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Abstract

In this paper, we propose a novel context and lightness aware Generative Adversarial Network (CLA-GAN) framework for

shadow removal, which refines a coarse result to a final shadow removal result in a coarse-to-fine fashion. At the refinement

stage, we first obtain a lightness map using an encoder-decoder structure. With the lightness map and the coarse result

as the inputs, the following encoder-decoder tries to refine the final result. Specifically, different from current methods

restricted pixel-based features from shadow images, we embed a context-aware module into the refinement stage, which

exploits patch-based features. The embedded module transfers features from non-shadow regions to shadow regions to ensure

the consistency in appearance in the recovered shadow-free images. Since we consider pathces, the module can additionally

enhance the spatial association and continuity around neighboring pixels. To make the model pay more attention to shadow

regions during training, we use dynamic weights in the loss function. Moreover, we augment the inputs of the discriminator by

rotating images in different degrees and use rotation adversarial loss during training, which can make the discriminator more

stable and robust. Extensive experiments demonstrate the validity of the components in our CLA-GAN framework. Quantitative

evaluation on different shadow datasets clearly shows the advantages of our CLA-GAN over the state-of-the-art methods.

CCS Concepts

• Computing methodologies → Context; Lightness; GAN; Coarse-to-fine; Shadow Removal;

1. Introduction

Shadows are an important phenomenon in nature, appearing when

light is partially or completely blocked [LLZ∗20]. The brightness

in shadow regions is lower than that in non-shadow regions.

The low brightness in shadows will decrease the accuracy and

effectiveness of some computer vision tasks, such as target tracking

and recognition [MCKT00, CGP∗02], image segmentation and

intrinsic image decomposition [LS18]. Moreover, shadow removal

and editing can improve the visual effect of images and videos

[ZLW19], such as film and television post-editing. Removing

shadows from images is now an important research topic in the

fields of computer vision [LCSH19,HLYG18,LH17,LHK16,LH15,

LHK13, HLYG13, ILBH20] and computer graphics [GTB15].

It is worth mentioning that a high-quality image with shadows

removed should satisfy three aspects: (1) the illumination in

shadow regions is effectively recovered while preserving the

† This work was co-supervised by Chengjiang Long and Chunxia Xiao.
‡ Corresponding to Chunxia Xiao, Email: cxxiao@whu.edu.cn.

texture details; (2) the recovered illumination and color in

shadow regions must be consistent with that of the surrounding

environment; and (3) there are no artifacts in the image. However,

due to the complexity in shadow regions and the indeterminacy

of the light in the scene, producing high-quality shadow removal

image is a challenging task.

A number of shadow removal approaches are already available,

including the traditional methods based on prior information

[SL08,XSXM13,XXZC13], and learning-based methods [GTB15,

QTH∗17, WLHY18, HFZ∗18, WLZX19]. For traditional shadow

removal methods, those utilizing illumination priors accurately

rely on texture matching between shadow regions and non-shadow

regions, while methods based on gradient priors cause obvious

artifacts on shadow boundaries due to the irregular illumination

changes on shadow boundaries.

More recently, learning-based methods have shown their

potential for shadow removal. With proper network models and loss

functions, these methods can directly remove shadow in images

and produce good results. But they still have some limitations.

For example, the designed models focus too much on pixel-based
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features. Such pixel-based analysis methods cannot effectively

build spatial associations, which may reduce the robustness of these

methods and produce undesired shadow removal results, especially

for shadow images with complex scenes.

In this paper, we propose a new framework CLA-GAN to explore

contextual and lightness information with Generative Adversarial

Networks for shadow removal. Similar to [ZLZX20], we complete

the shadow removal task in a coarse-to-fine fashion, which refines

the coarse shadow removal result into a fine shadow-free image.

At the coarse stage, we train an encoder-decoder structure to

remove shadows in the image and produce a coarse shadow removal

result. The role of the refinement stage is to correct the coarse

prediction and predict a refined shadow removal result. However,

different from the recent learning-based methods which solely

focus on pixel-based features, we embed a context-aware module

additionally exploring patch-based features. The contextual aware

module transfers features from non-shadow regions into shadow

regions, which uses features of patches in non-shadow regions as

deconvolutional filters to reconstruct features in shadow regions.

The use of the context-aware module can enhance the spatial

association between pixels and facilitate the global appearance

consistent for the whole image.

As lightness is an important characteristic for shadow removal,

we add a lightness branch before refining the coarse result. Within

the constraints of the lightness ground-truth (L channel of the Lab

color space for the ground-truth shadow-free image), the lightness

branch can produce a lightness map, which is fed into the following

refinement branch. Specially, we concatenate the reconstructed

features from the context-aware module as an additional input into

the decoders of the lightness branch and the following refinement

branch, as illustrated in Figure 1. From the experiments, we

find that the context-aware module significantly improves the

appearance consistency between shadow and non-shadow regions

and makes the shadow removal result more natural.

Furthermore, to reduce the dependence between representations

of the discriminator and the quality of the output result from

generator, we augment the inputs of the discriminator by rotating

the corresponding image pair in different degrees and add a

rotation adversarial loss during training the discriminator. In

addition, unlike the existing shadow removal methods using deep

learning [ZLZX20, CPS20, DLZX19] which are designed with

static parameters, we use dynamic weights. The dynamic weights

ensure that the model pays more attention to shadow regions

gradually, which is beneficial for generating high-quality shadow

removal results especially in shadow regions.

To sum up, the main contributions of our work are three-fold as

follows:

(1) We introduce a novel CLA-GAN to remove image shadows

by jointly exploiting the context and lightness clues. The

designed context-aware module, by exploring patch-based features,

facilitates the global consistency between shadow and non-shadow

regions in the shadow removal result.

(2) To make the discriminator more stable and effective, we

augment the input data of the discriminator and add a rotation

adversarial loss during training the discriminator.

(3) We use dynamic weights instead of static parameters to make

the model pay more attention to shadow regions in training, which

facilitates the production of high-quality shadow removal results.

2. Related Work

Several methods have been proposed for image shadow removal

[AHO11,KBST16,LZS14,VHY∗16,WT05,XTT14,YTA12,LS19,

DLZX19, MGK19, YHWCYY20], which can be divided into two

categories. One is the traditional shadow removal methods based on

prior information. These methods do not need additional datasets,

but they need to detect the shadow regions beforehand. The other

is learning-based methods, which need to use additional datasets as

training samples. These data-driven methods can directly recover

the illumination of the image without detecting shadow regions.

One typical type of traditional shadow removal method recovers

the illumination in shadow regions using illumination transfer

[SL08, XSXM13, GDH11], which transfers the illumination from

non-shadow regions to shadow regions. Shor et al. [SL08] build

a linear mapping model between shadow regions and non-shadow

regions to remove shadows in the images. This method is low

time complexity but can only deal with images with consistent

textures in shadow regions. Xiao et al. [XXZC13] proposed

an illumination transfer method using the matched information

of subregions to remove shadows in the image. This method

can process the image with multiple textures. Since shadow

regions are segmented beforehand and processed independently,

the recovered illumination in different shadow areas may be

inconsistent. To solve this limitation, Zhang et al. [ZZX15]

decomposed the image into many overlapping image patches and

proposed a local-to-global method to remove shadows using the

proposed local illumination recovering operator. These methods

based on illumination transfer [RAGS01] need to match an area

in non-shadow regions to the area in shadow regions that they

have similar texture, and the effectiveness of the method depends

on the accuracy of texture matching and the illumination in the

matched non-shadow region. However, texture matching is also a

challenging task [YLY∗16].

Another typical group of traditional shadow removal approaches

removes shadows based on gradient domain manipulation

[FHD02, FHLD05, LG08, MTC07]. Gradient information can

describe the first-order variation of texture in images [LWZ∗20,

LXZ∗20]. The common idea in these techniques is to redefine

the gradient on shadow boundaries and reconstruct the shadow

removal result utilizing the gradient information in shadow regions.

Finlayson et al. [FHLD05] nullified the gradient on shadow

boundaries and reconstructed the shadow-free images by solving a

gradient-based Poisson equation. [FF04] removed shadows using

gradient domain manipulation by employing Retinex algorithm.

Liu et al. [LG08] constructed illumination variation lines at shadow

boundaries to eliminate the gradient changes that were caused by

illumination changes, and then reconstructed shadowless images

using the illumination variation lines. However, due to the influence

of the illumination change at the shadow boundary, methods using

gradient information can cause boundary problems, such as texture

detail losses or color distortions.

More recently, deep neural networks have been widely
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Figure 1: The framework of the proposed CLA-GAN, which is composed of a generator with three encoder-decoder structures and a

discriminator. The generated shadow removal result and the corresponding ground truth shadow-free image are rotated by four different

degrees. The expanded data with corresponding labels are fed to the discriminator. The shadow mask in the context-aware module is used

to distinguish shadow regions and non-shadow regions; this is obtained by binarizing the residual image between the coarse result and the

input image.

introduced for image processing tasks. Through optimizing the

objective function, the models are taught to produce the desired

result. Hu et al. [HFZ∗18] proposed a Bayesian formulation to

remove shadows in images. They first need to detect the shadows

in the image using multiple convolutional neural networks. Qu et

al. [QTH∗17] proposed an end-to-end DeshadowNet to recover the

illumination in shadow regions. This network integrates high-level

semantic information, middle-level appearance information, and

local image details. Wang et al. [WLHY18] proposed a stacked

conditional generative adversarial network (ST-CGAN) for image

shadow removal. Different from the commonly used multi-branch

paradigms, they stacked all the tasks for multi-task learning. Lin

et al. [YHWCYY20] proposed a BEDSR-Net to remove shadows

from a document image. By combing the global background color

of the image and the shadow attention map, this method can remove

shadows using a U-net generator. Hu et al. [HJFH19] proposed

a Mask-ShadowGAN for shadow removal using unpaired data.

Methods using deep learning can produce better shadow removal

results, but they need a large training dataset. Different from

existing methods, we proposed a CLA-GAN which makes full use

of the context feature. It can generate more accurate and natural

shadow removal results.

3. Proposed method

3.1. Overview

In this paper, we present a new framework, CLA-GAN, to handle

the shadow removal task, as illustrated in Figure 1. Like the

generative adversarial network (GAN) architecture [GPAM∗14],

the proposed network also contains a generator and a discriminator.

The generator consists of three encoder-decoders and an encoder

structure used as the context-aware module. Our network uses a

shadow image as the input and outputs the shadow removal result

in an end-to-end manner.

With the input of a shadow image I, the generator network

refines the coarse shadow removal result to the fine shadow-free

image in a coarse-to-fine fashion. The first encoder-decoder, which

is denoted as Gcoarse, is used to produce a coarse shadow removal

result Icoarse. The refinement stage is used to correct the coarse

prediction and predict the fine shadow removal result. It contains

two encoder-decoders, denoted as Glight and G f ine, respectively.

The lightness branch Glight is used to produce a lightness map Ilight

which is fed to the following refinement branch G f ine. With the

inputs of Icoarse and Ilight , the refinement branch can produce the

fine shadow removal image I f ine.

Specifically, we additionally embed a context-aware module

Gcontext at the refinement stage, which maps the features from

non-shadow regions to shadow regions and generates reconstructed

features I f eature for the image. To produce more natural shadow

removal results, we take the reconstructed features I f eature as an

auxiliary input for the decoders of Glight and G f ine, which ensures

the global appearance consistency between shadow regions and

non-shadow regions. The relations between the inputs and outputs

can be summarized as:

Icoarse = Gcoarse(I), (1)

I f eature = Gcontext(I, Icoarse), (2)

Ilight = Glight(Icoarse, I f eature), (3)

I f ine = G f ine(Ilight , Icoarse, I f eature), (4)

The discriminator D is designed to distinguish whether the

generated image is a real image or not. Inspired by data

augmentation by rotation, we rotate the shadow removal result

I f ine and the corresponding ground-truth Igt by four different

degrees. By feeding the expanded images to the discriminator, the

representations learned by the discriminator are more stable and

useful, as shown in Figure 1.

3.2. Coarse-to-fine network

Our generator consists of four components: three encoder-decoder

branches, which are used to produce the coarse result, the lightness

map and the refined shadow removal result, respectively; and a

context-aware module, which is used to transfer the appearance

features from non-shadow regions to shadow regions.
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Coarse network. The encoder-decoder used in coarse network

is a U-Net architecture [RFB15], which is trained to obtain a coarse

shadow removal result. Due to the dense block in DenseUNet

can alleviate the gradient attenuation problem caused by the low

illumination in shadow regions and enhance the input feature

information, we apply the DenseUNet architecture [NN18] as the

implementation of this encoder-decoder.

(a) (b) (c)

(d) (e) (f)

Figure 2: Illustration of the context-aware module. (a) is the coarse

shadow removal result for the input image in Figure 1. (b) is a

visualization map for the extracted features from (a), which is

plotted based on the similarity of patches cetered at each pixel

in the image. In such a visualization map, pixels with similar

colors have similar features and share the similar contextual

information. By using features of patches in non-shadow regions

as convolutional filters, we compute the cosine similarity between

this patch and patch b in shadow regions, and find several similar

patches (the blue boxes) in non-shadow regions for patch b (the

red box in (c)). Then, we obtain the attention scores between

each candidate patch and patch b using sotfmax function, and

find the most similar neural patch d (the blue box in (d)) for

patch in shadow regions. Finally, we use features of patch d as

deconvolutional filters to reconstruct the feature of patch b, as

shown in (e). (f) is the visualization map for the reconstructed

features. This procedure operates on the feature layers.

Refinement network. In general, we cannot obtain the desired

result using the coarse network only. For example, there are still

some shadows in the result, or there is color distortion in the

image, as shown in Figure 4(b). To address this problem, we add a

refinement stage after the coarse network, which is used to improve

the quality of the coarse shadow removal results.

As lightness is a significant characteristic associated with

shadow in an image, we introduce the lightness map to our

refinement stage. As shown in Figure 1, our refinement stage

contains a lightness branch and a refinement branch. The lightness

branch is used to produce a lightness map without shadows. With

the inputs of the coarse result and the lightness map, the following

refinement branch is used to produce the desired shadow removal

image. Similar to the coarse network, we also apply the DenseUNet

architecture as the implementation of the two encoder-decoders at

the refinement stage.

Inspired by [ZZX15], we can observe that areas with similar

textures should have similar appearance information under the

same light condition. The appearance information contain lightness

and color. With this prior, we introduce a context-aware module

which can deal with the image on feature layers and embed it into

the refinement stage.

The goal of the context-aware module is to use the features of

patches in non-shadow regions as convolutional filters to process

the patches in shadow regions. Simply put, we transfer features

from non-shadow regions to shadow regions. The output of the

context-aware module is the reconstructed features of the image.

More specifically, we first apply downsampling operations to

extract the features. The downsampling part has a similar structure

as the encoder in DenseUNet. Then, we extract 3 × 3 patches

centered at each pixel in non-shadow regions and use them as

convolutional filters. For patch b centered at the pixel in shadow

regions, we find several candidate patches for patch b using cosine

similarity [NB10] between patch b and patch in non-shadow

regions. Next, we apply a softmax operation to select a most similar

non-shadow patch d for each shadow patch. Finally, we use features

of the non-shadow patch as deconvolutional filters to reconstruct

the shadow regions. The values of overlapped pixels are averaged.

As shown in Figure 2, the two visualization maps reveal that the

context-aware module can borrow information from non-shadow

regions to help shadow removal. Note that we use a shadow

mask to distinguish shadow regions and non-shadow regions in

the context-aware module during training. The shadow mask is

obtained by binarizing the residual image between the coarse

shadow removal result and the input image.

We concatenate the reconstructed features into the decoders

of the lightness branch and the refinement branch, as shown in

Figure 1. The use of the context-aware module can make our

network utilize the surrounding features as references to correct the

lightness and color in shadow regions, which make the lightness

and color reconstruction in shadow regions more robust. From

experiments, we find that the context-aware module significantly

improves the illumination consistency between shadow and

non-shadow regions, as shown in Figure 9(f).

3.3. Discriminator

The discriminator in the generative adversarial network (GAN)

[GPAM∗14] is used to distinguish the image produced by the

generator is real or fake, compared with the ground truth. In the

general case, the input of the discriminator is an image pair with

ground truth. Inspired by the idea of data augmentation, to make

sure that the discriminator becomes more stable and useful; to do

this, we expand the input data of the discriminator.

Inspired by data augmentation by rotation [CZR∗19], we rotate

the real and fake images simultaneously with different degrees

and produce additional label pairs. Similar to the original real
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and fake image pair, the additional image pairs are also fed to

discriminators during training. In our work, we rotate the images

by four different degrees. Let R be the set of possible rotations,

and R = {0◦,90◦,180◦,270◦}. Let r be a rotation selected from R.

When r = 0◦, the image pair is the original fake and real images;

the remaining three pairs are the additional label pairs. Each image

pair can produce an adversarial loss, and we consider the four

adversarial losses as a rotational adversarial loss.

Our discriminator is a convolutional network. It consists of

five convolution layers, each of which is followed by a batch

normalization, a Leaky ReLU activation function, and one fully

connected layer. The output of the last fully connected layer is the

probability value that the image produced by the generator is a real

image. We use the spectrum normalization method [MKKY18] to

stabilize the training process of the discriminator network.

(a) (b) (c) (d)

Figure 3: Results of shadow mask from the residual image. From

left to right are: input shadow image (a); shadow removal result

(b); the residual image (c); the shadow mask (d).

3.4. Loss function

To provide constraint information for the network and obtain a

robust parametric model, we use a total loss L to optimize the

proposed model. The total loss L includes four components: coarse

loss Lcoarse, light loss Llight , refined loss L f ine and rotational

adversarial loss Ladv. The total loss L can be rewritten as:

L = Lcoarse +Llight +L f ine +Ladv, (5)

The corresponding loss components are described as follows.

Coarse loss. Due to the low illumination can weaken the

texture details in shadow regions, we use visual-consistency loss

and perceptual-consistency loss to train our coarse network. The

perceptual-consistency loss can preserve the image structure. So

the objective function for coarse loss can be denoted as:

Lcoarse = β1Lcoarse_image +β2Lcoarse_vgg, (6)

where β1 and β2 are two weighted parameters.

In our work, the visual-consistency loss is calculated using

the L1-norm between the produced result and the corresponding

ground truth, and the perceptual-consistency loss is the MSE

error of the image features between the produced result and

the corresponding ground truth. The image feature is extracted

using the pre-trained VGG19 model on the ImageNet dataset.

Specifically,

Lcoarse_image = ||Icoarse − Igt ||1, (7)

Lcoarse_vgg = ||V GG(Icoarse)−V GG(Igt)||
2
2, (8)

where VGG(·) is the feature extractor from the VGG19 model.

Light loss. Light loss Llight is used to train the lightness branch.

It is calculated to evaluate the light difference between the predicted

light map Ilight and the ground truth of the light map. We use the

L channel in the Lab color space of the original ground truth as

the ground truth of light map Mgt . The light loss for the lightness

branch can be denoted as:

Llight = β3||Ilight −Mgt ||1, (9)

where β3 is the weight.

Refined loss. In our work, the refinement branch is trained

using global loss Lglobal and local loss Llocal . Similar to the

coarse network, the global loss consists of the visual-consistency

loss and the perceptual-consistency loss, which are denoted as

Lglobal_image and Lglobal_vgg respectively. The local loss calculates

the visual-consistency loss of shadow regions and non-shadow

regions respectively, which are denoted as Lshadow and Llit .

In later iterations during training, the loss value of Lshadow will

get smaller, and the attention for shadow regions becomes smaller.

However, we should pay more attention to shadow regions for the

shadow removal task. To address this situation, we use dynamic

weights to balance the losses of Lshadow and Llit . That is, the

weights for Lshadow and Llit are dynamic during training, instead

of using static loss weights.

To sum up, the objective function for the refined loss is written

as:

L f ine = Lglobal +Llocal

= β4Lglobal_image +β5Lglobal_vgg +β6Lshadow +β6Llit

= β4||I f ine − Igt ||1 +β5||V GG(I f ine)−V GG(Igt)||
2
2

+β6t||(I f ine − Igt)m||1 +β6(1− t)||(I f ine − Igt)(1−m)||1,

(10)

where β4, β5 and β6 are the static parameters. t is the dynamic

weight for local losses, and t = 0.5 +
(i−1)R+ j

E×R , where i ∈

{1,2, · · · ,E}, i ∈ {1,2, · · · ,R} and R = ⌈N
B ⌉. Epochs E and batch

size B are the hyperparameters of network. N is the number of

images in the training dataset. m is the shadow mask which is

obtained by binarizing the residual image between the shadow

removal result I f ine and the input image I, as shown in Figure 3.

Rotational adversarial loss. LGAN is the rotational adversarial

loss for the network, and it is described as:

LGAN = max
D

E[∑
r

(log(D(Ir
gt))+ log(1−D(I, Ir

f ine)))]. (11)

where r ∈ R = {0◦,90◦,180◦,270◦} and D refers to the

discriminator. Ir
gt and Ir

f ine are the images that the ground truth Igt

and the shadow removal result I f ine rotate r degree, respectively.
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(a) (b) (c) (d) (e) (f)

Figure 5: Shadow removal results compared with traditional methods. From left to right are: input images (a); shadow removal results of

Guo [GDH11] (b), Xiao [XXZC13](c), Zhang [ZZX15] (d), and our CLA-GAN (e); and the corresponding ground truth shadow-free images

(f).

(a) (b) (c) (d) (e) (f)

Figure 6: Shadow removal results compared with traditional methods. From left to right are: input images (a); shadow removal results of

Shor [SL08] (b), Guo [GDH11] (c), Xiao [XXZC13](d), Zhang [ZZX15] (e), and our CLA-GAN (f).

4. Experiments

To verify the effectiveness of our CLA-GAN, we present various

experimental results and compare them with the state-of-the-art

shadow removal methods.

4.1. Implementation Details

Parameters. Our proposed method is implemented in TensorFlow

on a computer with an Intel(R) Core(TM) i5 CPU @3.70GHz and a

16G RAM NVIDIA GeForce RTX 2080Ti. In our experiments, the

input size of image is 256×256. The learning rate is set to 0.0001.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7: Shadow removal results. From left to right are: input images (a); shadow removal results of [GDH11] (b), [ZZX15] (c), [WLHY18]

(d), [HFZ∗18] (e), [QTH∗17] (f); ground truth (g), and our shadow removal results (h).

(a) (b) (c) (d)

Figure 4: Intermediate results of the proposed network. From left

to right are: input images (a); coarse shadow removal results from

coarse network (b); the lightness maps obtained from the lightness

branch (c); and the refined shadow removal results (d).

The parameters β1, β2, β3, β4, β5, and β6 are set to 50, 20, 50, 70,

20, and 70 in our experiments, respectively. We alternatively train

the generative network and the discriminative network for 20,000

epochs.

Datasets. We train our model on the ISTD dataset [WLHY18].

The ISTD dataset contains 1870 image triplets of shadow image,

shadow mask and shadow-free image. It is divided in two parts:

1330 image triplets for training and 540 image triplets for testing.

In our work, we use the shadow images and the corresponding

shadow-free images as our inputs during training. We evaluate the

shadow removal effectiveness on the testing sets of SRD dataset

and ISTD dataset. The testing set of SRD dataset [QTH∗17]

contains 408 pairs of shadow and shadow-free images.

Metrics. We use the root mean square error (RMSE) calculated

in Lab space between the recovered shadow removal result and

the ground truth shadow-free image as the metrics to evaluate the

shadow removal performance. The smaller the value, the better the

performance of this method.

4.2. Experiment and evaluation

Our method consist of four branches, and three of these branches

can produce immediate visual results. They are the coarse result,

the lightness map and the shadow removal result, as shown in

Figure 4. The coarse result and the lightness map are used as inputs

for the fine branch to produce the final shadow removal result. This

strategy allows our network to obtain good results for both simple

and complex scene image. The recovered illumination in shadow

regions is consistent with the surrounding environment and the

texture details in shadow regions are well preserved.

In the following, we compare our proposed method with the

state-of-the-art methods including traditional methods, such as

[GDH11], [XXZC13] and [ZZX15], and deep learning-based

methods, such as DeshadowNet [QTH∗17], DSC [HFZ∗18],

ST-CGAN [WLHY18], AngularGAN [Sid18] and RIS-GAN

[ZLZX20]. To make the comparison fair, we use the same training

data with the same input size of images (256×256) to train all the

learning-based methods on the same hardware.

As shown in Table 1 and Table 2, we summarize the comparison

results on test datasets of SRD [QTH∗17] and ISTD [WLHY18],

respectively. The two datasets contain various kinds of shadow

scenes. The numerical results reveal the flexibility of the proposed
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8: Shadow removal results compared with deep learning methods. From left to right are: input images (a); shadow removal results

of Deshadow [QTH∗17] (b), ST-CGAN [WLHY18] (c), DSC [HFZ∗18] (d), AngularGAN [Sid18] (e), ARGAN [DLZX19] (f), RIS-GAN

[ZLZX20] (g), and our CLA-GAN (h).

c© 2020 The Author(s)

Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



L. Zhang et al. / CLA-GAN for Shadow Removal

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 9: Shadow removal results. From left to right are: input images (a); shadow removal results of C-GAN (b), LA-GAN (c), CLA-GAN1

(d), CA-GAN (e), CLA-GAN2 (f), CLA-GAN3 (g), and our CLA-GAN (h).

method. Compared with these methods, our method presents the

best results in the whole image. This suggests that the proposed

CLA-GAN is efficient and preponderant, which can produce results

that are much closer to the ground-truth shadow-free images.

Table 1: Quantitative comparison results of shadow removal on the

SRD dataset using the metric RMSE (the smaller, the better). S, N,

and A represent shadow regions, non-shadow region, and the entire

image, respectively.

Methods Venue/Year S N A

Guo CVPR/2011 31.06 6.47 12.60

Xiao PG/2013 13.71 6.88 8.94

Zhang TIP/2015 9.50 6.90 7.24

Deshadow CVPR/2017 17.96 6.53 8.47

ST-CGAN CVPR/2018 18.64 6.37 8.23

DSC CVPR/2018 11.31 6.72 7.83

AgularGAN CVPRW/2019 17.63 7.83 15.97

RIS-GAN AAAI/2020 8.22 6.05 6.78

CLA-GAN PG/2020 8.10 6.01 6.59

Table 2: Quantitative comparison results of shadow removal on the

ISTD dataset in term of RMSE.

Methods Venue/Year S N A

Guo CVPR/2011 18.95 7.46 9.30

Xiao PG/2013 14.77 8.01 8.93

Zhang TIP/2015 9.77 7.12 8.16

Deshadow CVPR/2017 12.76 7.19 7.83

ST-CGAN CVPR/2018 10.31 6.92 7.46

DSC CVPR/2018 9.22 6.50 7.10

AngularGAN CVPRW/2019 9.78 7.67 8.16

RIS-GAN AAAI/2020 8.99 6.33 6.95

CLA-GAN PG/2020 9.01 6.25 6.62

We also give some visualization results to further explain the

outperformance of the proposed CLA-GAN. Visual comparisons

with traditional methods are shown in Figure 5 and Figure 6.

From the results, we find that [SL08, GDH11, XXZC13, ZZX15]

can recover the illumination in shadow regions. However, these

methods should detect shadow regions before shadow removal

and require relative good shadow detection results. Moreover,

due to the illumination changes in shadow boundaries, traditional

methods may have boundary problems, such as color distortions or

texture losses. Compared with these methods, our method not only

effectively recovers the illumination in shadow regions, but also

reconstructs the illumination and textures of shadow boundaries

with less artifacts, as shown in Figure 5(e) and Figure 6(f).

Figure 7 and Figure 8 show some visualization results compared

with learning-based methods. Because the method of Qu et

al. [QTH∗17] does not consider the aspect of illumination and

lightness in the image, this method may lead to unsatisfactory

shadow removal results such as color distortion or incomplete

shadow removal. The same problem is present in the methods

of [WLHY18, HFZ∗18, DLZX19], as shown in Figure 8(b-d,

f). AngularGAN and RIS-GAN employ illumination in their

methods, which can makes illumination of non-shadow regions

very close to the corresponding ground-truth shadow-free images

for some images. But these methods do not focus more on shadow

regions when training the models. This may cause incomplete

shadow removal, as shown in Figure 8(e, g). In contrast, taking

context information and dynamic weights for the loss function into

consideration, our CLA-GAN can pay more attention to shadow

regions and produce more natural and realistic shadow removal

results, as shown in Figure 7(h) and Figure 8(h).

In additional, Figure 6 presents some shadow removal results

with complex scenes. The recovered results by our proposed

CLA-GAN look more natural and are more suitable for human
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(a) (b)

Figure 11: Limitation. (a) Input images. (b) Results produced by

our method.

visual perception. The pleasant shadow removal results verify the

robustness and the potential of the proposed CLA-GAN in these

complicated scenes.

4.3. Ablation Study

Our network employs a two-stage strategy, and it can be divided

into four components: the coarse branch, the context-aware

module, the lightness branch and the refinement branch. Each

component plays an important role in the whole network.

Specifically, different from the existing learning-based methods

for shadow removal, we use local loss with dynamic weights and

rotational adversarial loss to training our model. To further evaluate

and verify the effectiveness of these components and additional

losses in the proposed CLA-GAN, we design a series of variants

to get an ablation study. The variants are as follows:

BASE: take the input shadow images as the shadow removal

result.

C-GAN: use Gcoarse only and take Icoarse as the shadow removal

result.

LA-GAN: remove Gcontext and use r = 0◦ only; train the model

without Llocal .

CLA-GAN1: add Gcontext and use r = 0◦ only; train the model

without Llocal .

CA-GAN: CLA-GAN1 without Glight .

CLA-GAN2: add Gcontext and use r = 0◦ only; train the model

with Llocal .

CLA-GAN3: CLA-GAN2 with t=0.5 in Equation 10.

We train the above variants on the same training data. Figure 9

presents some visual results for the mentioned different variants,

from which we can clearly see that our CLA-GAN recovers the

best details of the shadow removal regions and looks more realistic.

We also evaluate the shadow removal results on SRD test dataset

and ISTD test dataset. The results are summarized in Table 3,

from which we can observe that (1) all the variants can recover

Table 3: Quantitative shadow removal results of ablation study on

the SRD and ISTD datasets in term of RMSE.

Methods
SRD ISTD

S N A S N A

BASE 35.74 8.88 15.14 35.74 8.88 15.14

C-GAN 12.06 7.65 8.85 16.98 9.71 11.27

LA-GAN 10.73 7.25 8.02 10.27 6.67 7.43

CLA-GAN1 9.15 6.62 7.01 9.27 6.25 6.73

CA-GAN 10.62 7.31 7.93 9.64 6.53 6.91

CLA-GAN2 8.96 6.27 6.78 9.11 6.27 6.65

CLA-GAN3 9.23 6.57 7.02 9.20 6.25 6.70

CLA-GAN 8.10 6.01 6.59 9.01 6.25 6.62

the illumination in shadow regions, and get better results than

BASE; (2) the context-aware module and the lightness branch are

necessary to improve the performance of the shadow removal result

and reduce the appearance difference between shadow regions and

non-shadow regions; (3) the dynamic weights used in local loss

L f ine_local and the rotational adversarial loss LGAN are helpful for

producing a natural shadow removal result.

Discussion. Shadow removal can be applied to some graphics

applications, such as shadow editing. From [CGC∗03], we can

observe that an observed image C is a linear combination of the

shadow-free image B and the shadow image F weighted by the

visibility of the light source α, that is C =αF+(1−α)B. With such

a compositing equation, users can produce new images using the

different shadow images based on their intent, as shown in Figure

10.

The proposed CLA-GAN can remove shadows and create

more realistic shadow-free images. However, there is space for

improvement. For example, our model does not distinguish black

objects from shadows. When an object surface is very dark in color

and appears black, our model may consider it as a shadow and

perform shadow removal for this object, as shown in Figure 11,

which is undesired in practice. Besides, since the environmental

luminosity and camera exposure may vary, a training pair may

have inconsistent tone and brightness in non-shadow regions

[HFZ∗18]. Given inconsistent training pairs, the network based on

supervised data could produce biased results with slight color (tone

or brightness) change in non-shadow regions.

5. Conclusions

In this paper, we propose a novel framework CLA-GAN exploring

contextual and lightness information for shadow removal in a

coarse-to-fine fashion. With the reconstructed feature information

from the context-aware module embedded in the refinement stage,

we can produce pleasant shadow removal results which have

more consistent between shadow regions and non-shadow regions.

Moreover, by applying the dynamic weights in the local loss, our

CLA-GAN can pay more attention to shadow regions gradually

during the training process. To make the discriminator more stable

and useful, we augment the inputs of the discriminator and use

rotational adversarial loss during training. The experimental results

show that the proposed CLA-GAN can produce more natural

shadow removal results.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 10: Shadow editing. (a) is the input shadow image. (b) is our shadow removal result. (d), (e) and (f) are shadow editing results with

different α using the new shadow image (c). (h) is the compositing image using image (g).
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