a logistic regression function to model the labelers’ quality.
Simpson et al. (2013) recently tackled the problem of com-
bining multiple noisy annotations and in addition modeling
temporal changes in annotators. Hua et al. (2013) presented
a collaborative ensemble kernel machine exploring inherent
correlations among the labelers through shared data among
them. Hence the learned ensemble model is robust to label
noises and the proposed method is able to detect irrespon-
sible labelers online. These works build insights on how to
deal with label noises and evaluate labeler quality. However,
they lack explicit joint modeling of both the label noises and
the labelers’ quality.

For dealing with noisy annotations, there has been work on
classification (Rodrigues et al. 2013), tackling the problem
in the context of regression (Groot et al. 2011), sequence
labeling (Rodrigues et al. 2013), and ranking (Wu et al.
2011). However, most existing works are centered only on

the unobservable ground-truth true labels of the data, whose
noisy observations are provided by multiple annotators. Due
to the combinatorial explosion of possible outcomes of the
latent variables, this choice of latent variables hinders appli-
cation of such methods to structured prediction problems
such as sequence labeling. With the aim of focusing on the
annotators, we turn to model the label expertise of the annota-
tors as latent variables, since it helps incorporate the diverse
opinions among multiple annotators in a simple and unified
way.

For modeling annotators’ quality for image labeling from
crowds, the most relevant works to our research is Welin-
der and Perona (2010b) and Welinder et al. (2010). In both
works, a parameter vector of each annotator which repre-
sents the annotator’s expertise, a feature (parameter) vector
associated with each image which encodes each annotator’s
visual response to the image, and a linear classifier operat-
ing on the parameter vector associated with each image, are
all inferred from existing labels provided by the annotators
through a Bayesian model.

We emphasize that in these two pieces of work proposed
by Welinder and Perona (2010b) and Welinder et al. (2010),
no visual feature is directly extracted from the images and
for each image, at least one label is needed to be able to infer
the parameter vector associated with it. Hence the classi-
fier induced from their models cannot be applied directly
to an unlabeled sample, because there is no feature vec-
tor to operate on. In this sense, their models provide a
principled way for active data re-labeling. In contrast, our
proposed model actively induces a classifier which directly
operates on visual features extracted from images, which
models the labelers’ quality in a principled way to facili-
tate active selection of annotators for providing better quality
labels.

With respect to active learning with Gaussian processes,
(Lawrence et al. 2003) proposed a differential entropy score,
which favours points whose inclusion leads to a large reduc-
tion in predictive (posterior) variance. This approach was
then extended by Kapoor et al. (2007), by introducing
a heuristic confidence criterion normalized by the vari-
ance of the posterior prediction for active learning. The
active learning methodology we propose further extends
this work to multiple-annotator settings and introduces a
new heuristic for selecting the best annotator to label an
instance.

Recently, Rodrigues et al. (2014) proposed a general
Gaussian process classifier in order to explicitly handle mul-
tiple annotators with different levels of expertise. However,
their active learning algorithm only selects a single annota-
tor. In contrast, our approach adopts the labels from the top
K annotators among all M annotators, which integrates the
potential diverse opinions from the subset of annotators with
the highest expertise.
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Fig. 2 The graphical model of the proposed Gaussian process classi-
fier, with multiple noisy labels from crowds

3 Formulation, Inference, and Learning

In this section, we present a noise resilient probabilistic
model, which is designed to estimate both the global label
noise and the expertise of each individual labeler.

Given a set of N data points X = {x1, x2, . . . , xN }, where
xi ∈ �D , each of which may be labeled by M labelers. We let
si denote the latent random variable with a Gaussian process
prior. Intuitively, si can be interpreted as the soft score for the
corresponding data point xi . The true label of xi is denoted
as yi ∈ {−1, 1}, which is hidden. The observed label of
xi from labeler j is denoted as ti j ∈ {−1, 1}, which could
be noisy, meaning that ti j may not be consistent with the
hidden true label yi . We denote ti = {ti j }M

j=1 as the set of
labels from the M labelers for xi . For notation convenience,
we denote S = {s1, s2, . . . , sN }, Y = {y1, y2, . . . , yN } and
T = {t1, t2, . . . , tN }.

3.1 The Probabilistic Model

The proposed probabilistic model is illustrated in the graph-
ical model in Figure 2. The conditional joint probability of
this probabilistic model is defined as

p(T,Y,S|X,ϑ, ε)

= 1

Z
p(S|X,ϑ)

N∏

i=1

⎧
⎨

⎩p(yi |si , ξg)

M∏

j=1

p(ti j |yi , ε j )

⎫
⎬

⎭ , (1)

where ϑ is the hyperparameter of kernel matrix on X; ε ={
{ε j }M

j=1, ξg

}
, where ξg is the global label noise measure,

and ε j is the label quality measure for labeler j ; and Z is the
partition function over T, Y and S.

In our model, p(S|X,ϑ) is a Gaussian process prior
(Williams and Barber 1998) to ensure that similar data sam-
ples to have similar prediction scores. Formally, it is defined
as

p(S|X,ϑ) ∼ N (S|0,K), (2)

where K = [k(xi , x j )]N
i, j=1 is a kernel matrix defined over

the set of all N data samples. In theory, any valid kernel that
measures the similarity among data samples, e.g., Chi-square
kernel and linear kernel, can be applied in our model. In this
paper, we use the kernel (Kim and Ghahramani 2006)

k(xi , x j ) = θ0 exp{−θ1d(xi , x j )
2} + θ2 + θ3δ(i = j),

(3)

where ϑ = {θ0, θ1, θ2, θ3}, the delta function δ(i = j) is
1 if i = j and 0 otherwise. θ0 specifies the overall scale
of the variation of the latent values, θ1 is the inverse scale
for distance between xi and x j , θ2 is the overall bias of the
latent values from zero mean, and θ3 is the latent noise vari-
ance. We choose this form of kernel because it can be widely
applicable and often performs well.

The conditional likelihood probability p(yi |si , ξg) is
defined as a flip noise model Minka (2001), i.e.,

p(yi |si , ξg) = ξgΘ(yi si ) + (1 − ξg)Θ(−yi si ), (4)

where Θ(ρ) = 1 if ρ > 0, and Θ(ρ) = 0 otherwise. In other
words, the a posteriori estimation of yi takes the sign of the
predicted soft label si with probability ξg . Hence, we can
use ξg to model the global label noise level. This treatment
makes the GPC resilient to label noise and outliers (Kim and
Ghahramani 2008).

The conditional likelihood probability p(ti j |yi , ε j ) is also
modeled as a flipping noise model, i.e.,

p(ti j |yi , ε j ) = ε jΘ(yi ti j ) + (1 − ε j )Θ(−yi ti j ). (5)

Intuitively, with probability 1−ε j , ti j will be a flipped version
of yi . Therefore, the larger ε j is, the higher the probability
that ti j will agree with the true label yi , and vice versa. Hence,
ε j naturally represents the expertise or quality of the labels
given by labeler j . We note here that unlike in Minka (2001),
we parameterize this model based on label quality, which is
one minus the label noise.

3.2 Inference

As a matter of fact, this two-level flip model can be conve-
niently collapsed by integrating yi out. It is easy to arrive at

p(ti |si , ε) = p(+1|si , ξg)

M∏

j=1

p(ti j | + 1, ε j )

+ p(−1|si , ξg)

M∏

j=1

p(ti j | − 1, ε j ). (6)
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Therefore, we can rewrite the joint probability in Eq. 1 as

p(T,S|X,ϑ, ε) = 1

Z
p(S|X,ϑ)

N∏

i=1

p(ti |si , ε). (7)

This collapsed joint probability will help us to more conve-
niently derive the EP inference algorithm.

For the proposed Bayesian framework, we assume that we
are given a set of labeled data samples XL = {x1, . . . , xN },
and the set of labels are denoted as TL = {ti j |1 ≤ i ≤
N , 1 ≤ j ≤ M}. We denote DL = {XL ,TL}, S = {SL , su},
and X = {XL , xu}, where xu is an unlabeled data sample. To
predict the label yu of an xu , we need to solve the following
Bayesian inference problem, i.e.,

p(yu |xu,DL) =
∫

S
p(yu |su)p(S|DL , xu)dS

=
∫

su

p(yu |su)

∫

SL

p(S|DL , xu)dSLdsu, (8)

where

p(S|DL , xu) ∝ p(S|X,ϑ)
∏

si ∈SL

p(ti |si , ε). (9)

The integral in Eq. 8 is intractable as neither p(S|DL , xu)

nor p(yu |su) can be integrated in closed form. We resort
to Expectation Propagation (Minka 2001) to obtain an
approximate integral by approximating p(S|DL , xu) to be
a Gaussian, i.e.,

Q(S) = p(S|X,ϑ)

N∏

i=1

F̃i (si ) ∼ N (S|m,�), (10)

where m = [m1, m2, . . . , m N ] and � = diag(v1, v2, . . . ,

vN ) are the mean vector and covariance matrix of the
Gaussian distribution Q(S), and each F̃i (si ) is a Gaussian
distribution with mean m̃i , variance vi , and normalization
constant Ai , i.e.,

F̃i (si ) = Ai exp

(
− 1

2vi
(si − m̃i )

2
)

, (11)

which approximates the joint likelihood of the set of all labels
obtained for xi , i.e.,

F̃i (si ) ≈ p(ti |si , ε). (12)

Since the prior p(S|X,ϑ) is a Gaussian by definition, hence
Q(S) will also be a Gaussian distribution. Note this approxi-
mation is in contrast to previous work using EP for inference
in GPC in the sense that the approximation is performed over
the joint likelihood of a set of labels on a single data point.

Most previous work only considered the case of a single label
for each datum. Instead of solving for each F̃i (si ) indepen-
dently, we use EP (Minka 2001) to obtain a better overall
approximation. With Φ(x) = ∫ x

−∞ N (τ ; 0, 1)dτ , the exact
steps of the EP algorithm are summarized in Algorithm 1,
where Zi is defined as

Zi = (C2 − C1)Φ

⎛

⎝ mold−i√
vold−i

⎞

⎠ + C1, (13)

C1 = (1 − ξg)
∏

ti j =−1

(1 − ε j )
∏

ti j =1

ε j

+ ξg

∏

ti j =−1

ε j

∏

ti j =1

(1 − ε j ), (14)

C2 = ξg

∏

ti j =−1

(1 − ε j )
∏

ti j =1

ε j

+ (1 − ξg)
∏

ti j =−1

ε j

∏

ti j =1

(1 − ε j ), (15)

and α is defined as

α = 1√
vold−i

· (C2 − C1)N (zi ; 0, 1)

Zi
. (16)

For more details, please refer to the full derivations in Appen-
dices 1 and 2.

Algorithm 1 The Expectation Propagation Algorithm
Input: X, T, ϑ and ε.
1: Ai = 1, vi = ∞, m̃i = 0, m = 0 and � = K = [k(xi , x j )]N

i, j=1.
2: repeat
3: for all i such that 1 ≤ i ≤ N do

	 Remove F̃i (si ) from Q(S) to obtain an “old” posterior Q−i (si ) ∼
N (si |mold−i , v

old−i ):

4: vold−i = (σ−1
i i − v−1

i )−1, 	 where σi i = �i i

5: mold−i = vold−i (σ−1
i i mi − v−1

i m̃i ).

	 Minimize K L[Q−i (si )p(ti |si )||Q−i (si )F̃i (si )] :
6: mnew−i = mold−i + vold−i α,

7: vi = vold−i ( 1
mnew−i α

− 1),

8: m̃i = mnew−i + vi α.

	 Update:

9: Ai = Zi

√
1 + vi

−1vold−i exp (
vold−i α

2mnew−i
),

10: � = (K−1 + �−1)−1, 	 where �i i = vi

11: mi = ∑
j

σi j
m̃ j
v j

. 	 where σi j = �i j

12: end for
13: until convergence
14: Calculate log Z E P .

Output: �, m̃, log Z E P .

The EP appoximation to the marginal likelihood can be
written from the normalization of Eq. 7 as
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Z E P ≈ Z =
∫

S
p(S|X,ϑ)

N∏

i=1

p(ti |si , ε)dS. (17)

According to Rasmussen (2006), we arrive at

log(Z E P ) = −1

2
log |K + �| − 1

2
m̃T (K + �)−1m̃

+
N∑

i=1

log Φ

⎛

⎝ (C2 − C1)mold−i√
vold−i

⎞

⎠

+ 1

2

N∑

i=1

log (vold−i + vi ) +
N∑

i=1

(mold−i − mi )
2

2(vold−i + vi )
.

(18)

where C1 and C2 are defined in Eqs. 39 and 40 in Appen-
dix 1. Equation 18 has a nice intuitive interpretation: the
first two terms are the marginal likelihood for a regres-
sion model for m̃, of which each component is subject to
an independent Gaussian noise of variance �i i (as � is
diagonal). The remaining three terms come from the normal-
ization constants for each training example. The first of these
penalizes the cavity (or leave-one-out) distributions. More-
over, we can see that the marginal likelihood contains two
aspects: (1) the means of the local likelihood approximations
should be well predicted by a GP, and (2) the corresponding
latent function, when ignoring a particular training exam-
ple, should be able to predict the corresponding classification
label well.

EP obtains a Gaussian approximation Q(S) to the poste-
rior distribution p(S|DL , xu). Hence the integral over SL in
Eq. 8 can also be approximated by a Gaussian distribution
over su as N (su |mu, vu), where mu and vu can be obtained
in closed form. Denote m̃ = [m̃1, m̃2, . . . , m̃ N ]T to be the
concatenation of the mean value of each F̃i (si ), we have

mu = kT
u (K + �)−1m̃, (19)

vu = k(xu, xu) − kT
u (K + �)−1ku, (20)

where ku = [k(xu, x1), k(xu, x2), . . . , k(xu, xN )]T . We
immediately have that the whole integral over all S in Eq. 8
can be approximated as

p(yu |xu,DL)

.= (2ξg − 1)Φ

(
yukT

u (K + �)−1m̃√
k(xu, xu) − kT

u (K + �)−1ku

)

+ 1 − ξg, (21)

where Φ(·) is the Probit function. We subsequently predict
the label yu of xu based on Eq. 21.

3.3 Learning ϑ and ε with Expectation Maximization

To online estimate the quality of both the labels and labelers,
we need to online estimate the kernel parameters ϑ and the

parameters ε =
{
ξg, {ε j }M

j=1

}
, which represent the overall

label quality and label quality of each labeler. We further
develop a generalized Expectation-Maximization algorithm
for estimating it. We start by building the lower bound F of
the log likelihood, i.e.,

log p(TL ,SL |XL ,ϑ, ε)

≥
∫

SL

Q(SL) log
p(TL ,SL |XL , ε)

Q(SL)

=
∫

SL

Q(SL) log
p(S|XL ,ϑ)p(TL |sL , ε)

Q(SL)

= C +
∫

SL

q(SL) log p(SL |XL ,ϑ)dSL

+
N∑

i=1

∫

si

q(si ) log p(ti|si , ε)dsi = F, (22)

where C is a constant which is independent of ϑ and ε, and
q(si ) = ∫

S\si
Q(S)dS is the marginal Gaussian posterior

of q(si ). Its mean msi and variance vsi can be obtained by
Eqs. 19 and 20, respectively.

We use Fϑ and Fε, respectively, to denote the two integrals
that make up F in Eq. 22, i.e.,

Fϑ =
∫

SL

q(SL) log p(SL |XL ,ϑ)dSL , (23)

Fε =
N∑

i=1

∫

si

q(si ) log p(ti|si , ε)dsi . (24)

Expanding Fϑ and Fε, we get:

Fϑ = Eq [log p(SL |XL ,ϑ)]
= Eq

[
−1

2
log |2πK| − 1

2
SL

TK−1SL

]

= −1

2
log |2πK| − 1

2
Eq [SL

TK−1SL ]

= −1

2
log |2πK| − 1

2
Eq [SL ]TK−1 Eq [SL ]

− 1

2
tr(K−1Cov[SL ]), (25)

Fε =
N∑

i=1

Eq [log p(ti|si , ε)]

≈
N∑

i=1

log p(ti|msi , ε)
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=
N∑

i=1

log{p(+1|msi , ξg)
∏

j

p(ti j | + 1, ε j )

+ p(−1|msi , ξg)
∏

j

p(ti j | − 1, ε j )}. (26)

Since ϑ is independent of ε, we optimize F by optimizing
Fϑ and Fε iteratively until convergence.

Initially, we set ε p as 1, and choose a valid ϑ p. Then the
following iterative steps form the EM algorithm

1. E-Step Given the current parameters ϑ p and ε p, conduct
the EP inference to obtain an approximate inference of
Q(SL) ∼ p(SL |XL ,TL ,ϑ p, ε p).

2. M-Step Maximize the lower bound of log p(TL ,SL |XL ,

ϑ, ε) in Eq. 22 over ϑ and ε to obtain a new parameters
ϑ and ε. ϑ p ← ϑ , ε p ← ε, goto the E-Step and iterate
until convergence.

In the M-step , fixing Fϑ , we optimize Fε with respect
to the parameters ε. And then, fixing Fε, we optimize Fϑ to
get the suitable kernel parameters ϑ . Note that the optimal
parameters cannot be computed in a closed form, but can
be solved using gradient descent. Therefore, for maximizing
the lower bound, we used the gradient based projected L-
BFGS-B method (Zhu et al. 1997) using the Armijo rule and
a simple line search. We present the exact steps of computing
the gradients of the lower bound in Appendix 3. The EM pro-
cedure described here converges to and achieves satisfactory
results in our experiments.

4 Bayesian Active Learning

For pool based active learning, we assume that we are
given a pool of both labeled and unlabeled data samples
X = {XL ,XU }, and TL is the label set for XL from M
labelers. The proposed model conveniently allows for both
active selection of unlabeled data samples to be labeled, and
also active selection of higher quality labelers.

For active sample selection, we use an entropy

H(yu) = −
∑

yu∈{1,−1}
p(yu |xu,DL) log p(yu |xu,DL)

of the predicted label yu on unlabeled data xu , where
p(yu |xu,DL) can be obtained using the EP algorithm intro-
duced in Sect. 3.2. We select the most uncertain unlabeled
example to be labeled, i.e.,

x∗
u = arg max

xu∈XU
H(yu). (27)

Obviously, we use entropy based active selection strategy. It
would be worth mentioning that alternatives such as expected

error reduction (Roy and Mccallum 2001; Zhu et al. 2003)
also can be adopted for the active selection of samples.

Note ε j in our model directly models the quality of labeler
j . It can be regarded as the probability that labeler j would
label the data correctly. Therefore, the higher ε j is, the better
quality the labeler has. In our active learning process, we can
naturally select the top K < M labelers with the top K ε j

to label a selected data sample, where ε j is estimated by the
EP-GEM algorithm presented in Sect. 3.3. The joint active
selection of both labelers and data samples greatly facilitates
to obtain higher quality labels.

Another active learning strategy is to only actively select
the data sample to be labeled by all M labelers. Our model
indeed can benefit from the multiple labels, even though there
may be noise. We also compare this strategy with online
majority voting in our experiments.

5 Predictive Active Set Selection Method

When the labeled pool becomes bigger and bigger, the learn-
ing process will get slower and slower because the time
complexity of inference is O(N 3). To apply our proposed
model into practice, on one hand, we want to preserve good
accuracy. On the other hand, we want to speed up the active
learning system with lower computational cost. Here we
resort to the Predictive Active Set Selection Method Henao
and Winther (2010, 2012). An active subset (here we call it
“active set”) of the entire labeled data is used to learn a GPC
and it is iteratively updated according to the cavity/predictive
distribution of each labeled data inferred by the newly learned
GPC.

Denoting the active set {XA,TA}, and the inactive set
{XI ,TI }, we indicate |A| and |I | to be the size of the active
set and the inactive set, respectively. Then the marginal like-
lihood can be viewed as conditional independence,

p(T|X) = p(TI |TA,XA,XI )p(TA|XA), (28)

where the second term on the right hand can be written as

p(TA|XA) =
∫

p(TA|SA)p(SA|XA,TA)dSA. (29)

where p(TA|SA) =
|A|∏
i=1

p(ti |si ) because ti is only depen-

dent on si . Obviously, we can approximate p(SA|XA,TA) in
Eq. 29 by EP as in Sect. 3.2 on active set A. Therefore, we
can replace the posterior p(SA|XA,TA) by the multivariate
Gaussian Q(SA|XA,TA) = N (SA|mA,�AA), wheremA =
[m A

1 , m A
2 , . . . , m A|A|] and �AA = diag(vA

1 , vA
2 , . . . , vA|A|) are

means and variances obtained by the EP approximation.
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The conditional marginal likelihood term for inactive set
can be written as

p(TI |TA,XA,XI ) =
∫

p(TI |SI )p(SI |XI ,XA,SA)

× p(SA|XA,TA)dSAdSI , (30)

where p(S|X) = p(SI |XI ,XA,SA)p(SA|XA,TA). Mar-
ginalizing over SA in Eq. 30, it is tractable to obtain

Q(TI |TA,XA,XI ) ≈
∫

p(TI |SI )N
× (SI |mI |A,�I I |A)dSI , (31)

where mI |A = [m I
1, m I

2, . . . , m I|I |] and �I I |A = diag

(v I
1 , v I

2 , . . . , v I|I |) are defined as

m I
i = kT

i A(KAA + �AA)−1m̃A, (32)

v I
i = ki i − kT

i A(KAA + �AA)−1ki A. (33)

Here ki A, ki i , KAA, �AA and m̃A are defined over the active
set and the inactive set similarly as in Sect. 3.2.

Therefore, we can obtain the approximation to the mar-
ginal likelihood in Eq. 28 as

Z̃ E P = Z I
E P Z A

E P , (34)

where

Z I
E P =

∫

SI

p(TI |SI )N (SI |mI |A,�I I |A)dSI , (35)

Z A
E P =

∫

SA

p(TA|SA)N (SA|mA,�AA)dSA. (36)

This approximate decomposition reduces the complexity of
EP from O(N 3) to O(|A|3+|I |3). It is clear that we still make
full use of the labeled information in both the active set and
the inactive set to approximate the marginal likelihood, which
is a big difference with those sparse Gaussian process approx-
imation approaches that are only based on the selected subset.

As for the selection strategy for the active set, we firstly
initialize the active set with Ninit labeled data and then update
the active set adaptively by two operations, inclusion and
deletion. Once we get the mean m and variance v of each soft
score s, we can immediately integrate over all s scores to get
the probability (2ξg − 1)Φ( m√

v
) + 1 − ξg following Eq. 21.

For any data point i in the inactive set, we measure the
informativeness with its predictive probability, which is cal-
culated based on m I

i and v I
i as

p pred
i = (2ξg − 1)Φ

⎛

⎝ m I
i√
v I

i

⎞

⎠ + 1 − ξg.

We include the data point into the active set if its predic-
tive probability is less than pinc. This treatment makes sense
because data points with small predictive probability are
more likely to contribute to improve the classifier’s perfor-
mance.

In the active set, we measure the informativeness of any
data point j with its cavity probability, which is calculated
based on mold− j and vold− j as

pcav
i = (2ξg − 1)Φ

⎛

⎝ mold− j√
vold− j

⎞

⎠ + 1 − ξg.

We remove the data point from the active set if its cavity prob-
ability is greater than pdel . This is also reasonable, because
the cavity probability can be seen as a leave-one-out estima-
tor and those points with cavity probability close to 1 do not
contribute to the decision rule so that we can discard them
directly.

The setting of the threshold pinc and pdel is empirical.
We can control the size of the active set by setting reason-
able values for pinc and pdel . For large-scale applications,
we can set the larger pinc and the smaller pdel to ensure
the size of the active set small so that the computation
cost can be significantly reduced. From this perspective, our
proposed PASS-JGPC is able to remove the runtime bottle-
neck. According to Henao and Winther (2010, 2012), we set
pinc = 0.6 and pdel = 0.99 in this paper.

6 Experiments

Our experiments are conducted on four datasets with real
crowd-sourced labels. First, we verify the efficacy of our pro-
posed Bayesian model. We conduct experiments with fixed
parameters ϑ . This setting saves a lot of computational costs
and is feasible because all the competing approaches are run-
ning on the same kernels so that the competing condition is
fair. In the subsequent set of experiments, we demonstrate the
utility of learning optimal parameters ϑ . Finally, we evaluate
the validity of the Predictive Active Set Selection Method
in our extended Bayesian model with an additional set of
experiments.

Starting with a small number of initial labeled data, we
measure performance using recognition accuracy curves in
both the active learning pool and the hold-out testing set as
the process of learning. As it may be difficult for readers to
distinguish the different curves as they might overlap closely
in some cases, we provide additional tables summarizing the
area under the accuracy curves (AUAC) with standard devi-
ations based on 30 runs. Note that AUAC here is defined as
the integration of recognition accuracy over the number of
labeled examples. Taking each competing method as the null
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hypothesis H0 and our proposed method as the alternative
hypothesis H1 to support, we present the results of signifi-
cance test with a t test by reporting the significance levels
(i.e., 0.01, 0.05 or 0.10) at which our proposed method per-
forms better significantly.

6.1 Datasets

The first dataset is composed of 3 classes of images from the
ImageNet grand challenge (Deng et al. 2009), which includes
2 category of dogs, i.e., “Yorkshire terrier”, “English setter”
plus the “Meerkat, meerkat” category. These three classes are
among the top 10 in the ImageNet grand challenge in terms of
number of labeled images, with 3047, 2426 and 2341, respec-
tively. We re-push these images back to Amazon Mechanical
Turk and obtained 7 copies of labels for each image. We mea-
sure the raw label accuracy by Amazon Mechanical Turk as
the percentage of the labels which are correct, i.e., agree-
ing with the ground-truth labels from the dataset. We also
measure a labler’s label accuracy as the percentage of his/her
labels which are correct. In the ImageNet dataset, the raw
label accuracies of these three classes are 97.87, 96.83 and
99.27 %, respectively. The label accuracies of the 7 labelers
are 95.52, 95.77, 95.43, 95.81, 95.90, 95.70 and 95.94 %,
respectively. The features we used to represent each image
is the local coordinate coding (LCC) (Lin et al. 2011) on
densely extracted HoG features with 4096 codewords. The
LCC features are pooled in 10 spatial cells, resulting a 40960
dimensional feature.

The second dataset we experiment on is a subset of the
CMU multi-modal action category dataset (CMU-MMAC)
(Spriggs et al. 2009), where crowd-sourced labels have been
obtained by Zhao et al. (2011). In total there are 2682 labeled
video clips, each has 7 copies of labels from the Amazon
Mechanical Turk. The action labels include: 1. close; 2.
crack; 3. open; 4. pour; 5. put; 6. read; 7. spray; 8. stir; 9.
switch on; 10. take; 11. twist off; 12. twist on; 13. walk; and
14. others. The corresponding number of clips for each action
is: 7, 54, 711, 112, 453, 116, 43, 94, 654, 103, 290, 11, 12,
and 22, respectively. The raw label accuracies of these 14
actions are 8.16, 62.96, 24.95, 65.94, 48.47, 18.19, 53.48,
45.89, 75.56, 27.20, 40.05, 0.00, 11.90 and 12.99 %, respec-
tively. The label accuracies of 7 labelers are 30.16, 38.35,
35.01, 37.65, 35.46, 34.13 and 37.11 %, respectively. Since
it is impractical to average the results over all 13 categories
because the results are produced from different number of
clips, and it might occupy too much space if we report the
results separately for each category. We choose to work on the
classification problem of action 9 only, which has sufficient
number of labeled clips and its ground-truth label accuracy is
75.56 %. Since the CMU-MMAC dataset incorporates multi-
ple modality, instead of using visual features extracted from
video frames, we use the feature extracted from the IMU

modality provided by Zhao et al. (2011). The feature dimen-
sion is 180. We refer the reader to Zhao et al. (2011) for more
details on how the features are extracted.

The third dataset for our experiment is a gender face
dataset, where we try to learn a gender classifier from facial
features. We collected 5 copies of gender labels for 9441
face images. The raw label accuracy is 95.36 %, and the
label accuracies of the 5 labelers are 95.51, 94.90, 95.23,
95.59 and 95.55 %, respectively. The face images are all
64 × 64. We extract a 5408 dimensional features from each
face image. This feature extractor is a convolutional neural
network trained for gender recognition with a separate small
set of labeled gender face images. The feature is the output
of the last layer of the convolutional neural network (Tivive
and Bouzerdoum 2006). We will share the features of this
data upon publication of our paper.

The last dataset we use is Waterbird dataset (Welinder
et al. 2010), which includes 240 images in total with 200
images of water birds and the rest 40 images without any
birds at all. There are 4 bird species: Mallard, American Black
Duck, Canada Goose and Red-necked Grebe, each of these
species has 50 photographs. Each image is labeled by 40
labelers among 53 annotators. The raw label accuracies are
67.56, 48.08, 63.19, 18.53 and 56.49 % (refers to the category
without any birds at all), respectively. The mean and variance
of the label accuracies of the 53 annotators are are 50.77 and
6.98 %, respectively. We extract a 4096 dimensional features
from each image using the code online for exacting the fine-
grained feature (Yao et al. 2011).

6.2 Experiments on the ImageNet Dataset

6.2.1 Effectiveness of Labeler Selection

The simulation experiment we conducted is on the Ima-
geNet dataset. To demonstrate the effectiveness of our model
to avoid low quality labelers, we use the class “Meerkat,
meerkat” as an example. We take 1000 images as positive
samples from the class “Meerkat, meerkat” and 1000 images
from the other two dog classes to serve as the hold-out testing
set. The rest of the images in “Meerkat, meerkat” and an equal
number of images from the other two classes are put together
to form the active learning pool. We simulate the case that
there are 2, 3, 4 irresponsible labelers, who would randomly
assign a label to the sample, assuming there is 50 % chance
that the label from them will be erroneous. For good labelers,
we used the noisy labels obtained from Amazon Mechanical
Turk. Therefore, we run our proposed active learning algo-
rithm for both active selection of data samples and labelers.
3 labelers with higher estimated label quality ε j are selected
to provide the labels for the actively selected samples.

We name our algorithm as JGPC-ASAL, which stands
for joint learning GPC with active selection of both sam-
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Table 1 The prefix, infix and
suffix, and their descriptions
used in the short names of
competing algorithms in this
paper

Notation Description

JGPC-/JGPC Gaussian process classifier with joint treatment of multiple labels for each labeled
sample.

Para-JGPC- JGPC with a parameterized kernel.

PASS-JGPC- JGPC with predictive active selection method.

GPC-MV Standard Gaussian process classifier with majority voting the multiple labels for each
labeled sample.

GPC-GRD Standard Gaussian process classifier with the ground-truth label for each labeled sample.

ML-Bernoulli- Yan et al.’s learning algorithm Yan et al. (2011, 2012) with Bernoulli distributions.

ML-Gaussian- Yan et al.’s learning algorithm Yan et al. (2011, 2012) with Gaussian distributions.

-F With the flip noise model.

-K Without the flip noise model proposed by Kapoor et al. (2007).

-ASAL Active selection of both samples and labelers.

-ASRL Active selection of samples with random selection of labelers.

-RSAL Random selection of samples with active selection of labelers.

-RSRL Random selection of both samples and labelers.

-AS/AS- Active selection of samples with the labels from all the labelers.

-RS/RS- Random selection of samples with the labels from all the labelers.

ples and labelers (we call it joint learning in the sense
that the multiple labels of a single example are jointly
considered). We compare with a combination of other
learning strategies with our model, such as active selec-
tion of samples but random selection of labelers, ran-
dom selection of samples and active selection of labelers,
and random selection of both samples and labelers. We
call these three algorithms JGPC-ASRL, JGPC-RSAL and
JGPC-RSRL, respectively. For all these online learning algo-
rithms based on JGPC, we select 3 labelers to provide the
label using the corresponding criterion for labeler selec-
tion.

One algorithm we compare against is the active learning
GP classifier with the global flip noise observation model
similar to the model in Kim and Ghahramani (2008). For
this method, at each round, we use the prediction entropy
to select the next sample to be labeled and a majority vot-
ing is performed to obtain a single label from all 7 copies
of labels. We name it as majority vote active learning GPC
with flip noise model, or in short GPC-MVAS-F. The cor-
responding algorithm performing random sample selection
using majority voted label, is named as GPC-MVRS-F. We
also compare against the algorithm based on the active learn-
ing GP classifier proposed by Kapoor et al. (2007), where a
Gaussian observation model is adopted and a confidence cri-
terion normalized by the variance of the posterior prediction
is adopted for active learning. Again, majority voting is per-
formed at each active learning step to obtain a single label
from all 7 copies of noisy labels. We name this algorithm as
GPC-MVAS-K, and its random sample selection version is
named as GPC-MVRS-K. Since there are no mechanism of

labeler selection, we simply gather majority voted labels from
all 7 labelers. To facilitate the readers to quickly reference
to the meaning of a specific short names, we summarize the
descriptions of the prefix, infix and suffix used in the paper
as in Table 1.

Figures 3, 4 and Table 2 present the recognition accu-
racy evolving with increasing number of labeled examples
for all the competing methods with 2 (Fig. 3a, b), 3 (Fig. 4a)
and 4 (Fig. 4b) irresponsible labelers. We have the follow-
ing observations: (1) Overall, the recognition accuracy of
the proposed JGPC-ASAL is constantly ranked on the top,
in both the active learning pool and the hold-out testing set,
which is not affected by the number of irresponsible labelers
due to the active selection of higher quality labelers; (2) The
JGPC-ASRL algorithm achieves roughly the same accuracy
as the JGPC-ASAL when there are only 2 irresponsible label-
ers, but degrades gradually with the increasing number of
irresponsible labelers. This phenomenon suggests that active
selection of samples to be labeled is more important than the
active selection of labelers, when all the labels are relatively
low in noise. This confirms our intuition, since the quality of
the labelers is all high; (3) The GPC-MVAS-F algorithm out-
performs GPC-MVAS-K, which revalidates the advantage of
the flip noise model based observation model over a simple
Gaussian observation model in a Gaussian process classifier;
(4) In all cases for all algorithms, the active sample selec-
tion strategy always outperforms its random sample selection
counterpart, which suggests that the proposed active learn-
ing criterion is robust against label noises; (5) Taking the
significance tests based on the results in Table 2, we observe
that the JGPC-ASAL algorithm is significantly better than
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Fig. 3 Recognition performance on the “Meerkat, meerkat” class with 2 irresponsible labelers. a Active learning pool - 2 irresponsible labelers.
b Hold-out testing set - 2 irresponsible labelers
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Fig. 4 Recognition performance on the “Meerkat, meerkat” class with 3 and 4 irresponsible labelers. a Hold-out testing set - 3 irresponsible
labelers. b Hold-out testing set - 4 irresponsible labelers

Table 2 The recognition
performance measured by
AUAC on the “Meerkat,
meerkat” class with 2
irresponsible labelers

AUAC∗ Active-2 Test-2 Test-3 Test-4

JGPC-ASAL 412.420 ± 0.028 398.262 ± 0.035 397.817 ± 0.030 397.329 ± 0.033

JGPC-ASRL 412.116 ± 0.031 397.741 ± 0.037 396.386 ± 0.035 392.970 ± 0.055

JGPC-RSAL 389.806 ± 0.076 378.268 ± 0.062 379.154 ± 0.056 377.931 ± 0.075

JGPC-RSRL 390.089 ± 0.075 378.750 ± 0.061 377.641 ± 0.077 377.052 ± 0.057

GPC-MVAS-F 410.658 ± 0.029 396.271 ± 0.028 395.914 ± 0.032 394.020 ± 0.045

GPC-MVAS-K 409.941 ± 0.028 395.710 ± 0.033 395.571 ± 0.034 391.388 ± 0.048

Active-2 stands for the results on the active learning pools. Test-2, Test-3 and Test-4 refer to the results on
the hold-out testing set with 2, 3 and 4 irresponsible labelers, respectively
The significance of bold is to emphasize the largest value of the measurement under the same comparison
condition
∗AUAC here is the area under the accuracy curve. It is defined as the integration of recognition accuracy
over the number of labeled examples

any of the competing algorithms at the 0.01 significance
level.

Figure 5 visualizes the top three labelers selected at each
active learning step when running the proposed JGPC-ASAL
algorithm on the “Meerkat, meerkat” class with 4 irresponsi-
ble labelers (labeler 4, 5, 6, and 7 are irresponsible labelers).
The red, blue, and green color circles represent the top three

labelers selected based on the estimated labeler quality mea-
sure at each active learning step. As we can clearly observe,
at the beginning, the users selected are more or less uniform
across the 7 labelers. Then with the progression of the active
learning process, the three good labelers (labeler 1, 2 and 3)
got constantly selected. This demonstrates the efficacy of the
proposed model for online modeling of the labelers’ quality.
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Fig. 5 Selected labelers on “Meerkat, meerkat” class with 4 irrespon-
sible labelers, i.e., labeler 4, labeler 5, labeler 6 and labeler 7

6.2.2 Labelers with Different Expertise

To better understand the behavior of our algorithm, we run
two sets of experiments with simulated label noises from the
ground-truth labels on the 3 categories of ImageNet dataset.
We use the “Meerkat, meerkat” as the positive class and the
other two dog classes as the negative class. In the first exper-
iment, we simulated the case that labeler 1, labeler 2, labeler
3, labeler 4, labeler 5, labeler 6 and labeler 7 produce 10,
15, 20, 25, 30, 35 and 40 % erroneous labels, respectively.
In the second experiment, we increase the label noise level
to have each labeler to produce 15, 20, 25, 30, 35, 40, and
45 % erroneous labels, respectively. We also impose a naive
majority voting consensus based labeler selection scheme to
the GPC-MVAS-F and GPC-MVRS-F algorithm.

For each labeler, we record online his/her rating of con-
sistent labels with the corresponding majority voted labels.
Intuitively, the higher this rate, the better the labeler’s qual-
ity. We call the GPC-MVAS-F and GPC-MVRS-F algorithm
with this simple active labeler selection scheme as GPC-
MVASAL-F and GPC-MVRSAL-F, respectively. To validate
its efficacy, we also compare against its corresponding ran-
dom labeler selection version, namely GPC-MVASRL-F and
GPC-MVRSRL-F. Again, at each step of the online learning
process, we select 3 labelers to provide the labels.

Figure 6 and Table 3 present the results of the two experi-
ments on ImageNet dataset. Our observations are: (1) The
proposed JGPC-ASAL algorithm achieves slightly better
accuracy than the GPC-MVASAL-F algorithm in the first
experiment, and much higher accuracy in the second exper-
iment, which indicates that our proposed labeler selection
criterion is more robust to label noises than the naive major-
ity voting consensus based labeler selection criterion; (2) The
naive majority voting consensus based labeler selection cri-
terion is also effective, as it achieved better accuracy than its
random labeler selection counterpart and; (3) Our proposed
JGPC-ASAL algorithm outperforms any of the baselines sig-
nificantly at the 0.01 significance level.

6.2.3 Experiments with Real Crowd-Sourced Labels

We further run experiments with all real crowd-sourced labels
on the 3 categories of images. For each category, we randomly
sample 1000 examples from it and another 1000 examples
from the other two categories to serve as the hold-out testing
set. The rest of the examples in the target category and an
equal number of examples from the other two classes are put
in the active learning pool. Since the 7 copies of labels we
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Fig. 6 Experiments with labelers with different level of label noises
on the ImageNet dataset: a 7 labelers are simulated with 10, 15, 20, 25,
30, 35 and 40 %, respectively; b 7 labelers are simulated with 15, 20,

25, 30, 35, 40, and 45 %, respectively. a 10–40 % for each labeler. b
15–45 % for each labeler
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Table 3 The recognition performance measured by AUAC on the
“Meerkat, meerkat” class with 7 labelers with different expertise

AUAC Test-(10–40 %) Test-(15–45 %)

JGPC-ASAL 391.916 ± 0.458 387.183 ± 1.188

JGPC-ASRL 387.216 ± 0.519 379.594 ± 1.272

JGPC-RSAL 374.750 ± 0.502 370.506 ± 1.377

JGPC-RSRL 372.750 ± 0.545 369.506 ± 1.474

GPC-MVASAL-F 390.803 ± 0.432 385.932 ± 1.058

GPC-MVASRL-F 376.094 ± 0.536 372.406 ± 1.313

GPC-MVRSAL-F 373.109 ± 0.679 367.713 ± 1.650

GPC-MVRSRL-F 369.717 ± 0.720 363.370 ± 1.618

Test-(10–40 %) stands for the results on the hold-out testing set where 7
labelers are simulated with 10, 15, 20, 25, 30, 35 and 40 %, respectively;
Test-(15–45 %) refers to the results on the hold-out testing set where 7
labelers are simulated with 15, 20, 25, 30, 35, 40 and 45 %, respectively
The significance of bold is to emphasize the largest value of the mea-
surement under the same comparison condition

collected from the Amazon Mechanical Turk do not really
entail labels from irresponsible labelers, we found that active
selection of higher quality labelers does not really improve
recognition accuracy much.

We argue that our joint treatment of multiple labels in
GPC in general is superior to the majority voting strategy
(GPC-MVAS-F and GPC-MVAS-K), as manifested by the
results shown in Fig. 7 and Table 4. We also compare against
two versions of the active learning algorithm proposed by
Yan et al. (2011, 2012), namely ML-Bernoulli-AS and ML-
Gaussian-AS, respectively.

Figure 7 also presents the results of these competing GPC
algorithms with other sample and labeler selection strat-
egy, namely JGPC-ASRL, JGPC-RSAL, and JGPC-RSRL,
respectively. The curves plotted in Fig. 7 are averaged over
the three classes over multiple runs with different initial
labels to counter the statistic differences. As we can clearly
observe, the proposed JGPC-ASAL performs best especially
at the early stage. JGPC-ASRL is on par with GPC-MVAS-F,

Table 4 The recognition performance measured by AUAC on the Ima-
geNet dataset with real crowd-sourced labels

AUAC Active Test

JGPC-ASAL 390.927 ± 0.639 378.221 ± 0.746

JGPC-ASRL 390.343 ± 1.987 378.100 ± 2.491

JGPC-RSAL 372.565 ± 2.035 364.226 ± 2.492

JGPC-RSRL 372.764 ± 2.909 364.242 ± 3.292

GPC-MVAS-F 390.184 ± 2.100 377.914 ± 2.542

GPC-MVAS-K 388.361 ± 2.035 376.533 ± 2.358

ML-Bernoulli-AS 356.100 ± 9.403 344.882 ± 9.659

ML-Gaussian-AS 358.674 ± 7.680 346.670 ± 8.322

Active stands for the results on the active learning pool, while Test
refers to the results on the hold-out testing set
The significance of bold is to emphasize the largest value of the mea-
surement under the same comparison condition

and outperforms the GPC-MVAS-K algorithm in this dataset.
Again, both JGPC-ASAL and JGPC-ASRL perform bet-
ter than JGPC-RSAL and JGPC-RSRL, which is consistent
with the observation in the synthetic experiments. The ML-
Bernoulli-AS and ML-Gaussian-AS performed poorly on
this dataset with real crowd-sourced labels, which is not sur-
prising as it induces a linear classifier.

We take significance tests based on the results in Table 4,
and find that our proposed JGPC-ASAL algorithm out-
performs JGPC-RSAL, JGPC-RSRL, GPC-MVAS-F, GPC-
MVAS-K, ML-Bernoulli-AS and ML-Gaussian-AS signifi-
cantly at the 0.01 significance level on both the active learning
pool and the hold-out testing set. When compared to JGPC-
ASRL, JGPC-ASAL shows better results significantly at the
0.01 significance level on the active learning pool only and it
is even not superior to JGPC-ASRL significantly at the 0.10
significance level on the hold-out testing set.

For the readers’ convenience to read and see the differ-
ences, we remove the curves of JGPC-RSAL and JGPC-
RSRL, and focus on presenting the experimental results at
the hold-out testing set in the following subsections.
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Fig. 7 Recognition performance evaluation on the ImageNet dataset. The results are average over 3 categories. a Active learning pool. b Hold-out
testing set
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Fig. 8 Recognition performance evaluation on the hold-out testing set
of the CMU-MMAC dataset

Table 5 The recognition performance measured by AUAC and its sig-
nificance test on the CMU-MMAC dataset with real crowd-sourced
labels

AUAC Test

JGPC-ASAL 370.544 ± 1.303

JGPC-ASRL 368.036 ± 1.356

GPC-MVAS-F 365.406 ± 1.291

GPC-MVAS-K 362.340 ± 1.579

ML-Bernoulli-AS 287.542 ± 6.626

ML-Gaussian-AS 286.523 ± 6.322

Test refers to the results on the hold-out testing set
The significance of bold is to emphasize the largest value of the mea-
surement under the same comparison condition

6.3 Experiments on the CMU-MMAC Dataset

We evaluate the proposed framework on the CMU-MMAC
dataset. We take 250 clips of action 9 and 250 clips of the
other actions to form the hold-out testing set. The remain-
ing rest 404 clips of action 9 and the same number of clips
from the other actions are used as the active learning pool.
Figure 8 and Table 5 show the classification accuracy of our
JGPC-ASAL and the baselines. As apparent in the figure, our
proposed JGPC-ASAL algorithm consistently outperforms
the GPC-MVAS-F, GPC-MVAS-K, ML-Bernoulli-AS and
ML-Gaussian-AS. It is also obvious that our JGPC-ASAL
performing active selection of labelers always achieved bet-
ter performance when compared with its random counterpart
JGPC-ASRL. The significance tests show that our proposed
JGPC-ASAL algorithm outperforms all the competing meth-
ods significantly at the 0.01 significance level. This further
validates the efficacy of our model.

6.4 Experiments on the Gender Face Dataset

We also carry out experiments on the gender face dataset.
We hold out 2000 face images, for which all 5 copies of
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Fig. 9 Recognition performance evaluation on the hold-out testing set
of the Face gender dataset

Table 6 The recognition performance measured by AUAC on the Face
gender dataset with real crowd-sourced labels

AUAC Test

JGPC-ASAL 386.834 ± 0.608

JGPC-ASRL 385.506 ± 0.728

GPC-MVAS-F 384.557 ± 0.648

GPC-MVAS-K 378.758 ± 0.853

ML-Bernoulli-AS 246.216 ± 8.234

ML-Gaussian-AS 246.014 ± 7.190

Test refers to the results on the hold-out testing set
The significance of bold is to emphasize the largest value of the mea-
surement under the same comparison condition

labels are in consensus, for testing purpose. The rest of the
face images with different percentage of label inconsistency
are used in the active learning pool. Figure 9 and Table 6
compare the performance of the proposed JGPC-ASAL algo-
rithm and the competing algorithms. It can be seen that
the proposed JGPC-ASAL algorithm again showed superior
recognition accuracy when compared with the JGPC-ASRL,
GPC-MVAS-F, and GPC-MVAS-K algorithms. The signifi-
cance tests also show that our JGPC-ASAL outperforms all
the baselines significantly at the 0.01 significance level.

6.5 Experiments on the Waterbird Dataset

In order to show the efficacy of our proposed algorithm in the
scenario there are more difficult classes where the agreement
between labelers is lower, we conduct fine-grained classifi-
cation on the Waterbird dataset. For each bird specie, we
randomly sample 30 images from it and another 30 from the
other categories to form the active learning pool. The rest
of the examples of the same specie and an equal number of
examples from the other classes are put in the hold-out testing
pool. Each images is labeled by 40 annotators on the Ama-
zon Mechanical Turk. Here we also assume all the labelers
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Fig. 10 Recognition performance evaluation on the hold-out testing
set of the Waterbird dataset. The results are average over 4 species

Table 7 The recognition performance measured by AUAC on the
Waterbird dataset with real crowd-sourced labels

AUAC Test

JGPC-ASAL 21.501 ± 0.701

JGPC-ASRL 21.389 ± 0.709

GPC-MVAS-F 21.365 ± 0.729

GPC-MVAS-K 21.20 ± 0.763

ML-Bernoulli-AS 9.432 ± 0.984

ML-Gaussian-AS 9.383 ± 0.813

Test refers to the results on the hold-out testing set
The significance of bold is to emphasize the largest value of the mea-
surement under the same comparison condition

will all label the selected examples. The results are shown
in Fig. 10 and Table 7. As we can see, the gaps among the
curves are rather small, which indicates the classification task
is indeed difficult. In spite of this, our JGPC-ASAL algorithm
shows better recognition accuracy when compared with the
JGPC-ASRL, GPC-MVAS-F and GPC-MVAS-K.

These observations are consistent with the results of the
significance tests that our proposed JGPC-ASAL algorithm:
(1) dose not perform better significantly even at the 0.10 sig-
nificance level; (2) is better than GPC-MVAS-F significantly
at the 0.05 significant level; and (3) outperforms all the rest of
baselines significantly at the 0.01 significance level. It is also
worth mentioning that the size of this dataset is so small that
any examples selected can help improve the classification
performance, which can explain to the phenomenon why the
recognition accuracy of all the Gaussian process classifiers
increase rapidly.

6.6 Comparison with Joint Gaussian Process Model

In order to show the efficacy of our joint Gaussian process
model and name it as JGPC, we compare it with the majority

Table 8 The comparison of recognition performance among 4 models
with all the labeled data on the 4 datasets.(unit: %)

Accuracy(%) JGPC GPC-MV-F GPC-MV-K GPC-GRD

ImageNet 90.03 90.03 89.62 90.03

CMU-MMAC 85.60 85.20 84.40 86.00

Genderface 86.85 86.80 86.25 86.85

Waterbird 61.25 59.38 56.88 62.50

The significance of bold is to emphasize the largest value of the mea-
surement under the same comparison condition
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Fig. 11 Efficacy of learning parameters on the hold-out testing set of
the ImageNet dataset. The results are average over 3 categories

vote GPC with flip noise model, the majority voting GPC
without flip noise model, and the GPC with ground-truth
labels on the 4 above mentioned datasets with all the known
labeled data. To be brief, we call them GPC-MV-F, GPC-MV-
K and GPC-GRD, respectively. The results are summarized
in Table 8. It is very clear that our JGPC is slightly better than
GPC-MV-F and GPC-MV-K, and comparable to GPC-GRD.
This demonstrates the power of our proposed joint Gaussian
process model.

In the following two subsections, we are going to extend
our JGPC model by exploiting a parameterized kernel in the
learning process and leveraging a predictive active set selec-
tion method. We focus on the active sampling by disabling
the selection of labelers in the process.

6.7 Efficacy of Learning Parameters ϑ

Note that in the above experiments, the kernel parameters ϑ

are fixed. To evaluate the efficacy of our proposed model with
the parameterized kernel, we perform a set of experiments on
the ImageNet, CMU-MMAC and Face gender datasets with
real crowd-sourced labels. We name our parameterized algo-
rithm performing active learning as Para-JGPC-AS, which
enable only the selection of samples without the selection of
labelers. We compare their performances with its counter-
part JGPC-AS. The results are reported in Figs. 11, 12 and
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Fig. 12 Efficacy of learning parameters on the hold-out testing set of
the CMU-MMAC dataset
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Fig. 13 Efficacy of learning parameters on the hold-out testing set of
the Face gender dataset

13, which indicate that Para-JGPC-AS outperforms JGPC-
AS. Not surprisingly, this is due to the fact that the learned
optimal parameters ϑ is beneficial to improve recognition
accuracy for our proposed Bayesian learning framework.

6.8 Efficacy of Predictive Active Set Selection Method

To obtain a quantitative evaluation of the effectiveness of
our extended Bayesian model with the Predictive Active Set
Selection Method, which we call PASS-JGPC-AS in short.
We run another set of experiments on the first three datasets
with real crowd-sourced labels except the Waterbird dataset.
In this set of experiments, we set Ninit = 100, pinc = 0.60,
pdel = 0.99, and initialize the active set as 50 positive data
points and 50 negative data points. Considering that it is not
necessary to apply PASS-JGPC for sparsity in practice when
the number of the labeled examples is too small, we start
evaluating PASS-JGPC-AS with 130 labeled data points. The
results are provided in Figs. 14, 15 and 16. We find that the
recognition accuracy of PASS-JGPC-AS is very close to that
of JGPC-AS on all these three datasets.
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Fig. 14 Efficacy of PASS-JGPC-AS on the ImageNet dataset. The
results are average over 3 categories. a Hold-out testing set. b Speed. c
Active set

As shown, PASS-JGPC-AS can roughly keep up with
the high accuracy of JGPC-AS. From Figs. 14b, 15b, and
16b, we can observe that: (1) when the number of labels
is less than 250, PASS-JGPC-AS is a little slower than
JGPC-AS. This can be explained by the fact that it usually
takes a few iterations for PASS-JGPC-AS to reach the final
adaptive active set. (2) As the number of labels increases,
PASS-JGPC-AS is faster than JGPC-AS. The corresponding
number of data points selected into the active set is plotted in
Figs. 14c, 15c, and 16c. This explains why PASS-JGPC-AS
obtains the higher speed in the learning process. It is clearly
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Fig. 15 Efficacy of PASS-JGPC-AS on the CMU-MMAC dataset. a
Hold-out testing set. b Speed. c Active set

demonstrated that PASS-JGPC-AS shows its superiority in
efficiency over JGPC-AS.

6.9 Evaluation with Different Number of Initial Labeled
Examples

In order to evaluate the recognition performance with differ-
ent number of initial labeled examples, we run a group of
experiments with our proposed JGPC-ASAL, JGPC-ASRL,
and the two baselines, i.e., GPC-MVAS-F and GPC-MVAS-
K and start with 2, 4, 8, 16 and 32 labeled examples on the
three datasets used as in the previous subsection. On one
hand, we compare the recognition performances of our pro-
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Fig. 16 Efficacy of PASS-JGPC-AS on the Face gender dataset. a
Hold-out testing set. b Speed. c Active set

posed JGPC-ASAL with different number of initial labeled
examples, as shown in the Figs. 17, 18 and 19a. As we can
observe, with less initial provided labels, the recognition
accuracy is lower at the early stages, and the gap of accu-
racies among the curves is becoming smaller and smaller
with the progress of the active learning process. This strongly
demonstrates the robustness of our proposed JGPC-ASAL,
which obtains relatively stable recognition accuracy and is
independent of the number of initial provided labels at the
latter stages.

On the other hand, we compare our proposed JGPC-ASAL
and JGPC-ASRL, GCP-MVAS-F and GPC-MVAS-F in each
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Fig. 17 Recognition performance evaluation with different number of
initial labeled examples on the hold-out testing set of the CMU-MMAC
dataset
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Fig. 18 Recognition performance evaluation with different number of
initial labeled examples on the hold-out testing set of the Face gender
dataset

case of using the same number of initial labeled examples and
report the results on the ImageNet dataset in Fig. 19b–f. Obvi-
ously, our proposed JGPC-ASAL always performs best. The
outperformance of JGPC-ASAL is also demonstrated on both
the CMU-MMAC dataset and the gender face dataset. Here
we do not plot the results as in Fig. 19 due to the increased
readability.

6.10 Visualization of Active Selection

It is always interesting to see how the samples are selected in
the active learning process. Figure 20 presents some exam-
ples that are selected actively in the early stages. As we can
see, the results are sensible as a lot of examples picked up in
the early stage present cluttered background, heavy blurring,
and several of them are baby faces. It is well known that it is
not easy to recognize the gender of the baby from their facial
images.

6.11 Runtime

Our algorithm has been tested with experiments that are per-
formed on the Window server 2008 with 2.40 GHz Intel(R)
Xeon(R) CPU E5645, 48 GB RAM, and Microsoft Visual
Studio. Net 2013. It usually costs about 45–60 min to
collect 500 labeled data by running our proposed JGPC-
ASAL/JGPC-AS on each dataset, while it takes about 20–25
min by our proposed PASS-JGPC-AS.

7 Discussions

A set of findings are revealed in our experiments. We sum-
marize them and discuss potential directions to be further
explored. The main observations from our experiments are

(a) It is observed that the entropy based active learning cri-
terion works well. It always obtains better recognition
performance than the corresponding random learning
counterpart.

(b) The proposed joint Gaussian process model outperforms
all the competing methods. It is more resilient to label
noise, and is valid to model the expertise level for each
individual labeler.

(c) It is verified that the proposed model can achieve higher
performance with the learned optimal parameterized ker-
nel.

(d) With the Predictive Active Set Selection method, the pro-
posed Bayesian model can achieve higher efficiency and
still preserve the high accuracy.

(e) This paper has obtained the good performance for the
binary classification tasks on the datasets with the real
crowd-sourced labels. Our proposed model is able to
deal with multi-class classifications by reducing them to
multiple one versus all binary classification problems.

Meanwhile, there are several things to be further explored,
i.e.,

(a) Could better active learning criteria be derived for the
Bayesian model with multiple copies of labels? E.g, to
support batch active learning, and to balance between
exploration and exploitation?

(b) Can we have a formulation to better deal with the case
that the raw label accuracy is low, even lower than 50 %?

(c) Is there a better way to have a joint treatment of all the
labels from multiple labelers?

(d) Is there a better way to extend the current model to deal
with multi-class classifications robustly?

To give a deep probing into the above questions, we will need
some additional modifications to refine our models and we
leave these to be our future work.
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Fig. 19 Recognition performance evaluation with different number of
initial labeled examples on the hold-out testing set of the ImageNet
dataset. a Performance comparison of JGPC-ASAL. b With 2 initial

labeled examples. c With 4 initial labeled examples. d With 8 initial
labeled examples. e With 16 initial labeled examples. f With 32 initial
labeled examples

8 Conclusion

In this paper, we present a hierarchical Bayesian model
to learn a Gaussian process classifier from crowd-sourced
labels by jointly considering multiple labels instead of tak-
ing the majority voting. Our two-level flip model enables
us to design principled active learning strategy to not only

select data samples, but also select high quality labelers. Our
experiments on four visual recognition datasets with real
crowd-sourced labels clearly demonstrated that the active
selection of labelers is beneficial when there are a lot of
careless labelers. Our joint treatment of multiple labels for
each data sample is also proven to be superior to the online
majority voting scheme. The Gaussian process classifier
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Fig. 20 Some examples selected in the early stages of the active learn-
ing process

learned from our model consistently outperforms the one
learnt using majority voting strategy. With the learned para-
meters for the kernel function, the recognition accuracy can
be further improved a bit. The extended Bayesian model
with the Predictive Active Set Selection Method, not only
preserves high recognition accuracy, but also increases the
efficiency of our Bayesian active learning system. Our future
work will further explore how to design an active learning
machine to jointly select both the user and sample in a single
criterion.
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Appendix 1: Derivation of the Normalization
Factor Zi

Zi =
∫ +∞

−∞
N (si |mold−i , v

old−i ){p(+1|si , ξg) × p(+1|si , ε j )

+ p(−1|si , ξg)
∏

j

p(ti j | − 1, ε j )}dsi

=
∫ +∞

−∞
N (si |mold−i , v

old−i )p(+1|si , ξg)

×
∏

j

p(ti j | + 1, ε j )dsi

+
∫ +∞

−∞
N (si |mold−i , v

old−i )p(−1|si , ξg)

×
∏

j

p(ti j | − 1, ε j )dsi

=
∫ +∞

−∞
N (si |mold−i , v

old−i )£(ξg, si )

×
∏

ti j ∈{1,−1}
£(ε j , ti j )dsi

+
∫ +∞

−∞
N (si |mold−i , v

old−i )£(ξg,−si )

×
∏

ti j ∈{1,−1}
£(ε j ,−ti j )dsi

=
∫ +∞

−∞
N (si |mold−i , v

old−i )£(ξg, si )

×
∏

ti j =1

ε j

∏

ti j =−1

(1 − ε j )dsi

+
∫ +∞

−∞
N (si |mold−i , v

old−i )£(ξg,−si )

×
∏

ti j =1

(1 − ε j )
∏

ti j =−1

ε j dsi

=
∫ 0

−∞
N (si |mold−i , v

old−i )C1dsi

+
∫ +∞

0
N (si |mold−i , v

old−i )C2dsi , (37)

where

£(α, β) = (2α − 1)Θ(β) + (1 − α), (38)

C1 = (1 − ξg)
∏

ti j =−1

(1 − ε j )

×
∏

ti j =1

ε j + ξg

∏

ti j =−1

ε j

∏

ti j =1

(1 − ε j ), (39)

C2 = ξg

∏

ti j =−1

(1 − ε j )

×
∏

ti j =1

ε j +(1 − ξg)
∏

ti j=−1

ε j

∏

ti j =1

(1 − ε j ). (40)

Consider that
∫ +∞

0
N (si |mold−i , v

old−i )dsi

=
∫ mold−i√

vold−i

−∞
N (τ ; 0, 1)dτ,= Φ

⎛

⎝ mold−i√
vold−i

⎞

⎠ (41)
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∫ 0

−∞
N (si |mold−i , v

old−i )dsi

= 1 − Φ

⎛

⎝ mold−i√
vold−i

⎞

⎠ , (42)

and we can rewrite the eqnarray as:

Zi = (C2 − C1)Φ

⎛

⎝ mold−i√
vold−i

⎞

⎠ + C1. (43)

Appendix 2: Moment Matching in the Expectation
Propagation Algorithm

Minimizing K L[Q−i (si )p(ti |si )||Q−i (si )F̃i (si )] to obtain
an update for the approximation F̃i (si ), we recompute the
parameters according to the normalized constant presented
in Appendix 1, i.e.,

Zi = (C2 − C1)Φ(zi ) + C1, (44)

where

zi = mold−i√
vold−i

, Φ(x) =
∫ x

−∞
N (τ ; 0, 1)dτ.

By moment matching (Minka 2001), we have

mnew−i = mold−i + vold−i α, (45)

where α = 1√
vold−i

· (C2−C1)N (zi ;0,1)
Zi

. Hence we can obtain a

new F̃i (si ) by recomputing its parameters Ai , m̃i , and vi as

vi = vold−i

(
1

mnew−i α
− 1

)
, (46)

m̃i = mnew−i + viα, (47)

Ai = Zi

√
1 + vi

−1vold−i exp

(
vold−i α

2mnew−i

)
. (48)

Appendix 3: Gradients of the Lower Bound

The gradients of the lower bound with respect to the para-
meters ε are as follows

∂ Fε

∂ξg
=

N∑

i=1

q(msi )

ℵ(msi )
∏

j
p(ti j | + 1, ε j )

p(ti|msi )

−
N∑

i=1

q(msi )

ℵ(msi )
∏

j
p(ti j | − 1, ε j )

p(ti|msi , ε)
, (49)

∂ Fε

∂ε j
=

N∑

i=1

q(msi )
ℵ(ti j )�(+1, i, j)

p(ti|msi , ε)

−
N∑

i=1

q(msi )
ℵ(ti j )�(−1, i, j)

p(ti|msi , ε)
, (50)

where

ℵ(x) = 2Θ(x) − 1, (51)

�(yi , i, j) = p(yi |msi , ξg)
∏

j ′ �= j

p(ti j ′ |yi , ε j ′). (52)

And the gradient with respect to a kernel parameter θ ∈ ϑ is

∂ Fϑ

∂θ
= −1

2
tr(K−1 ∂K

∂θ

+ 1

2
Eq [SL ]TK−1 ∂K

∂θ
K−1 Eq [SL ]

+ 1

2
tr(K−1 ∂K

∂θ
K−1Cov[SL ]). (53)
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