

### **Background and motivation**



| Datasets           | Description                                           | How to collect labels               |
|--------------------|-------------------------------------------------------|-------------------------------------|
| Takeo-<br>Kanade   | 20 subjects, 40 face images                           | Labeled by the researchers.         |
| FERET              | 856 subjects, 2413 face images                        | Government hired vendors to collect |
| Caltech<br>101/256 | >100 categories, serveral tens of images per category | Collect by students                 |
| Lotus Hill         | 280 categories, 500k images                           | Hired professional artists to label |
| LabelMe            | 180 categories, 12M images                            | Used a web-based annotation tool    |
| ImageNet           | 21841 synsets, > 14 images                            | Used Amazon<br>Mechanical Turk      |

# Crowd-sourcing labeling

 $\geq$  Pros: cheap and fast to obtain large quantity of label data.  $\succ$  Cons: the obtained labels can be very noisy.

- Previous work
  - ➤ Majority voting based confidence. [Donez et al 2009-2010]
- >Incremental relabeling mechanism. [Zhao et al 2011] Disadvantage
  - $\succ$  Cannot handle label noise during the labeling process.
  - $\succ$  The label quality will be heavily affect if the malicious labelers occur at the early stage.
  - $\succ$  Only investigate the case where a single copy of labels is engaged.

## Motivation

- $\succ$  We introduce the active learning strategy into the framework.
- $\succ$  We want to enable the collaborative work among the multiple labelers.
- $\succ$  We want to handle the label noise during the labeling process.
- $\succ$  We want to detect and even kick out the irresponsible labelers at the early stage.
- $\succ$  We also want to make full use of multiple copies of labels.

# Datasets

ImageNet dataset (10 categories, LLC features) Gender face dataset (9441 face images)

### Comparisons

# Comparisons:

- CAL: collaborative active learning (ours).
- CRL: collaborative random learning (ours).
- MIAL: multiple independent active learning (remove cross term from CAL).
- MIRL: multiple independent random learning (remove cross) term from CAL).
- SVM-MIAL: multiple independent active learning SVM.
- SVM-MIRL: multiple independent random learning SVM.
- MVAL: single classifier with majority voted labels using logistic loss.
- SVM-MVAL: single classifier with majority voted labels using hinge loss.
- ML-Bernoulli-AL: active learning with multiple labelers (Bernoulli version) proposed by Yan Yan et al. [ICML 2011]
- ML-Gaussian-AL: active learning with multiple labelers (Gaussian version) proposed by Yan Yan et al. [ICML 2011]



### Sponsors

Research

Google





# **Collaborative Active Learning of a Kernel Machine Ensemble for Recognition**

# Gang Hua, Chengjiang Long **Stevens Institute of Technoloy** Hoboken, NJ 07030

{ghua, clong}@stevens.edu

Facebook Menlo Park, CA 94026 mingyang2008@u.northwestern.edu



# Ming Yang

# Yan Gao Northwestern University Evanston, IL 60208 beargaoyan@gmail.com





