

How Does A Camera Look At One 3D CAD Object?

Chang Xing , Chengjiang Long , Hao Guo, Yongwei Nie , Yuan Zhang , Dehai Zhu , Qin Ma , Mengxiao Tian

Q: How to guide the robots or drones to take pictures accurately?

A: To explore how does a camera looks at the objects.

Camera projection

Problem definition

 Z_{I} (Down)

Related work

□ Object pose estimation ([Pepik CVPR2012], [Teney CCRV2013] ...)

□ PoseNet ([Kendll CVPR2015])

King's College

Shop Façade

5

Pipeline

3D CAD model

Camera calibration

20-25 check board images.

Run a Camera Calibration Toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/cali b_doc/htmls/example.html

CNN-direct

- Indirect annotation: POSIT algorithm [Dementhon 1995]
- Modify the number of output channel to 6.
- Loss function: Euclidean loss.
- > Issue between $-\pi$ and π .

CNN-indirect

> Solve the Issue between $-\pi$ and π .

Visualization with Paraview

Experiment datasets

The brief information for each CAD model and real images used for experiments.

	small ship	Bruce Lee	fish statue	boy angel
Vertex number	9,378	703,248	233,184	554,082
Triangle number	3,126	234,416	77,728	184,694
Image nubmer	1,286	1,480	1,582	1,643
Training number	1,157	1,332	1,423	1,478
Testing number	129	148	159	165
θ_x range	[-3.137, 3.136]	[-3.141, 3.140]	[-3.141, 3.141]	[-3.104, 3.138]
θ_y range	[-1.128, 1.367]	[-1.239, 1.045]	[0.505, 1.557]	[-1.402, 0.512]
θ_z range	[-3.139, 3.141]	[-3.136, 3.131]	[-3.129, 3.124]	[-3.135, 3.132]
t_x range	[0.648, 11.828]	[0.358, 7.061]	[4.632, 222.456]	[19.033, 156.619]
t_y range	[0.417, 8.659]	[0.048, 3.955]	[0.637, 164.567]	[6.471, 131.387]
t_z range	[14.983, 39.193]	[2.642, 21.057]	[194.158, 776.526]	[216.857, 635.711]

Results on the ship model

THE REGRESSION ERRORS OF LANDMARKS ON THE SMALL SHIP MODEL.

	SVM-i	ndirect	CNN-in	ndirect		
Landmark	X	у	X	У	-	
1	486.644	443.346	103.879	70.935		
2	375.221	336.351	85.591	64.372		
3	635.839	532.093	101.433	81.571		
4	609.213	599.830	104.455	83.095		
5	427.491	396.943	89.598	71.911		
6	480.253	367.553	93.728	74.155		
7	683.239	538.170	118.916	89.815		
8	718.722	601.149	118.915	90.845		< 29
Average	552.078	476.929	102.064	78.337		- /
					-	5184×3

THE REGRESSION ERROR OF RTS ON THE SMALL SHIP MODEL.

	SV	М	CNN		
Landmark	indirect	direct	indirect	direct	
θ_x	2.270	2.102	0.866	0.515	
θ_y	0.687	0.403	0.167	0.128	
θ_z	1.659	1.425	0.311	0.368	
0 avg	1.539	1.310	0.448	0.337	10.3°
t_x	3.427	1.209	0.540	0.561	10.0
t_y	2.257	1.010	0.469	0.403	
t_z	15.633	2.951	3.652	1.632	
tava	7.106	1.723	1.553	0.865	

Results on the other three models

THE REGRESSION ERROR OF RTS ON THE "BRUCE LEE" MODEL.

	SV	M	CN	N		
Landmark	indirect	direct	indirect	direct		
θ_x	1.290	1.468	0.532	0.407		
θ_y	0.297	0.221	0.089	0.076		
θ_z	0.855	0.921	0.132	0.174		
θ_{avg}	0.812	0.870	0.251	0.219	12	50
t_x	2.030	0.578	0.188	0.237	14.	0
t_y	1.360	0.516	0.122	0.156		
t_z	8.978	1.139	0.907	0.713		
t_{avg}	4.123	0.744	0.406	0.369		

THE REGRESSION ERROR OF RTS ON THE FISH STATUE MODEL.

1	SV	Μ	CNN		
Landmark	indirect	direct	indirect	direct	
θ_x	1.035	0.703	0.510	0.209	
θ_{u}	0.311	0.146	0.073	0.057	
θ_z	0.561	0.415	0.273	0.143	
Baug	0.635	0.421	0.285	0.136	> 7 8°
t_x	55.663	24.368	5.916	6.996	1.0
t_y	37.954	24.319	3.867	6.803	
t_z	234.310	42.035	32.196	16.690	
tavg	140.514	30.241	13.993	10.163	

THE REGRESSION ERROR OF RTS ON THE BOY ANGEL MODEL.

	SV	SVM		IN	
Landmark	indirect	direct	indirect	direct	
θ_x	0.475	0.300	0.186	0.125	
θ_y	0.374	0.210	0.127	0.095	
θ_z	0.922	0.910	0.234	0.201	
0 avg	0.590	0.473	0.182	0.140	
t_x	46.828	16.157	6.514	5.769	01
t_y	30.575	15.234	3.986	4.969	
t_z	205.063	35.164	34.995	17.368	
tavg	94.155	22.185	15.165	9.369	

Visualization on the ship model

Image

SVM-direct

CNN-indirect

Visualization on the "Bruce Lee" model

Image

SVM-direct

CNN-indirect

CNN-direct

Visualization on the fish statue model

Image

SVM-indirect

SVM-direct

CNN-indirect C

CNN-direct

Ground-truth RT

Visualization on the boy angel model

Image

SVM-indirect

SVM-direct

CNN-indirect

Ground-truth RT

Angle ambiguous issue

Conclusion and future work

- □ We propose a CNN-based multi-output regression framework to estimate the camera's RTs directly and indirectly from images.
- Ware able to generate the synthetic images to visually verify the correctness and interpret how the camera looks at the 3D CAD object effectively and accurately.
- Our future work includes investigating and developing more powerful CNN regression models to reduce the regression errors, extending the current setting from a single CAD object to multiple CAD objects.

Thanks!

Email: chengjiang.long@kitware.com Web: http://www.chengjianglong.com