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Collaborative Active Visual Recognition from
Crowds: A Distributed Ensemble Approach
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Abstract—Active learning is an effective way of engaging users to interactively train models for visual recognition more efficiently. The
vast majority of previous works focused on active learning with a single human oracle. The problem of active learning with multiple
oracles in a collaborative setting has not been well explored. We present a collaborative computational model for active learning with
multiple human oracles, the input from whom may possess different levels of noises. It leads to not only an ensemble kernel machine
that is robust to label noises, but also a principled label quality measure to online detect irresponsible labelers. Instead of running
independent active learning processes for each individual human oracle, our model captures the inherent correlations among the
labelers through shared data among them. Our experiments with both simulated and real crowd-sourced noisy labels demonstrate the

efficacy of our model.

Index Terms—Active learning, multiple oracles, collaborative learning, ensemble kernel machine, label quality, detect irresponsible labelers

1 INTRODUCTION

1.1 Motivation

UPERVISED learning serves as one of the main approaches

for advancing research on visual recognition [22], [34].
One of the major difficulties taking such an approach is to col-
lect sufficient trustworthy labeled data for training. To miti-
gate the heavy workload of labeling, some previous works
attempted to train the recognition model with less labeled
data using semi-supervised learning [16]. Nevertheless, state-
of-the-art recognition systems are all based on supervised
learning with large amount of labeled training data [22], [34].

To facilitate more efficient data labeling, some previous
works have explored the use of active learning [14], [19],
[21], [25], [37], [38], where the learning machine guides
labelers to label the most informative visual examples.
However, most previous works on active visual labeling, if
not all of them, assume noise-free labels from human
oracles. Under such an assumption, it is not necessary to
consider multiple oracles because a single or multiple
oracles would generate exactly the same labels. Similarly, if
label noise is an i.i.d process, there is really no difference
between the single and multiple oracle setting.

However, in realistic crowdsourcing platforms such as
Amazon Mechanical Turk, due to the different noise
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characteristics, different labelers may provide somewhat
noisy labels, which makes it necessary to model the multiple
labelers. To our best acknowledge, the problem of active
learning with multiple collaborative labelers in the crowd-
sourcing setting has not been fully explored, even though
Zhao et al. [45], Ipeirotis et al. [18] and Sheng et al. [35] stud-
ied it with relabeling mechanisms to reach label consistency
among multiple labelers.

On the other hand, most of the recent efforts on collecting
large scale labeled image datasets, such as ImageNet [10]
and LabelMe [33], have exploited crowdsourcing tools.
There are several issues raised when using crowdsourcing
systems such as Amazon Mechanical Turk. First of all, there
is no active guidance from the system to enable the labelers
to more efficiently label the data. Second, there is no mecha-
nism to online monitor if a labeler is conducting the job
assignment in the desired fashion. Last but not least, several
studies have shown that the label information collected
from Mechanical Turk could be very noisy, either due to
irresponsible behaviors from some of the labelers, or due to
the inherent ambiguities of the target semantics.

A common practice for post sanity check of labels col-
lected from Mechanical Turk is to assign a single data sam-
ple to multiple labelers. After all labelers have finished their
labeling tasks, a majority consistency check is performed to
filter out the label noises. Nevertheless, if there are irrespon-
sible labelers, we may have already wasted valuable time
and monetary resources before we identify them through
post sanity check.

All these make the problem of collaborative active
learning with noisy labels from crowds (i.e., multiple
human oracles) a very important problem to explore. We
propose a computational model for collaborative active
learning with multiple labelers to address all the above
issues, which learns an ensemble kernel machine for clas-
sification problems.
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In our framework, each labeler is assigned to an individ-
ual active learning process, where the system naturally
guides labelers to label different images more efficiently
towards learning the classifiers. These active learning pro-
cesses are not independent to one another. Our unified dis-
criminative formulation explicitly models the consistencies
among all the different active learning processes through
the shared data among them. By doing so, we can not only
make our active learning model to be more robust to label
noises, but also derive principled measures to detect irre-
sponsible labelers who are careless about their labels early
in the visual labeling process.

1.2 Related Work
We review related works in human in the loop for visual recog-
nition, and learning from crowds.

Human in the Loop. Ever since the publication of the ESP
games [1], [2] for producing annotations for images, there
were a lot of active research in the computer vision commu-
nity to harvest human knowledge from crowd for advanc-
ing computer vision research, and in particular, research in
visual recognition. For example, one theme of research by
Parikh and Zitnick [26], [27], [28], [29], [47] has studied vari-
ous factors in a visual recognition system using crowd-
sourced human debugging, which encompass the studies
on the impacts of features, algorithms, and data [28], the
weakest link in a person detector [29], the role of local and
global information [26], the role of contour in image under-
standing [47], and the role of appearance and contextual
information [27] for image recognition.

Some other representative works engaging human in the
loop for visual recognition include the Visipedia project [5],
[6], [39], [40], which studies how to build systems and mod-
els to engage human (e.g., those from crowds) in various rec-
ognition tasks, either in terms of questions and answers, or
relabeling. Some more recent work also studied how to boot-
strap a fine-grained visual recognition system by actively
querying answers from crowds with binary questions [30],
and identifying discriminative features for more accurate
fine-grained visual category recognition using the Bubble
game [11]. Most of these works just focused on modeling the
output from crowds, they did not attempt to further model
the individual expertise of each Turk in the modeling and
learning process while analyzing the visual content.

Learning from Crowds. There have been some previous
works which attempted to use active learning to facilitate
crowd-sourced human labeling [3], [38], [41] in various
tasks including machine translation [3], named entity
extraction, sentiment detection [23], and visual object detec-
tion [38]. To handle label noises and irresponsible labelers,
they either perform postmortem majority voting to reduce
label noises [38], or use a pre-labeled gold standard dataset
to measure the label quality [3], or synchronize labels
from different workers on the same examples to conduct
online majority vote filtering [23]. The issue with a gold
standard dataset is that it is difficult to gather it, and online
majority voting will need all the labeling activities to be
synchronized.

Donmez et al. [13] proposed a majority voting based con-
fidence interval method to determine the labeling quality of
each annotator, which is assumed to be stationary, and used

it to select a subset of annotators to query in the active learn-
ing process. In their later work [12], a sequential Bayesian
estimation method is proposed to deal with non-stationary
labeling qualities. Nevertheless, although reliable annota-
tors can be selected, the labels of one data sample from the
selected annotators still need to be synchronized, which
may not be desirable.

Different from the majority voting strategy, Zhao
et al. [45], Ipeirotis et al. [18] and Sheng et al. [35] proposed
incremental relabeling mechanisms which exploit active
learning not only to select the unlabeled data to be labeled
by crowds, but also select already labeled data samples to
be relabeled until sufficient confidence is built. Unlike
their relabeling mechanisms to reach label consistency,
the proposed collaborative active learning framework is
able to reach the consistency among multiple labelers at the
model level.

Several other previous works have also explored the case
of learning models from multiple annotations collected in
the absence of gold standard labels. For example, Vempaty
et al. [36] proposed a coding-based method in crowdsourc-
ing for reliable classification despite unreliable crowd label-
ers. Raykar et al. [31], [32] proposed a probabilistic model,
which assumes independence of the annotator judgements
given the true labels. An EM algorithm is developed to
alternatively estimate the classification model and measure
the performance of the multiple annotators. Dekel and Sha-
mir [8] adapted the formulation of support vector machines
(SVMs) to identify low quality or malicious annotators.

However, these works assume that the quality of each
annotator is binary, i.e., either good or bad, instead of taking
values in a continuous state space. We note that a continu-
ous measure of the labelers’ quality is more desirable as dif-
ferent labelers may have different levels of expertise. Later,
Dekel and Shamir [9] described a method along with its the-
oretic support for pruning out the low-quality workers by
using the model trained from the entire labeled dataset
from all workers. Karger et al. [20] considered a general
probabilistic model for noisy observations for crowdsourc-
ing systems and exploited a low-rank structure inherent in
the probabilistic model to obtain the best trade-off between
reliability and redundancy.

In addition, Chen et al. [7] proposed a method to identify
good annotators based on spectral clustering in the worker
space. The assumption is that good annotators will behave
similarly. Yan et. al [42], [43], [44] proposed a probabilistic
multilayer model to model each labeler’s experise in label-
ing each data sample using the variance of a Gaussian or a
Bernoulli distribution. Hence it allows to not only use active
learning to select the next data sample to be labeled, but
also select the labelers with the highest expertise level to
label this data sample.

These works provide various insights on how to deal
with label noises and irresponsible labelers. Nevertheless,
none of them explored to actively learn an ensemble classi-
fier from multiple noisy labelers. Previous study has dem-
onstrated that an ensemble classifier or multiple classifiers
system, such as those using bagging, tend to be more resil-
ient to label noises, which partly motivated us to design
such a collaborative active learning algorithm to learn an
ensemble kernel machine for classification.
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1.3 Proposed Approach and Our Contributions

For majority of the active learning algorithms we discussed
above, such as [3], [23], [38], active learning and crowd-
sourcing are two separate steps. Specifically, the active
learning process is running as a single centralized service to
select the informative data samples from all the data. These
data are then distributed to the crowds to be labeled. Not-
withstanding their demonstrated success, such a centralized
setting with a single active learning process may become the
bottleneck for scalability when the data are large in
quantity.

It may be more desirable to distribute the active learning
process to multiple labelers and run it on the specific set of
data allocated to each of them, which are always at a smaller
scale. Ideally, information will still need to be communi-
cated among the different active learning processes to
ensure the consistency. In our framework, the information
that needs to be exchanged only includes the parameters of
each individual active learning model along with new labels
added on the shared data between any two labelers. This
way, we can naturally reinforce the label consistency among
the different labelers when performing each individual
active learning process.

We apply the proposed collaborative active learning
framework for online learning of classifiers for visual recog-
nition. We validate its efficacy with experiments on both sim-
ulated real crowd-sourced noisy labels from Amazon
Mechanical Turk. Our extensive empirical evaluations
clearly show that our collaborative active learning algorithm
is more robust to label noises when compared with multiple
independent active learners, and the learned ensemble ker-
nel classifier can often generalize better to new data.

We also show that conducting collaborative active learn-
ing naturally leads to more efficient labeling than random
labeling (i.e., randomly select the next image for a labeler to
label). When there are irresponsible labelers, our experi-
ments also manifested that the measure we derived from
our model show a very strong signal to detect these irre-
sponsible labelers early in the active learning process, which
is desired as we may want to exclude them from our label-
ing task as early as possible. We further carry this label
quality measure back to the collaborative formulation,
which naturally suppresses the negative effects of the
noisy labels.

Our main contributions are hence five-fold: (1) we pro-
pose a unified and distributed discriminative learning
model for collaborative active learning among a set of label-
ers to induce an ensemble kernel machine classifier. (2)
From our proposed computational model, we are able to
derive a principled criterion which presents a strong signal
to online identify irresponsible labelers, based on which we
cast it back to the collaborative learning objective function
to suppress the negative effects of the label noises. (3) We
demonstrate that through explicit modeling of the label con-
sistency in the active learning model, our collaborative
active learning process is robust to label noises and label
errors from irresponsible labelers. (4) We apply the pro-
posed collaborative active learning framework to learn clas-
sifiers for visual recognition, which produced models that
can often generalize better to new data than other compet-
ing methods. (5) We collect two visual recognition datasets

with real crowd-sourced labels from Amazon Mechanical
Turk, which we will share them publicly with the research
community.

The remainder of the paper is organized as follows:
Section 2 presents the mathematical formulation of our col-
laborative discriminative learning framework. Then in Sec-
tion 3, we develop the active learning criteria for each
labeler. In Section 4, we derive a principled measure from
our computational model to detect irresponsible labelers for
label quality control. We extend our framework to weighted
collaborative discriminative learning in Section 5, taking
into consideration the label quality measure. Various exper-
imental results are reported and discussed in Section 6.
Finally, we conclude in Section 7.

2 COLLABORATIVE FORMULATION

In this section, we present the mathematical formulation of
a collaborative discriminative learning framework, which is
the foundational model for our targeted application of col-
laborative active learning. This formulation is first proposed
in our previous paper [17].

2.1 Formulation

Suppose we have K labelers (a.k.1, K Turks in Amazon
Mechanical Turk) subscribed to our visual labeling task on
a data-set D = {xi,xs,...,xy}. We partition D into K sub-
sets that have overlaps with each other, ie,
D=D;UDyU...UDg. Usually we may want to ensure
that m versions of the label for each data x; € D for the tar-
get visual concept be collected from different labelers.
Hence x; will be present in m subsets of D. In other words,
define S(x;) = {Dy|x; € Dy} to be the set of all subsets D;
that x; belongs to, we have, Vx;, |S(x;)| =m, where ||
denotes the cardinality of a set.

Since our goal is to design a collaborative active learning
strategy across all the K labelers, we further assume that
each subset D; is composed of two subsets: the labeled set
L;, and the unlabeled set U; such that D, = £, UU; and
L;NU; = ). We denote y;(k) € {—1,1} to be the label of x;
by labeler k if it is a labeled data sample. Note here, we
focus our discussion on binary classification problems but it
is straightforward to extend it to multiple category classifi-
cation by taking an one-versus-all approach. For each data-
set D;, we try to learn an individual classification function
fi(x),i=1,2,..., K from £L;. Notice that the training of the
set of all classifiers is not independent, as we would like to
ensure that two classifiers f;(x) and f;(x) be consistent on
the data samples they share.

Therefore, we propose the following objective function to
jointly optimize all K classifiers, i.e.,

K
L) =Y > Liyi), filxy))

=1 x;€L;

1<i#j<K x3,€D; ml:]‘

K
+A Y Qlfill),
f
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where ((-) is a monotonically increasing regularization
function to control the complexity of the hypothesis space,
and H is the reproducing kernel Hilbert space induced by a
certain kernel function (a Gaussian RBF kernel is exploited
in our experiments unless otherwise specified). Further-
more, here L;(-) is a loss function to characterize the perfor-
mance of each individual classifier f;(x;) on each L;; Lﬁj
reinforces that the two classifiers fi(x) and f;(x) be consis-
tent in predicting the label of a shared data sample xy,
when it has already been labeled by at least the labeler j.
For L,(-), we take a standard Logistic regression loss to max-
imize the margin, i.e.,

Lilyi(0): fix)) = log {1+ 05y @)
To define L! ;(+), we need to consider three conditions. First,
if x; € £; N Lj,i.e., xy is labeled by both the labeler ¢ and the
labeler j, and the labels are consistent with each other, then
we would need to bias the learning of both f;(x) and f;(x)
to make more efforts to ensure the correctness of their pre-
diction on this data sample x;. If the two labels are inconsis-
tent, then it could either be the case that this example
caused confusion among the different labelers, or some
labelers are not doing a good job. In this case, we may dis-
count these conflicting labels by encouraging both classifiers
fi(x) and f;(x) to put the data sample to be near the deci-
sion boundary since we are not sure about the true label
anyway. In the third case, x;, is only labeled by labeler j,
then this label information will need to be leveraged to ben-
efit the learning of f;j(x). As can be easily verified, we can
achieve the desired behavior for all three situations through
a single loss function, i.e.,

Li;(ue (), fi(xi)) = log {1+ e w@filxi) (3)
Considering the situation that there are two labelers, if the two
labelers both labeled a data sample x; as positive, i.e.,
¥i(1) = y;(2) = 1 for two consistent labels, then the joint cost
function associated with x; in Equation (2) (ignoring the
regularization term) becomes L(D) = 2log {1 + e /1% }4
2log {1 + e 2K}, Obviously the learning algorithm will
strive to have both classifiers f;(x) and f»(x) classify x; to be
positive. The case of consistent negative labels will work in
the same fashion. Under the case that the two labelers pro-
vided conflicting labels. Without loss of generality, assuming
yi(1) =1 and y,;(2) = —1, then the loss function associated
with x; becomes L(D) = Z llog {1 + e /i) }+ log {1+

eli®k)}). With such a confhctmg loss for both classifiers, the

learning algorithm will seek for a trade-off and both classifiers
fi and f> would make the prediction more or less near the
decision boundary in order to minimize the overall loss.
When only one labeler labeled x;, e.g., y;(1) = 1, this label will
be utilized by both classifiers as the learning cost associated
with x; becomes L(D) = log {1 + e 10%)} 4 log {1 + ef2(0)}.
Therefore, The Li;(yx(j), fi(x1)) defined in Equation (3) can
achieve the desired behavior as we anticipated.

2.2 Learning a Kernel Machine

We exploit the “kernel trick” to learn classifiers with com-
plex decision boundaries, which implicitly performs a non-
linear mapping to transform the data in the original space

to a very high dimensional space (or even infinite dimen-
sional space). According to the representation theorem [15],
each classifier f;(x), i =1,2,..., K is defined as

Z Olz']‘k(Xj, X). (4)

XjE'DL'

fi(x) =

Let N; = |D;|, N! = |L;|, and N! = |U;| be the number of
samples in D;, £; and U; respectively. We immediategy have

M = Nzl +NZ“ We denote &1 = [0!,;1,0{7;2, <y OGN } . Let
K; = [k(x;,x;)]; be the N; x N; Gram matrix defined over
D;. Let K = (k(xj, xp)]x,cr, be the first N! rows of K;, and

K} = [k(xj,xk)]xjeui be the last N
K, = [KéT, K'"]". We further denote that Kﬁj be the matrix
composed by rows of K; corresponding to those samples
x; € D; N ﬁj.

We also denote that Vi, y, be the label vectors of the set of
labeled data samples in £; from labeler i, and y!. ;; be the label
vector of those samples in D; N £; from labeler j. Embed-
ding Eq. (4) into Eq. (1), and representmg the formula in
vector format, we have

rows of K;, ie,,

L(D) = ZlTlog{l—l—e iy
i=1
KL (v )3
+ Z 1"log {1 + e K, n)"} )
1<i#j<K

X
+AY @ Kid,
=1
where K!(y,) = diagly,]K! and Kﬁj(yéj) = diag[yf;j]Kf;j. Here
diag|v] transforms a vector into a diagonal matrix by placing
each corresponding element of the vector v sequentially in
the diagonal position to form a diagonal matrix.

It can be shown that L(D) is a convex function with
respect to each &;. Hence we can conveniently obtain the
optimal solution of &@; by gradient based optimization algo-
rithms. We have

oL(D _
aév ) = —Kl(y,) P! = Y Kl (y})P}, + 20K;&@;, (6)
g i#j
where
—Kl(y;)& —KL(y!)a
e i e ijij
Pf',: 1 avPEZj: T ol M
1 4 ¢ Kb 1+ 6*Kij(yij)%'
Moreover, we have
9*L(D
D) _ iy WKy,
8ai
+ > K Wi‘jKﬁj(yi‘j) ®
1<i#j<K
+ )\K7&Z7
where
W! = diag[P! o (1~ P)] ©
Wi, = diag[P!; 0 (1 - P.,)]
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“_

where “0” is the elementwise or Hadamard product of two
vectors. Hence the optimal &; can be obtained by following
the Newton-Ralphson steps, i.e.,

9 -1

8&12 aai

In practice, the full Newton’s method can be very expensive
and we can resort to any other more efficient quasi-New-
ton’s method such as the L-BFGS-B algorithm [46] to more
efficiently seek the optimal ;.

2.3 Kernel Machine Ensemble

Once all the kernel classifiers f;(x) are learnt, to classify a
new data point x,.,, we take an ensemble classification
approach. Specifically, we identify the nearest neighbor
N (Xpew) Of Xpep in D. The final prediction of x,,.,, is deter-
mined by the following ensemble classifier

Z fz (Xnew) )

N (xnew)€D;

f(x'ne’w) = (]- ]-)

where D; indicates the subset of the training data assigned
to labeler  to learn f;(x). Since each data sample is assigned
to m labelers, there will be exactly m learned kernel classi-
fiers to be used to form the ensemble classifier to predict
any new data sample X;,,. Alternatively, we can also sum
the prediction scores from all K classifiers together. Empiri-
cally, we found the ensemble classifier in Eq. (11) always
obtained better results. We proceed to present a collabora-
tive active learning scheme and a label quality measure,
both of which are derived from our collaborative formula-
tion of discriminative ensemble classifier learning, in the
next two sections, respectively.

3 COLLABORATIVE ACTIVE LEARNING

We design a collaborative active learning strategy based on
the collaborative discriminative kernel machine proposed
in Section 2.2. Recall that for each single labeler i, the task of
active learning is to select the most informative example
Xj, € U; to be labeled by the labeler, such that the perfor-
mance of the learning machine can be improved the most.
As discussed in [4], one potential shortcoming of most
active learning strategies is that it may become noise seeking,
i.e., the most informative examples may often be the ones
that are typically the most prone to noise. Despite this
potential risk, we still resort to a natural criterion, i.e., to
evaluate how far the un-labeled example x;, € U; is from the
decision boundary with the current classifier

f,‘(Xk) = Z O{ijk(Xj,Xk). (12)
€D;

If the absolute value of f;(x) is small, then it indicates that
our current classifier is not very confident with it. Hence, it
is natural for us to define our active learning criterion for
labeler i to be

Ai(xx) = [ fi () (13)

At each round of the active learning step, we choose

X; = arg miny, ey, Ai (x5, (14

for labeler ¢ to label. Note that although our active learning
criterion A, (x) for labeler ¢ is derived from the classification
function f;(x) only, it does not mean that the active example
selection is independent of each labeler. That is because the
learning of each f;(x) is coupled with each other in our joint
formulation (Eqgs. (1) and (5)). Therefore the dependent
information from other labelers have been carried over into
the active selection criterion. Moreover, as clearly presented
in our formulation, once x} is selected, it will also affect the
learning of the classifiers of the other labelers. Hence the
active sample selection processes of all the K labelers are
indeed coupled with one another in our formulation. We
did not observe any noisy seeking behavior in our experi-
ments using such a strategy with such a criterion. We attri-
bute it to our collaborative ensemble formulation which
potentially “smoothed out” the noise-seeking behavior of
each individual active learning process.

Each time a new image or several new images are labeled
by the labelers, the f;(x) for each specific labeler i needs to
be updated. We shall note that in our collaborative learning
framework, the update or retraining of f;(x), or equiva-
lently the re-estimation of the parameter vector &;, can run
asynchronously with the classifiers of the other labelers —
we simply need to hold the classifier parameters d; of the
other labelers to be fixed when calculating the gradient
using Eq. (6).

As revealed by Eq. (6), any two active learning processes
with shared images or data between them will need to
exchange information on the classifier parameters and the
classification scores on the shared data with each other. It
can be easily observed that the amount of information that
needs to be exchanged is indeed fairly small. The capability
that the optimization of the parameters of the different clas-
sifiers can run asynchronously is very important as synchro-
nizing the labeling tasks of all the labelers in a crowd-
sourcing environment is rather unrealistic.

4 MEASURING THE QUALITY OF LABELERS

Most previous collaborative labeling systems such as Ama-
zon Mechanical Turk can only rely on post check of label
consistency to filter out noisy labels. By that time, even if a
sloppy labeler was identified, valuable time and monetary
resources have been wasted. We argue that the consistency
among the learned kernel machines f;(x;) can naturally
serve as an online label quality indicator. As we have dis-
cussed in Section 2.1, when the labels from two labelers 1
and j on an example x;, are conflicting with each other, our
joint formulation will encourage the classifier f;(x;) and
fj(xx) to have low confidence predictions on x;. Hence we
define the following evaluation function to indicate if
labeler ¢ is consistently conflicting with other labelers, , i.e.,

1 .
Qi = i Z y;(2) fi(x;). (15)
| 7|Xj€£i

Intuitively, if labeler ¢ is doing a lousy job in labeling, then it
will induce more conflicts with its peers and its @; score
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will be low. Although the @ score of the other labelers will
also be degraded by labeler i’s irresponsible behavior, they
will be degraded less than the @) score of labeler i. Neverthe-
less, for this quality measure of labelers to work, the major-
ity of the labelers still need to behave honestly-as is the case
in the real-world. We will present some more analysis and
discussion on this label quality measure in our experiments.

5 WEIGHTED COLLABORATIVE LEARNING

With the labeler quality measure derived in Section 4, we
propose to incorporate the labelers’ label quality measure-
ments into the collaborative discriminative objective func-
tion in Eq. (1) to make it directly impact the learning
process. Formally, for labeler ¢, we define the weight

Qi)

e m

(16)

wi = 0’
maxje(1, )€ "

where the labeler i’s label quality measure (); is defined in
Eq. (15), and m is the number of labelers each data sample
got assigned to. Then we proposed a new collaborative dis-
criminative learning objective function, i.e.,

sz > Liyi

x;€L;
+ Z Z Wi z;(yk( ) f?(xk))

1<iZj<K xp€D;iNL;

K
+A Dl filly)-
=

), fi(x5))

17

Intuitively, we encourage high quality labelers to contribute
more to the learning objective, and decrease the impact
from low quality labelers. In other words, we impose larger
weights for the labelers with higher label quality, and
impose lower weights for the labelers with lower label qual-
ity. The corresponding kernel version of the objective func-
tion is then

K
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Subsequently, the final prediction of a new data sample x;,,,
is determined by the following weighted ensemble classifier

f(xncw) = w; fz' (X7Lcw)~ (19)

N (xnew)€D;

Note that the w; will be progressively updated with the
active learning process. Hence the collaborative objective
function will also be progressively adjusted. We will con-
duct a detailed comparison in the experimental section to
demonstrate the efficacy of such a weighted collaborative
objective function.
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Fig. 1. The number of images per category for the 10 classes from
ImageNet.

6 EXPERIMENTS

6.1 Datasets and Visual Features

We start our evaluation with a set of simulation experi-
ments with controlled synthetic noises on 10 different
classes of images from the ImageNet dataset to better
understand its behavior. Then we evaluate it on two data-
sets with real-world crowdsourced labels from Amazon
Mechanical Turk.

For the simulation experiments, we selected images in
10 different classes from the ImageNet dataset [10]. These
are top 10 classes with the largest number of labeled
examples from ImageNet Challenge. The category names
of the 10 classes of images are “seashore, coast, seacoast,
sea-coast”, “monarch, monarch butterfly, milkweed but-
terfly, Danaus plexippus”, “Vizsla, Hungarian pointer”,
“English setter”, “Yorkshire terrier”, “Rhodesian ridge-
back”, “African elephant, Loxodonta africana”, “meerkat,
mierkat”, “computer keyboard, keypad”, “dining table,
board”, respectively.

The number of images per category for these 10 catego-
ries used for collaborative active learning ranges from 2125
to 3047. There are 24084 images in total. Note these
accounted for 80 percent of the labeled images for these 10
categories in ImageNet dataset. We hold the other 20 per-
cent for testing the resulting ensemble classifiers. In terms
of visual features, we used the local coordinate coding
(LCC) [24] on dense HoG features with 4096 codewords,
and spatially pooled the LCC features in 10 spatial cells.
This is similar to [24]. The dimensionality of the features is
40960. Fig. 1 presents the number of images per category for
the 10 ImageNet categories.

For the experiments with real crowd-sourced labels, we
put the images of the 5 categories “Yorkshire terrier”,
“Rhodesian ridgeback”, “English setter”, “Vizsla Hungar-
ian pointer”, and “Meerkat, meerkat” back to Amazon
Mechanical Turk to collect multiple copies of labels. The
first 4 categories are all different breeds of dogs, and the last
category “Meerkat, meerkat” is similar in visual appearance
to dogs. Therefore these 5 categories tend to be confused
with one another.

We obtain 7 copies of labels per image for each image in
these 5 categories, which are subsequently used in our
experiments. The noise level of the labels we obtained for
each category varies. The percentage of the labels being cor-
rect for these five visual categories are 94.96, 68.91, 87.01,
68.43, and 98.01 percent, respectively. The reason that the
two categories “Rodesian ridgeback” and “Vizsla Hungar-
ian pointer” had more noisy labels are because they tend to
be confused with each other.
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Fig. 2. Recognition performance with clean labels without noise. The vertical bar indicated the standard deviation of mAP values on the curve. CAL
stands for the proposed collaborative active learning algorithm. MIAL refers to the multiple independent active learning algorithm discarding the cross

labeler loss function L§‘7(~) in Eq. (1). SVM-MIAL indicates the multiple independent active learning algorithm using hinge loss like SVM. And CRL,

MIRL, SVM-MIRL are the corresponding random learning counterparts, respectively. Unlike CAL and CRL that use the same exact m ensemble clas-
sifiers defined in Eq. (11), CAL-All and CRL-AIl are the corresponding active learning and random learning with the ensemble classifiers which com-

bine all the K individual classifiers from all the K labelers together.

The last set of experiments we conducted is on a face
dataset for a gender recognition problem. Through Amazon
Mechanical Turk, we have collected 5 copies of labels
(male/female) for 9441 face images. We hold out 2000 of
face images which had all 5 copies of labels in consensus for
testing purpose and the rest of the face images with differ-
ent percentage of label inconsistency are used for collabora-
tive active learning. The labels of the 2000 face images in the
hold-out dataset are regarded as noise free since all labelers
agreed on the labels.

Since we do not have gold standard labels on these face
images, this is the only way we can make sure that the labels
in the hold-out test dataset are absolutely error free. The
face images are all 64 x 64, from each of which we extract a
5408 dimensional discriminative feature. This feature is the
output from the last layer of a convolutional neural network
trained for gender recognition with a separate small set of
labeled gender face images. We will make both the features
and labels of these two datasets publicly available upon
publication of our paper.

6.2 Experiments with Synthetic Label Noise
6.2.1 Efficacy of Collaborative Active Learning

For evaluation, for each of the 10 image categories from the
ImageNet Challenge, we randomly sample an equal num-
ber of images from the other 9 categories to serve as its neg-
ative images. We ensure that each image will be assigned to
m = 5 labelers. We distributed the training data evenly to
20 labelers to ensure that roughly 1000 images are allocated
to each labeler.

We run simulation experiments with the proposed col-
laborative active learning algorithm and compare it with
five baseline algorithms. The first baseline algorithm uses
the same discriminative formulation in Egs. (1) and (5) but
only randomly selects the next image to be labeled for each
labeler. The second baseline algorithm is to run multiple
independent active learning processes with the proposed
kernel machine in Section 2.2. It is equivalent to discarding
the cross labeler loss function Lf]() in Eq. (1), which corre-
sponds to the middle term in Eq. (5). Discarding these cross
labeler terms makes the labeling efforts of the different
labelers to be independent to one another. The active

learning criterion for it is in the same form as Eq. (14). The
third baseline algorithm is training multiple independent
discriminative classifiers in the same way as the second
baseline algorithm, but selecting the images to be labeled
next at random.

In addition, we also run multiple independent active
learning SVM and multiple independent random learning
SVM, respectively, which is similar to the previous two
baseline algorithms using hinge loss instead of logistic
regression loss. For notation simplification, we denote our
proposed collaborative active learning algorithm to be CAL.
We further denote the five baseline algorithms to be CRL,
MIAL, MIRL, SVM-MIAL, and SVM-MIRL, respectively.

We present the experimental results in Fig. 2. The results
on the active learning pool and the hold-out test dataset are
presented in Fig. 2a, and 2b, respectively. In both figures,
the horizontal axis shows the number of labels added in the
labeling process. In Fig. 2a, the vertical axis represents the
mean average precision (mAP) (the mean is taken over all
the runs of 10 categories from all labelers) of the learned
classifiers over the examples in the active learning pool. In
Fig. 2b, the vertical axis represents the mAP of the learned
ensemble classifiers on the hold-out testing datasets, which
are also averaged over all the 10 categories.

We adopted average precision (AP) as the criterion to
give a more comprehensive evaluation of the classifiers. The
different curves reflect how the mAP evolves with our
method and the other five baseline algorithms, respectively.
All figures clearly show that exploiting active learning to
select samples is often better than selecting the samples ran-
domly. This is exemplified by the fact that the recognition
curve of CAL is always higher than CRL, and the recogni-
tion curve of MIAL is always higher than MIRL. With the
active sample selection, we can achieve higher mAP in rec-
ognition sooner with fewer labeled images than using ran-
dom sample selection. We only show the average results
across all labelers over all image categories due to the space
limit. The figures on each individual category consistently
present the same trend. We omit them also due to space
limits.

In particular, the mAP curve of CAL is always higher
than MIAL, which validates the efficacy of our collaborative
formulation. By ensuring the consistencies among the
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Fig. 3. The recognition performance on the active learning pool with different levels of label noises, and the hold-out testing dataset, respectively.

classification models through the shared data, our collabo-
rative discriminative learning paradigm allows the label
information to be shared among labelers and hence better
utilize them to train better classifiers. Since the only differ-
ence between CAL and MIAL is the cross labeler cost terms
defined in Eqs. (1) and (4), it is clear that it is the collabora-
tive formulation that really leads to the improvement. Note
in all our experiments, we start evaluating the recognition
accuracy from 50 labeled images.

We compare the recognition accuracy of the proposed CAL
and CRL that use the same exact m ensemble classifiers
defined in Eq. (11) with the corresponding active learning and
random learning ensemble classifiers which combine all the
K individual classifiers from all the K labelers together on the
hold-out test dataset on the 10 category of images from the
ImageNet dataset. In brief, we call these two baselines CAL-
All and CRL-All, respectively. As observed in Fig. 2c, both
CAL and CRL achieved higher recognition accuracy when
compared with the CAL-All and CRL-AlL respectively.

6.2.2 Different Noise Levels

In crowd-sourced labeling, it is inevitable that there will be
label noises, which refers to the case that labelers may occa-
sionally assign an incorrect label to an image. Note this shall
be differentiated with the case where the labeler is just irre-
sponsible and randomly assigns labels to images. If the
labeler is responsible, label noise is often mainly due to
intrinsic ambiguities of the visual concept.

To demonstrate that our proposed CAL algorithm is
indeed more robust to label noise. We simulate the case that
the labelers have a chance to generate noisy labels, ranging
from 5, 15, to 25 percent, meaning that the labeler has such a
probability to label the image incorrectly. We run the
experiments with different level of label noises for all 20
labelers on all the 10 image classes. Three methods are com-
pared, i.e., our proposed CAL, the CRL, and the SVM-MIAL
(MIAL is always inferior to SVM-MIAL). We also compare
the recognition accuracy of CAL with that of CAL-All on
the hold-out testing set.

As we can observe from Fig. 3, the general trend is that
the performances of the classifiers all drop with the increase
of label noise levels. However, at all noise levels, our pro-
posed CAL algorithm always achieves better mAP scores
on both the active learning pool (Fig. 3a) and the hold-out
testing dataset (Fig. 3b) across the learning process. Hence it
provides solid evidence that our proposed collaborative
learning framework can largely suppress the negative

effects of the noisy labels. The curve is averaged over the 10
categories over all labelers. The curves under 35 percent
label noises showed similar phenomenon, we omitted it for
a more clean view.

As shown in Fig. 3¢, at 5 percent noise level, CAL is better
than CAL-AIl at the early stage, while CAL-All beats CAL
when the noise level is 15 and 25 percent. The observation
can be explained by the fact that CAL makes decisions based
on only a small set of most relevant classifiers; when the label
noise is low, the set of most relevant classifiers are more
trustworthy. However, when the label noise become higher,
even this set of most relevant classifiers become noisy. Aver-
aging more classifiers helps to further reduce the variance.

6.2.3 Detection of Irresponsible Labelers

In this section, in order to demonstrate that our label quality
measure (Eq. (15)) can readily capture irresponsible label-
ers, we run extensive experiments on the “Meerkat,
meerkat” class of the ImageNet dataset with different num-
bers of irresponsible labelers up to 11 irresponsible labelers
out of all 19 labelers. For those irresponsible labelers, we
assume they have 50 percent label noise, which means that
they randomly assign a label to any sample. The rest are
responsible ones that only have 5 percent label noise.

Due to the space limit, we only show the recognition per-
formance with 5 irresponsible labelers in Fig. 4. It is clearly
observed that: (1) our proposed CAL algorithm is more
robust to the presence of irresponsible labelers; (2) the AP of
MIAL and MIRL on the active learning pool actually
dropped when more labels are added due to the bad perfor-
mance of the classifiers from those 5 irresponsible labelers;
(3) the SVM-MIAL and SVM-MIRL do not suffer from this
in the active learning pool, suggesting that the hinge loss is
more robust; and (4) the comparison recognition accuracy
of the two types of ensemble classifiers on the hold-out test
dataset suggests that CAL and CRL outperform CAL-All
and CRL-Al], respectively.

Fig. 5 visualizes the 1st, 2nd, 3rd, 4th and 5th irresponsi-
ble labelers detected at each active learning step by ranking
the labelers’ label quality in an increasing order when run-
ning the proposed CAL algorithm on the “Meerkat,
meerkat” class with 5 irresponsible labelers (Iabeler 15, 16,
17,18 and 19 are irresponsible labelers). The 5 irresponsible
labelers are selected as the 5 labelers with lowest label quali-
ties at each active learning step. As we can clearly observe,
at the beginning, with the progression of the active learning
process, the 5 irresponsible labelers are constantly detected.
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Fig. 4. Recognition performance with 5 irresponsible labelers (with 50 percent label noise) and the rest responsible labelers (with 5 percent label

noise).

This demonstrates the efficacy of the proposed model for
online modeling of the labelers’ quality.

To have a better understanding on when the proposed
labeler quality measure would be effective, we present the
label quality measures under the cases that there are 5, 9
and 11 irresponsible labelers, respectively, in Fig. 6.

As we can clearly observe, the differences between the
average label quality measures over responsible labelers
and the label quality of the irresponsible labelers will
decrease with the increased number of irresponsible label-
ers. This is expected as the overall label quality would
degrade significantly with the increased number of irre-
sponsible labelers. As the number of irresponsible labelers
exceeds half, the proposed label quality measures of respon-
sible labelers and irresponsible labelers got mingled
together so that (see Fig. 6c) the capability to differentiate
responsible and irresponsible labelers is lost.

Our general observation from this set of experiments is
that the proposed label quality measure can function well
when the number of irresponsible labelers is below half of
the total number of labelers, i.e., the label quality measures
of the irresponsible labelers would be below the standard
deviation interval of the average label quality measures of
those responsible labelers. Hence, we can apply the pro-
posed label quality measurement to detect those irresponsi-
ble labelers. This set of experimental results also suggest
that our proposed label quality measure may not function
well when there are more irresponsible labelers than
responsible labelers.
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Fig. 5. Detect irresponsible labelers by ranking the labeler quality in an
increasing order on “Meerkat, meerkat” class with 5 irresponsible label-
ers, i.e., labeler 15, 16, 17, 18 and 19.

6.3 Experiments with Real Crowd-Sourced Labels
In this section, we conduct experiments on two datasets with
real crowdsourced labels from Amazon Mechanical Turk. In
addition to comparing with the original 5 baseline algo-
rithms, we add 4 new baseline algorithms. The first two new
baseline algorithms adopt an online majority voting strategy
in the active learning process to induce a single kernel classi-
fier using either the logistic regression loss (as in our formu-
lation) or hinge loss (as in an SVM). Specifically, at each
round of the active learning step, each data sample is labeled
by 7 or 5 labelers, and we utilize the majority voted label as
the label for this data sample and re-train the classifiers. We
name these two baseline algorithms MVAL and SVM-
MVAL, respectively. The other two algorithms presented in
Yan et al. [41], [42], [43] are named ML-Bernoulli-AL and
ML-Gaussian-AL, respectively, according to two differen
probability distributions they exploit in their model.

We want to clarify that for MVAL and SVM-MVAL, the
active learning pool contains all images in the training set,
so it is a larger pool than the pool of examples handled by
each individual labeler in our CAL formulation. However,
our comparison is still fair because the horizontal axis in the
figure indicates the total number of labels added in the
learning process.

6.3.1 Experiments on Five Categories of ImageNet

We followed the same data split for active learning and
hold-out testing as in the simulation experiments. Each
image is assigned to m = 7 labelers as we have seven copies
of crowd-sourced labels per image. Hence 14 to 21 labelers
are used per category. During the active learning process, a
label is randomly drawn from one of the 7 copies of the
labels for each selected data sample without repetition. This
ensures that the experiments are as close to the real crowd-
sourcing scenario as possible. Fig. 7 presents the mAP
curves on the active learning pool and the hold-out testing
dataset. Our proposed CAL outperformed all the other five
competing algorithms in both the active learning pool and
the hold-out testing datasets. The results strongly suggest
that our proposed collaborative active learning method can
be effectively used to improve the labeling efficiency in a
crowdsourcing setting.

Fig. 7c shows that CAL-All and CRL-AIl actually outper-
formed CAL and CRL, respectively. This is the only set of
experiments where we observed such a phenomenon. The
reason is that label noise especially in the categories
”Rodesian ridgeback” and ”Vizsla Hungarian pointer” is a
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Fig. 8. Recognition performance on real crowd-sourced labels on a face gender image dataset.

little high so that combining all the classifiers are more ben-
eficial as explained above.

6.3.2 Experiments on Gender Face Images

Fig. 8 presents the experimental results of running our CAL
algorithm on the gender face image dataset. Each data sam-
ple is assigned to 5 labelers to label and 30 labelers in total
are used. Following the same protocol, in the active learning
process, a label is randomly drawn from one of the 5 copies
of the labels for each selected data sample without repeti-
tion. It is clear that our proposed CAL algorithm outper-
formed all other five competing baselines in both the active
learning pool and the hold-out testing datasets. The results
also demonstrated the efficacy of our collaborative model
formulation, as the second best algorithm is CRL while all
the other algorithms are running multiple independent
learning processes for model learning. Again, the mAP on
the active learning pool is the mean across all users, while
the mAP on the hold-out testing dataset is computed using
the resulting ensemble kernel classifier. As shown in Fig. 8c,

CAL and CRL actually outperformed CAL-All and CRL-
All, respectively, which is consistent with our experimental
results with synthetic noises.

6.3.3 Weighted Collaborative Discriminative Learning

In order to demonstrate the efficacy of the labeler quality
weighted collaborative formulation as in Eq. (18), we com-
pare it with the original framework as in Eq. (5) on the
experiments with real crowd-soured labels. Here we apply
the previous CAL, CRL, CAL-All and CRL-All into the qual-
ity weighted framework and name them as WCAL, WCRL,
WCAL-All and WCRL-AI, respectively. The results are
shown in Fig. 9 and 10. Both WCAL and WCAL-AII always
perform better than CAL and CAL-All, in both the active
learning pool and the hold-out testing pool. The WCRL and
WCRL-AIl also outperform the corresponding CRL and
CRL-All, respectively. It is clearly demonstrated that using
the weights based on the label quality measurements can
improve the performance for our collaborative discrimina-
tive learning framework.
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Fig. 11. Some examples selected using our proposed collaborative active learning approach in the early stage.

6.3.4 Visualization of Active Selection

It is also always interesting to see how the samples are
selected in the active learning process. Fig. 11 presents some
examples that are selected actively in the early stage. As we
can see, the results are sensible as a lot of examples picked
up in the early stage present cluttered background, heavy
blurring, and several of them are baby faces. It is well
known that it is not easy to recognize the gender of babies
from their facial images.

6.4 Runtime Performance

One of the major performance measures is how long it takes
to re-train the classifier using the gradient descent step in
Section 2.2. In our experiments, each labeler is allocated
with nearly 1000 images, each step of re-training the classi-
fier for a single labeler takes less than 0.5 second with our
un-optimized C++ implementation, which is efficient to

support real-time collaborative and interactive visual label-
ing and online modeling applications. This performance
evaluation is measured with a computing server with 24 2.4
GHz CPU cores and 48G memories. The learning process of
each labeler is running in a separate thread, so the quantita-
tive measurement very well represented how it would run
in real crowdsourcing environment.

Also, we record the time cost to collect 10,000 labels with
our proposed CAL and the baseline MVAL in the experi-
ments of Sections 6.3.1 and 6.3.2. The observation shows
that the proposed CAL is about 1.15 ~ 2.98 times faster than
MVAL on the ImageNet dataset and 5.16 times on the face
gender dataset. It is worth mentioning that CAL always out-
performs MVAL using the same number of labels, which
has been observed in Section 6.3. Apparently, all these
observations strongly demonstrate the benefit of the distrib-
uted nature of our proposed CAL model.
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7 CONCLUSION

In view of the popularity of using crowd-sourcing tools for
labeling large scale image datasets for research on visual rec-
ognition, and to mitigate the issues in existing crowd-sourcing
tools, we present a collaborative active learning framework to
support multiple labelers to collaboratively label a set of
images to learn an ensemble kernel machine classifier. We
cast our formulation in a discriminative learning framework
which explicitly models the collaboration among the different
labelers by ensuring model consistency on the data shared
among them. As verified by our experiments, our approach
enables more efficient model learning from multiple labelers,
is robust to label noise and irresponsible labelers, and can
readily detect irresponsible labelers online.

Our proposed collaborative active learning framework
presents three advantages: first of all, it allows more effi-
cient visual tagging from multiple labelers. Second, it can
effectively suppress the effects of noisy labels, which often
occur in real-world visual tagging tasks. Last but not least,
from our discriminative collaborative formulation, we
derived effective measures to detect irresponsible labelers
at the very beginning of the collaborative visual tagging
process. Our future work includes extending the proposed
framework to handle multiple target labeling tasks. We also
plan to implement it in a cloud computing environment.
Once these are fulfilled, we will deliver an end-to-end ser-
vice to support any large scale multi-labeler interactive
model learning efforts.
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