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Abstract—Camera pose and the camera’s rotation angles and
translation vector (RT), are one-to-one relation with a 2D real
image when the intrinsic parameter is fixed. In this paper,
we propose a novel convolutional neural network (CNN) based
framework to intelligently estimate the 6-DOF RTs from images
taken on one 3D CAD object directly and indirectly, as well as
visually verifying the correctness of the predicted RTs. Such a
framework enables us to accurately interpret how a camera looks
at the object. The direct way is simple and obtains lower average
errors for the predicted RTs experimentally, while the indirect
way utilizes the POSIT algorithm via landmarks and is able to
avoid the non-Euclidean issue in rotation angles. To our best
knowledge, we are the first one to estimate camera’s RTs and
effectively interprets how a camera looks at one 3D CAD object
from the images taken on it. The experiments on four models
quantitatively and qualitatively demonstrate the efficacy of our
proposed approach.

Keywords—camera pose, 6-DOF, rotation angle, translation
vector, CNN, 2D real images, 3D CAD object, synthetical images.

I. INTRODUCTION

With the ability to capture everyone’s favorite moments

from a completely new and breathtaking perspective, like a

photographer, a smart robot can adjust its camera focus, move

to a special position and choose a suitable viewpoint to shoot

a picture of some objects.
According to the camera’s imaging principle, assuming that

the focus is fixed, if the camera looks at objects with different

poses, then the captured images on those objects should be

tototally different. Such a one-to-one relationship is relfected

that each image corresponds to a specific camera pose. This

observation movitates us to seek a way to estimate camera pose

and accurately interpret how a camera looks at 3D objects from

the perspective of images, which has not been well explored.
Intuitively, a camera’s pose corresponds to camera’s extrin-

sic parameter, which is 6-DOF (degree of freedom) parameter

as (θx, θy, θz, tx, ty, tz), where (θx, θy, θz) is rotation angles

from x, y and z axes and (tx, ty, tz) is translation vector.

Assuming that the camera focus is fixed, to estimate a RT from

an image under the supervised learning framework, we have

to face two issues. First, how to obtain the supervised ground-

truth information of camera’s RTs from images? Second, what

kinds of visual feature can be used for such a supervised

learning?

Fig. 1. Assuming that the camera’s intrinsic parameter is fixed, given a 3D
CAD model (left) and a real image (middle) taken on its object, how can
we estimate its RT (extrinsic parameter), and then use the RT to generate a
synthetic image (right) and visually verify its correctness?

However, there are no direct ways to obtain RT from images

by manual annotation. Fortunately, the POSIT algorithm [2],

which is able to estimate the 6-DOF pose of a 3D object in a

single image. To make it simple, weuse the POSIT algorithm

to obtain the RT from each image as supervised information

for either training or evaluation. Now, as shown in Figure 1, we

target the camera pose estimation problem as: given a 3D CAD

model, the corresponding CAD object, the camera’s intrinsic

parameter and 2D view images, can we estimate the accurate

RTs and visually check the correctness?

In recent years, the convolutional neural networks

(CNN) [5] have won significant attention due to their success

on learning feature representations. In particular, CNN has

shown superior performance on standard object recognition

tasks, which effectively learn complicated mappings while

utilizing minimal domain knowledge. Hence, we can turn to

CNN, in spite that most of 3D CAD models lack sufficient

color information which make it not suitable to use traditional

visual features like SIFT, LBP, SURF for images taken on

them.

In this paper, we propose a novel CNN-based framework

to estiamte RT from images automatically and intelligently, as

well as visually verify the correctness of the predicted RTs.

Firstly, to obtain the supervised RT information, we resort

to the POSIT algorithm to indirectly calculate the RTs for

each image with annotating a few number of image points

associated with the correponding 3D points. Secondly, CNN

has been proved experimentally as a very powerful feature

extraction approach for visual tasks. And hence we design

a AlexNet-variant network as a multi-output regression model

which is able to obtain RTs directly and indirectly. In the direct

way, the output are 6-DOF RTs. In the indirect way, we firstly
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obtain the predicted M landmarks, and then we calculate RTs

via the POSIT algorithm using the predicted M landmarks and

their corresponding 3D coordinates. Finally, combining with

the 3D CAD model and the fixed intrinsic camera parameter,

we generate synthetic images based on the predicted RTs and

compare the synthetic images with the real images to verify

the correctness. In this way, we are able to effectively inteprete

how a camera looks at one 3D CAD object.

To sum, the contribution of this paper lies on four-folds:

1) We are the first one to propose a CNN-based framework

to estimate the camera’s RTs from images directly and

indirectly and flexiblely interprets how a camera looks

at 3D object.

2) We are able to calculate RTs indirectly via the POSIT

algorithm. By this way, the introduction of landmarks

solves the non-Euclidean issue of rotation angles.

3) We also develop a visualization tool to visually verify the

correctness of our predicted RTs. This enables a way to

accurately intepret how a camera looks at the 3D object

visually.

4) The experimental results on four groups of experiments

on four different CAD models strongly show the efficacy

of our proposed method.

II. RELATED WORK

The related work falls into two categories: object/camera
pose estimation and deep learning.

Object/camera pose estimation. Most of the existing

approaches are mainly designed on the predefined discrete

orientation/viewpoint bins in the viewing circle and formulated

as a multi-class classification problem [10], [1] or regression

function from local feature [14], [15]. Recently, there are

several related work [8], [7] to estiamte the 6-DOF camera

poses. In contract, we aim to obtain the camera’s accurate and

continous RTs of the single camera estimated from real images

focus on a single 3D CAD object and accurately interpret how

a camera looks at the object.

Deep learning models especially the convolutional neural

network (CNN) have been developed to address the vision

problems [4], [6] successfully. Even though CNN is good

at extracting global features, it doesn’t necessarily emphasize

local discriminative features which are very critical for fine-

grained tasks like pose estimation. Moreover, the capability of

CNN for continuous multi-output regression tasks especially

for RT estimation from images has not been fully explored, in

spite of its success in dealing with multi-class classification.

III. PROPOSED APPROACH

As illustrated in Figure 2, our proposed CNN-based frame-

work has three components, i.e., camera calibration, RT esti-

mation through a CNN-based multi-output regression model,

and visual verification of the predicted RTs via generating

synthetic images and comparing it with the real image visually.

Fig. 2. The pipeline for our proposed CNN-based framework.

A. Camera calibration

We resort to a Camera Calibration Toolbox for Matlab1 to

estimate the camera intrinsic parameter K which is fixed and

real images are captured around a 3D object in roughly semi-

sphere space. We adjust the camera focus used for experiments

initially and then fix it before collecting 20-25 checkboard

images for camera calibration and a large number of real

images shooting on the object. And hence we only need

to take one-time camera calibration and then use the same

obatined parameter K directly throughout the whole group of

exepriments.

B. CNN-based regression model for RT estimation

In this paper, for each 3D CAD object, we firstly determine

M non-coplanar 3D points {(xk, yk, zk)}Mk=1 arbitrarily from

its CAD model, and use a camera with the fixed intrinsic

parameter to collect a large number of 2D images taken on

the object. Then we manually annotate the corresponding

landmarks on each image associated with each 3D point and

hence get image points {(xk
im, ykim)}Mk=1, where xk

im and ykim
indicate the projection position of k-th point in the image,

respectively. With the availability of parameter K and M pairs

of 3D points and 2D landmarks, we run the POSIT algorithm

to calculate the RTs and take them as the ground-truths.

We propose two versions (i.e., direct and indirect) of multi-

output CNN regression model to estimate the RT for an

arbitrary real image taken on the same 3D CAD object.

Theoritically, we can modify most of advanced CNN network

like VGG [12], Google-Net [13] and ResNet [3] and use them

as our multi-output regression models. In this paper, we choose

AlexNet network [9] due to two reasons. (1) AlexNet network

is widely used and there are pre-trained models available

online. (2) The number of our collected images are not large

enough to fine-train a more complicated CNN networks which

have a much larger number of parameters to learn.

We design two versions of AlexNet-variant network as

multi-output regression model to predict RTs directly and

indirectly. Different from the original Alexnet work, our CNN

model is designed to solve the multi-output regression probem.

We change the number of output in the last second layer “fc8”

from 1000 into 6 in the direct model indicated as CNN-direct

and 2M in the indirect model indicated as CNN-indirect. As

1Camera Calibration Toolbox for Matlab with URL:
http://www.vision.caltech.edu/bouguetj/calib doc/htmls/example.html.
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for loss function, we use the sum of the individual Euclidean

losses that measure the distance between the predicted vector

and the actual vector. For CNN-indirect, we need the POSIT

algorithm as one more step to calculate RTs from the predicted

M landmarks indirectly.

It worths mentioning that we benefit from fine-tuning the

existing online available AlexNet caffe model trained from

large-scale ImageNet dataset.

Remark: CNN-direct is simpler than CNN-indirect which

may pass forward the prediction landmark errors to the predic-

tion RT errors due to the system error of the POSIT algorithm.

However, CNN-direct has its own defect due to its ambiguous

angle represenation for rotation angle, which is non-Euclidiean

in some cases. For example, −π and π are identical to each

other in physical space, while their difference value is too

large. This may cause failures sometimes.

C. Visual verification of correctness via synthetic image

Once we obtain the camera’s RT (θx, θy, θz, tx, ty, tz),
we can calculate the camera view-up normal vector, camera

positon, and the camera’s focal point. Combining with the

fixed camera intrinsic parameter K, any 3D CAD object’s

coordinates can be projected into 2D image points in a render

window.

In implementation, we use VTK. First, we load the corre-

sponding 3D CAD model and set the intrinsic parameter of the

virtual active camera as our camera’s parameter K. Then we

are able to update the virtual active camera’s view-up normal

vector, position and focal point based on the estimated RTs.

Finally we get an active view on the CAD model and the

render window can be screenshoted or saved as the synthetic

images.

In this way, we flexiblely simulate how a camera looks at the

3D CAD object and takes photos. Then we visually compare

the generated synthetic image with the testing image. If these

two images look similar, then that is able to demonstrate our

estimated RT is correct and strongly support the claim that our

proposed model can accurately intepret how a camera looks

at one 3D CAD model in the realworld situation.

IV. EXPERIMENTS

We conduct experiments on three 3D CAD objects with the

corresponding CAD models, i.e., small ship, Bruce Lee and

fish statue and boy angel, as shown in Figure 3. The vertex

count and triangle count for these four models are summarized

in the Table I.

Fig. 3. 3D CAD models (top) and real images (bottom) taken on the models.

A. Dataset

For each 3D CAD object, we take more than 1000 real im-

ages with the size 5184×3465 on it from different viewpoints.

The number of real images taken on these three models are

1286, 1480, 1582, and 1643, respectively.

As shown in Figure 3, we annotate M = 8 landmarks on

each image to calculate the RTs via POSIT algorithm. Based

on the ground-truth RTs, we summarize the range for each

element of RT over all the images for each model in Table I.

As we can see, the range for both x and z axis are roughly

(−π, π), and the range for y are within (− 1
2π,

1
2π), which

indicates all the images are taken around a half sphere.

For the data split for training and testing, we randomly select

90% of the total images for training and the rest are used

for evaluation. Since there is no previous work to solve our

problem, we implement two similar versions of SVM method

(i.e. SVM-direct and SVM-indirect) using the bag-of-words

feature combining both the SIFT and LBP descriptors from

each image and take them as the baselines. To specify, SVM-

direct uses SVM to predict RTs directly, and SVM-indirect

uses SVM to predict landmarks and then run the POSIT

algorithm to obtain RT indirectly.

The measurement used in this paper is average absolute

regression error.

B. Experiments on the small ship model

We start experiments on the small ship model to evaluate

the regression errors and take quantitative analysis. We also

visualize the result to evaluate the correctness qualitatively.

In order to further verify our CNN-indirect to estimate the

RTs, we summarize the average absolute landmark errors in

Table II. The observations show that the predicted landmarks

predicted by our CNN-indirect are much closer to the ground-

truth landmarks, when compared to those landmarks predicted

by SVM-indirect. Also, the average errors in x and y pixel

position of landmarks are small to 2% of the image size 5184×
3465. This indicates our proposed CNN-indirect performs well

to predict the landmarks on image.

TABLE II
THE REGRESSION ERRORS OF LANDMARKS ON THE SMALL SHIP MODEL.

SVM-indirect CNN-indirect
Landmark x y x y

1 486.644 443.346 103.879 70.935
2 375.221 336.351 85.591 64.372
3 635.839 532.093 101.433 81.571
4 609.213 599.830 104.455 83.095
5 427.491 396.943 89.598 71.911
6 480.253 367.553 93.728 74.155
7 683.239 538.170 118.916 89.815
8 718.722 601.149 118.915 90.845

Average 552.078 476.929 102.064 78.337

We also summarize the average absolute error of RTs

obtained by four different methods in Table III. As we can see,

both CNN-indirect and CNN-direct perform better than SVM-

indirect and SVM-direct, and CNN-direct performs the best.

Its average rotation angle error is 0.337, i.e., approximately

19.3◦ in the range [0◦, 360◦), and its average of translation
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TABLE I
THE BRIEF INFORMATION FOR EACH CAD MODEL AND REAL IMAGES USED FOR EXPERIMENTS.

small ship Bruce Lee fish statue boy angel
Vertex number 9,378 703,248 233,184 554,082

Triangle number 3,126 234,416 77,728 184,694
Training number 1,157 1,332 1,423 1,478
Testing number 129 148 159 165

θx range [-3.137, 3.136] [-3.141, 3.140] [-3.141, 3.141] [-3.104, 3.138]
θy range [-1.128, 1.367] [-1.239, 1.045] [0.505, 1.557] [-1.402, 0.512]
θz range [-3.139, 3.141] [-3.136, 3.131] [-3.129, 3.124] [-3.135, 3.132]
tx range [0.648, 11.828] [0.358, 7.061] [4.632, 222.456] [19.033, 156.619]
ty range [0.417, 8.659] [0.048, 3.955] [0.637, 164.567] [6.471, 131.387]
tz range [14.983, 39.193] [2.642, 21.057] [194.158, 776.526] [216.857, 635.711]

TABLE III
THE REGRESSION ERROR OF RTS ON THE SMALL SHIP MODEL.

SVM CNN
Landmark indirect direct indirect direct

θx 2.270 2.102 0.866 0.515
θy 0.687 0.403 0.167 0.128
θz 1.659 1.425 0.311 0.368

θavg 1.539 1.310 0.448 0.337
tx 3.427 1.209 0.540 0.561
ty 2.257 1.010 0.469 0.403
tz 15.633 2.951 3.652 1.632

tavg 7.106 1.723 1.553 0.865

vector error is low to 0.865. All these observations strongly

demonstrate the efficacy of our proposed multi-output CNN

regression framework.

C. Experiments on other three models

To extend the evaluation on more complicated CAD models,

we continue to run experiments on the rest of three models.

We summarize the prediction error of RTs for these three

models in Table IV, V and VI, respectively. As we can see,

both CNN-indirect and CNN-direct obtain much smaller errors

in both rotation angles and translation vectors than both SVM-

indirect and SVM-direct. CNN-direct achieves the smaller

average errors, which is consistent with the observations on

the ship model. The best average rotation angle errors for

these three models are 0.219, 0.136 and 0.140 respectively.

In other words, the rotation angle errors are 12.5◦, 7.8◦ and

8.0◦ in the range [0◦, 360◦), respectively. Also, the average

error of translation vectors estimated by the two versions of

CNN is also acceptable when compared the real ranges shown

in Table I. Obviously, such observation strongly demonstrates

the ability of convolutional neural netowrk to estimate how

the camera looks at the CAD models.

TABLE IV
THE REGRESSION ERROR OF RTS ON THE “BRUCE LEE” MODEL.

SVM CNN
Landmark indirect direct indirect direct

θx 1.290 1.468 0.532 0.407
θy 0.297 0.221 0.089 0.076
θz 0.855 0.921 0.132 0.174

θavg 0.812 0.870 0.251 0.219
tx 2.030 0.578 0.188 0.237
ty 1.360 0.516 0.122 0.156
tz 8.978 1.139 0.907 0.713

tavg 4.123 0.744 0.406 0.369

TABLE V
THE REGRESSION ERROR OF RTS ON THE FISH STATUE MODEL.

SVM CNN
Landmark indirect direct indirect direct

θx 1.035 0.703 0.510 0.209
θy 0.311 0.146 0.073 0.057
θz 0.561 0.415 0.273 0.143

θavg 0.635 0.421 0.285 0.136
tx 55.663 24.368 5.916 6.996
ty 37.954 24.319 3.867 6.803
tz 234.310 42.035 32.196 16.690

tavg 140.514 30.241 13.993 10.163
TABLE VI

THE REGRESSION ERROR OF RTS ON THE BOY ANGEL MODEL.

SVM CNN
Landmark indirect direct indirect direct

θx 0.475 0.300 0.186 0.125
θy 0.374 0.210 0.127 0.095
θz 0.922 0.910 0.234 0.201

θavg 0.590 0.473 0.182 0.140
tx 46.828 16.157 6.514 5.769
ty 30.575 15.234 3.986 4.969
tz 205.063 35.164 34.995 17.368

tavg 94.155 22.185 15.165 9.369

D. Visualization

Based on the estimated RTs, we generate the corresponding

synthetic images to visually verify the correctness. Due to

the space limit, we only randomly select 4 real images

of different viewpoints and show their synthetic images in

Figure 4. As we can observe, regarding pose estimation, our

proposed CNN-indirect and CNN-direct models perform much

better than SVM-indirect and SVM-direct, which is consistent

with both real image taken on the objects and the synthetic

image generated from the CAD models by ground-truth RT.

This strongly demonstrates our proposed multi-output CNN

regression framework is robust to interpret how cameara looks

at objects.

E. Discussion

Regarding that CNN-indirect obtains a little larger regres-

sion RT errors than CNN-direct, this can be explained by

the fact that the landmark prediction errors have been passed

forward and even might be exaggerated during the process

of running the POSIT algorithm, while CNN-direct is able to

predict RTs directly and avoid the possible errors caused by

the POSIT algorithm.

Furthermore, even the ground-truth landmarks may have

a little annotation noise, that’s why objects in the synthetic
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Fig. 4. Visualizations of the RT estimated. At each row, the leftmost column is real image, and the following five synthetic images are generated by the RTs
estimated by SVM-indirect, SVM-direct, CNN-indirect and CNN-direct, and the ground-truth RT in order from left to right.

Fig. 5. Failure cases for CNN-direct in the four models. At each row, the
images from left to right are real image, synthetic images generated by CNN-
indirect’s RT, and synthetic image generated by CNN-direct’s RT.

images generated by the ground-truth RTs sometimes looks a

little different from the corresponding real images, as seen

in Figure 4.We also observe some failure cases for CNN-

direct, as shown in Figure 5. This is because the space of

rotation angle is non-Euclidean, and in some cases the angle

representation is ambiguous [11]. For example, −π and π are

identical to each other in physical space, while the difference

value is too large. Instead, the space of M landmarks is

Euclidean so that CNN-indirect can avoid the ambiguity issue

in the angle representation. One reason to explain the position

shift of object in the CNN-indirect’s synthetic images is that

there are a few number of the specific M landmarks invisible

in real images and cannot be predicted correctly in our current

CNN regression model, which may affect the precision of

estimated translation vector.

V. CONCLUSION

We propose a CNN-based multi-output regression frame-

work to estimate the camera’s RTs directly and indirectly from

images. What’s more, we are able to generate the synthetic

images to visually verify the correctness and interpret how

the camera looks at the 3D CAD object effectively and

accurately. The experiments conducted on real images taken

on four CAD models demonstrate our proposed framework’s

ability to interpret how the camera looks at one CAD object.

Our future work includes investigating and developing more

powerful CNN regression models to reduce the regression

errors, extending the current setting from a single CAD object

to multiple CAD objects.
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