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Motivation

O Automatically determine if a video has temporal manipulations using
the motion of the scene or camera without a reference video.

O Temporal manipulations include dropping frames, duplicating/looping
frames, and speeding up/slowing down.

O In this paper, we present algorithms for detecting frame drops.

o _ Manipulated video with frame drops, frame
Original video duplications and object removal.
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From the UTMVT dataset for the benchmark of video forgery techniques
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Dropped frame detection
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Dropped frame detection

Original video
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Dropped frames

» Frame drop is defined as removal of
any number of consecutive frames

within a shot.
% Currently focus on single shot videos
»Surveillance, body camera, mobile

phone, dash cam.
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Frame Drop Detection Challenges

0 The number of body camera, dash camera and surveillance videos are
increasing every day.

O Distinguish between frame drops and fast/rapid motion of scene elements or
camera motion. Must also be sensitive to rapid changes in static camera
videos.

O To be effective, algorithms must be useful at an extremely low false positive
operating point (1% FA is still 18 FP/min at 30fps).

Original video — moving camera Original video — static camera
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Our contributions

v Propose a 3D convolutional network for frame
dropping detection + refine the confidence score
with peak detection trick and a scale term.

v Develop a series of baselines including cue-
based and learning-based methods.

v Evaluate the performance of frame dropping
detection on YFCC100m dataset and Nimble
Challenge 2017 dataset.
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Related work

O Detecting dropped frames in videos.

» Cue-based approaches. E.g. motion energy cue [S.Wolf 2009].

» Learning-based approaches. E.g. SVM to classify tampered or non-tampered
video, tampered or non-tampered frames [Thakur 2016].

O Identifying Inter-frame Forgery in videos.

» Optical flow [Qi Wang 2014] [Juan Chao 2013]

» Consistency of Correlation Coefficients of Gray Values[Qi Wang 2013]
U Detecting shot boundary.

» [Alan F. Smeatona 2010] video shot boundary detection.
» TRECVID: http://trecvid.nist.gov/

/ Shot-boundary detection
Frame

k » ( . I Detector
»| Discon tinuity
z(k je+l) no boundary
p computation wkk+) T T(k)
Frame \ boundary
k+l

Motion compensating Apriori  Additional
ueatures and metrics  information information

Shot-boundary detector framework
[Hanjalic 2002]
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Cue-based algorithms

/’— Frame dropping
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3 consecutive frames
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Cue-based algorithms/ e e

3 consecutive frames

Color histogram
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Cue-based algorithms |
/" Frame dropping

3 consecutive frames

Color histogram

Optical flow
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Cue-based algorithms

/—— Frame dropping

3 consecutive frames

Color histogram

Optical flow

Motion energy
[S. Wolf, 2009]




Learning-based algorithms
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Learning-based algorithms (1)
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Learning-based algorithms (2)
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Learning-based algorithms (3)
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Our C3D-based approach: motivation
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(a) 2D convolution (b) 2D convolution on multiple frames (C) 3D convolution
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[Du Tran et al. Learning Spatiotemporal Features with 3D Convolutional Networks. In Proc. ICCV 2015.]

1 The C3D network is a 3D convolutional network using 3x3x3 convolution

kernels and 66 million parameters originally designed for action recognition.

L This architecture allows us to make use of motion cues due to convolution
across the temporal dimension.
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Our C3D-based approach: pipeline

- ) Training stage
; C3D-based '
- E S

l Testing stage
Coomeor ) m» .
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Output scores Confidence scores prediction

16 frame;long clips

» Video
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Our C3D-based approach: confidence
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where
A = median (k) — min (k) 2 Video-level score
W(i):{i—%,...,i—l—%}. 3)

0l12fal6fdacbd42cel2f578d94e64d556.mov
Video-level Confidence score: 9.5064925
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Dataset-training and validation

* 2,394 iPhone 4 videos downloaded from Medifor RankOne Browser.
* We removed videos with length smaller than 1 min or longer than 3 mins.

Dataset

iPhone 4
video
Dataset

# of original videos

314
(264 for training,
for validation)

50

# of Manipulated videos

15,700 = 314 x5x10
(drop duration: 0.5, 1, 2, 5, 10
seconds)

Source
MediFor Wrold Dataset
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Test datasets

Dataset Raw Manipulated video# Source
video #
YFCC100cm 53 53 x5x10 = 2650 (drop durationa:0.5, 1, Yahoo Flickr Creative Commons 100 Million
Dataset 2,5, 10s.). Frame-level ground-truth (YFCC100m) dataset
information is available. (http://www.yfcc100m.org)
NC17-Dev2- 209 No information available for drop Nimble Challenge 2017 Evaluation sub-dataset
Betal durations for the videos, and has only (https://www.nist.gov/itl/iad/mig/nimble-challenge-
video-level ground-truth information 2017-evaluation )
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Baselines

Method Brief description Learning?
Color histogram RGB 3 channel histograms + L2 distance. No
Optical flow The optic flow [1 1, 1] with Lucas-Kanade method + L2 distance. No
Motion energy Based on temporal information difference [13] sequence. No
SVM 770-D feature vector (3x256-D RGB histogram + 2-D optic flow). Yes
Pairwise Siamese Network | Siamese network architecture (2 conv layers + 3 fc layers + contrastive loss). Yes
Triplet Siamese Network | Siamese network architecture (Alexnet-variant + Euclidean&contrastive loss). Yes
Alexnet [3] Network Alexnet-variant network architecture. Yes

[1] J. Chao, et al. A novel video inter-frame forgery model detection scheme based on optical flow consistency. In

International Workshop on Digital Watermarking, 2012.
[3] A. Krizhevsky, et al. Imagenet classification with deep convolutional neural networks. In Advances in Neural

Information Processing Systems, 2012.
[11] Q. Wang, et al. Video inter-frame forgery identification based on optical flow consistency. Sensors & Transducers,

2014.
[13] S. Wolf. A no reference (nr) and reduced reference (rr) metric for detecting dropped video frames. In National

Telecommunications and Information Administration (NTIA), 2009.
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Performance — 0.5s drop duration
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Performance — 0.5s drop duration
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Performance — 0.5s drop duration
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Performance — 0.5s drop duration
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Performance — 1s drop duration
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Performance — 2s drop duration
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Performance — 5s drop duration
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Performance — 10s drop duration
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Frame-level evaluation on YFCC100cm
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Frame-level evaluation on YFCC100cm
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Video-level evaluation on NC17-Dev2-
Beta1
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Example (1

5d78cle2378dff7a3bc2fe7f424ch237.mp4
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Example (2)

012fal6fdcbd42cel2f578d94e64d556.mov
Video-level Confidence score: 9.5064925
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Conclusion

JProposed a C3D-based network with confidence score
defined with a peak detection and a scale term for
frame dropping detection.

 Flexibly explore the underlying spatio-temporal
relations within a video.

JAble to provide temporal localization of frame drops.
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Future work

 Distinguish between shot breaks and frame drops.

JExpand the training dataset to include videos with
zoom changes and fast camera motion.

dUse a Long Short-term Memory (LSTM) based
network for faster run-time.

J Address other types of video manipulations, e.g.
temporal duplication, looping, and frame rate changes.
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Thanks!

chengjiang.long@Kkitare.com
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