
Diverse Human Motion Prediction via Gumbel-Softmax Sampling
from an Auxiliary Space

— Supplementary Material —
Lingwei Dang

South China University of Technology
Guangzhou, Guangdong, China
csdanglw@mail.scut.edu.cn

Yongwei Nie∗
South China University of Technology

Guangzhou, Guangdong, China
nieyongwei@scut.edu.cn

Chengjiang Long
Meta Reality Lab

Burlingame, CA, USA
clong1@fb.com

Qing Zhang
Sun Yat-sen University

Guangzhou, Guangdong, China
zhangqing.whu.cs@gmail.com

Guiqing Li
South China University of Technology

Guangzhou, Guangdong, China
ligq@scut.edu.cn

ABSTRACT
In this supplementary material, we provide more information that
cannot be included in the paper due to the space limit. We first
introduce network architectures of our method in detail. Then, we
provide more quantitative and qualitative comparisons. Finally, we
give some failure cases and the reasons for these failures. Please
refer to our provided video demo to review the results more intu-
itively.
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1 AUXILIARY-SPACE-BASED SAMPLING
NETWORK ARCHITECTURE

Our auxiliary-space-based sampling network is illustrated in Figure
1. The input is x ∈ R[𝐽 ×𝐶,𝐻 ] , where𝐻 is the number of input poses,
𝐽 is the number of joints of a pose, and 𝐶 is the dimension size of
each joint. For Human3.6M [2], 𝐽 = 17, 𝐶 = 3, 𝐻 = 25, while for
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Table 1: The network structure of N𝛽 and N𝛾 . For Hu-
man3.6M, 𝐽 = 17. For HumanEva-I, 𝐽 = 15. For both datasets,
𝑀 = 40, 𝐾 = 50, 𝐶 = 3, 𝐹 = 256, 𝑛𝑑𝑐𝑡 = 10, 𝑛𝑏 = 128, 𝑛ℎ = 64,
𝑛𝑧 = 64.

Component Block Layer Weight Size Input Size Output Size

N𝛽
GCN

GCL A(𝐽 , 𝐽 ), W(𝐶 × 𝑛𝑑𝑐𝑡 , 𝐹 ) (𝐽 ,𝐶 × 𝑛𝑑𝑐𝑡 ) (𝐽 , 𝐹 )
BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

MLP 1 Linear W( 𝐽 × 𝐹 ,𝑀 × 𝑛𝑏 ) (𝐽 × 𝐹 ) (𝑀 × 𝑛𝑏 )
BN, Tanh - (𝑀 × 𝑛𝑏 ) (𝑀 × 𝑛𝑏 )

N𝛾

MLP 21
Linear W(𝑛𝑏 , 𝑛ℎ) (𝐾,𝑛𝑏 ) (𝐾,𝑛ℎ)

BN, Tanh - (𝐾,𝑛ℎ) (𝐾,𝑛ℎ)
Linear W(𝑛ℎ, 𝑛𝑧 ) (𝐾,𝑛ℎ) (𝐾,𝑛𝑧 )

MLP 22
Linear W(𝑛𝑏 , 𝑛ℎ) (𝐾,𝑛𝑏 ) (𝐾,𝑛ℎ)

BN, Tanh - (𝐾,𝑛ℎ) (𝐾,𝑛ℎ)
Linear W(𝑛ℎ, 𝑛𝑧 ) (𝐾,𝑛ℎ) (𝐾,𝑛𝑧 )

CVAE Decoder See Table 2 (𝐾 × 𝐽 ,𝐶 × 𝑛𝑑𝑐𝑡 ), (𝐾 × 𝑛𝑧 ) (𝐾 × 𝐽 ,𝐶 × 𝑛𝑑𝑐𝑡 )

HumanEva-I [5],𝐶 = 3, 𝐽 = 15, and𝐻 = 15. Following [4], we repeat
the last pose of x,𝑇 times, and append them to x. Now, the input is of
size [𝐽 ×𝐶,𝐻 +𝑇 ], where 𝑇 is the number of poses to be predicted.
For Human3.6M, 𝑇 = 100, and for HumanEva-I, 𝑇 = 60. Then
following [4] again, we apply a Discrete Cosine Transform (DCT)
operator to transform the temporal information along the 𝐻 +𝑇
dimension of the input data into the frequency space. By keeping
only the coefficients of low frequency components and discarding
those of high frequency components, we obtain data of [𝐽 ×𝐶,𝑛𝑑𝑐𝑡 ]
which becomes [𝐽 ,𝐶 × 𝑛𝑑𝑐𝑡 ] after reshaping, where 𝑛𝑑𝑐𝑡 = 10 is
the number of the remained coefficients. Following, a network N𝛽
made up of a GCN and an MLP learns a base matrix B ∈ R[𝑀×𝑛𝑏 ]

from the DCT coefficients, where𝑀 = 40 and 𝑛𝑏 = 128. The GCN,
which will be described later, extracts hidden features of shape
𝐽 × 𝐹 where 𝐹 = 256 is the feature dimension size. Then, the MLP
composed of a linear transformation layer, a Batch Normalization
(BN) layer and a Tanh activation function, maps the hidden features
into B. The network structures of the GCN and MLP are shown in
Table 1. Next, we sample a random coefficient matrixW ∈ R[𝐾×𝑀 ]

by the Gumbel-Softmax sampling technique, where 𝐾 = 50 is the
sampling number. Then the multiplication of W and B outputs
a point matrix of shape [𝐾 × 𝑛𝑏 ]. Next, the second network N𝛾
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Figure 1: Detailed architecture of our auxiliary-space-based sampling model. A circle represents input, intermediate, or output
data. The symbol above a circle indicates the size of the data. For example, [𝐽 ×𝐶, 𝐻] means the data is a two-dimensional
matrix of 𝐽 ×𝐶 rows and 𝐻 columns. The symbol above an arrow indicates the size of the output of the corresponding previous
operator. Please refer to the main text for detailed descriptions of the architecture.
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Figure 2: Detailed architecture of the adopted CVAE model. It is composed of an encoder and a decoder that are built on GCNs
and MLPs. Please refer to the main text for detailed descriptions of the architecture.

projects the 𝐾 sampled points into the parameters of 𝐾 Gaussian
distributions {N (b𝑘 ,A𝑘 )}𝐾𝑘=1, where b ∈ R[𝐾×𝑛𝑧 ] indicates means
of these Gaussian distributions and A ∈ R[𝐾×𝑛𝑧 ] are the diagonal
values of their co-variance matrices. In particular, N𝛾 consists of
two sub MLPs for generating b and A, respectively. The detailed
structure of N𝛾 is shown in Table 1. Each MLP is made up of a
Linear-BN-Tanh layer to transform the point features into hidden
vectors of shape [𝐾 × 𝑛ℎ], and another Linear layer that maps the
hidden vectors into Gaussian parameters of shape [𝐾 × 𝑛𝑧], where
𝑛ℎ and 𝑛𝑧 are both set as 64. After that, a set of latent variables
z ∈ R[𝐾×𝑛𝑧 ] are drawn from the Gaussian distributions by the
reparameterization trick. We repeat the input data after DCT, 𝐾
times and concatenate each of them with z, and feed them into the
pretrained CVAE decoder (which will be described later) to produce
future motions in the frequency space of shape [𝐾 × 𝐽 ,𝐶 × 𝑛𝑑𝑐𝑡 ].
Then we project the frequency features back into the pose space by
the inverse DCT (i-DCT) function, obtaining 𝐾 pose sequences of
shape [𝐾 × 𝐽 ×𝐶,𝐻 +𝑇 ]. Finally, a slice operator extracts only the
future 𝑇 frames and outputs results of shape [𝐾 × 𝐽 ×𝐶,𝑇 ] which
are the 𝐾 future pose sequences predicted by our network.

Now, we introduce the Graph Convolutional Network (GCN). As
shown in Table 1, our GCN is made up of five sequentially stacked
GCL-BN-Tanh layers, where GCL stands for Graph Convolutional
layer. Let H𝑙 ∈ R𝐽 ×𝐹 𝑙 be the input to the 𝑙𝑡ℎ GCL where 𝐹 𝑙 is the
hidden feature dimension size, A𝑙 ∈ R𝐽 ×𝐽 the adjacency matrix,
and W𝑙 ∈ R𝐹 𝑙×𝐹 𝑙+1 the trainable parameters, the GCL executes the
following computation:

H𝑙+1 = A𝑙H𝑙W𝑙 , (1)

where H𝑙+1 ∈ R𝐽 ×𝐹 𝑙+1 is the output of the 𝑙𝑡ℎ GCL. At the very
beginning, 𝐹 0 = 𝐶 × 𝑛𝑑𝑐𝑡 .

2 CVAE NETWORK ARCHITECTURE
Recall that before applying our method to generate diverse results,
we need to train a CVAE model beforehand. The CVAE network
architecture adopted in this paper is shown in Figure 2. Let x ∈
R[𝐽 ×𝐶,𝐻 ] be an observed pose sequence, and y ∈ R[𝐽 ×𝐶,𝑇 ] be the
ground truth future poses. We compute the frequency coefficients
of shape [𝐽 ,𝐶 × 𝑛𝑑𝑐𝑡 ] from each of them and then concatenate
both the frequency content into data of shape [𝐽 , 2 × 𝐶 × 𝑛𝑑𝑐𝑡 ].
Then, an encoder is used to learn the parameters of the posterior
Gaussian distribution N(𝝁,𝝈) of the latent code z given x and y,
where 𝝁 ∈ R[𝑛𝑧 ] is the mean of the posterior distribution, and
𝝈 ∈ R[𝑛𝑧 ] is the diagonal values of the co-variance matrix of the
posterior distribution. Particularly, as shown in Table 2, the encoder
consists of a GCN and two MLPs. The GCN is composed of nine
GCL-BN-Tanh layers to extract hidden features of shape [𝐽 , 𝐹 ]. The
two MLPs, each of which just comprises a single Linear layer, map
the hidden features into 𝝁 and𝝈 , respectively. Then a latent variable
z ∈ R[𝑛𝑧 ] can be drawn from the posterior Gaussian distribution
by the reparameterization trick.

Next, a decoder is used to reconstruct y from the latent code z.
To achieve that, we first repeat z, 𝐽 times and concatenate them
with the DCT coefficients of x, resulting in a feature of shape [𝐽 ,𝐶×
𝑛𝑑𝑐𝑡 +𝑛𝑧]. Afterwards, we employ another GCN comprising 9 GCL-
BN-Tanh layers to extract hidden features of shape [𝐽 , 𝐹 ], and a
GCL layer that projects the hidden features back into the frequency
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Table 2: The network structure of the employed CVAE. For
Human3.6M, 𝐽 = 17. For HumanEva-I, 𝐽 = 15. For both
datasets, 𝐶 = 3, 𝐹 = 256, 𝑛𝑑𝑐𝑡 = 10, 𝑛𝑧 = 64.

Component Block Layer Weight Size Input Size Output Size

Encoder
GCN 1

GCL A(𝐽 , 𝐽 ), W(2 × 𝑛𝑑𝑐𝑡 , 𝐹 ) (𝐽 , 2 ×𝐶 × 𝑛𝑑𝑐𝑡 ) (𝐽 , 𝐹 )
BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
MLP 1 Linear W(𝐽 × 𝐹, 𝑛𝑧 ) (𝐽 × 𝐹 ) (𝑛𝑧)
MLP 2 Linear W(𝐽 × 𝐹, 𝑛𝑧 ) (𝐽 × 𝐹 ) (𝑛𝑧)

Decoder GCN 2

GCL A(𝐽 , 𝐽 ), W(𝐶 × 𝑛𝑑𝑐𝑡 + 𝑛𝑧 , 𝐹 ) (𝐽 ,𝐶 × 𝑛𝑑𝑐𝑡 ), (𝑛𝑧 ) (𝐽 , 𝐹 )
BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹, 𝐹 ) (𝐽 , 𝐹 ) (𝐽 , 𝐹 )

BN, Tanh - (𝐽 , 𝐹 ) (𝐽 , 𝐹 )
GCL A(𝐽 , 𝐽 ), W(𝐹,𝐶 × 𝑛𝑑𝑐𝑡 ) (𝐽 , 𝐹 ) (𝐽 ,𝐶 × 𝑛𝑑𝑐𝑡 )

space of shape [𝐽 ,𝐶 × 𝑛𝑑𝑐𝑡 ]. The frequency coefficients of x after
DCT is added to this output. Finally, we use an i-DCT function to
transform the above output back into the pose space and slice off
the future 𝑇 frames to obtain ỹ ∈ R[𝐽 ×𝐶,𝑇 ] .

3 EVALUATION ON FID, ACC, ADE-M, AND
FDE-M

We further evaluate our method on four additional metrics: FID,
ACC, ADE-median (ADE-m), and FDE-median (FDE-m).

• Recognition Accuracy (ACC). A pre-trained action recogni-
tion classifier is used to classify the generated poses. ACC is
the overall recognition accuracy. We train the action classi-
fier in the way suggested by [1].

• Frechet Inception Distance (FID). Features are extracted
from the generated and real data by the pre-trained action
classifier. FID is then calculated as the Frechet inception
distance between the two feature distributions.

• ADE-m and FDE-m are similar to ADE and FDE except that
the median distance are reported.

The results on the four metrics are shown in Table 3. For ADE-m
and FDE-m, DLow performs the best. That is because the diver-
sity by DLow (11.741, Human3.6M) is much lower than that by
GSPS (14.757) and our method (15.310). The lower the diversity,
the lower the median distance. Therefore, it is not surprise that
both our method and GSPS have larger ADE-m and FDE-m than

DLow. Compared with GSPS, our method has lower ADE-m and
FDE-m (ADE-m: 0.924 (our) v.s. 1.013 (GSPS), FDE-m: 1.344 (our) v.s.
1.372 (GSPS), Human3.6M), even though our method has greater
diversity (APD: 15.310 (our) v.s. 14.757 (GSPS)).

For FID and ACC, our method is better than DLow and GSPS
in terms of ACC. For HumanEva-I, our FID is the best. However,
an exception is the FID of Human3.6M, for which DLow performs
much better than GSPS and our method. Again, this is because the
diversity of the results of DLow (APD=11.741) is much lower than
those of GSPS (14.757) and our method (15.310).

4 COMPARISONWITH A VARIANT OF DLOW
We simply add some random noise to the generated Gaussian distri-
butions (i.e., adding noises to the mean and variance of the Gaussian
distributions) in DLow [6] and compare with this variant of DLow.

Firstly, we add noises to the Gaussian distributions generated
by DLow without re-training the DLow model (DLow-variant w/o
retraining). Secondly, we retrain the DLow model, and add noises
to the Gaussian distributions at both training and testing phases
(DLow-variant w/ retraining). The noises are randomly drawn from
a Normal distribution N(0, 𝜎). The mean of the noises is always
zero, while for comparison we test noises of different variances.

As shown in Table 4, adding noises can increase the diversity of
the generated results (measured by APD). The heavier the noises
(produced by larger 𝜎), the more diverse the results. However, the
negative effect is that the accuracy of the results is decreased. For
the Human3.6M dataset, please see the columns of “DLow-variant
w/o retraining 𝜎 = 1” and “DLow-variant w/ retraining 𝜎 = 1.7”
that produce similar APD as ours. Their accuracy metrics are much
higher than ours. Although adding noises can yield very large
APD (20.894 in the column of “DLow-variant w/o retraining 𝜎 =

2”), the generated poses look unrealistically. And those results on
the HumanEva-I dataset have the same trend. From this point of
view, our method is better than directly adding noises to generated
Gaussian distributions.

5 LEARN 𝜋 INSTEAD OF SETTING A
CONSTANT VALUE

In the main paper, we set 𝜋 (see Eq. 12) to a constant value. With
constant 𝜋 (1/40=0.025), each basis vector has the equal probability
to be assigned with the highest weight among all the basis vectors.
To treat all the basis vectors equally, we therefore use the same
constant 𝜋 (actually a probability) for each of them.

As a variant, 𝜋 can also be learned automatically. We conduct
experiments to compare between learning and setting a constant 𝜋 .
The results are shown in Table 5.

In the first experiment, we learn a 𝜋 for each input sample in-
dividually (Ours-Individual-𝜋 ), the results are slightly worse than
those of directly indicating a constant 𝜋 . In the second experiment,
we learn a 𝜋 shared by all the input samples (Ours-Shared-𝜋 ), the
new results are comparable to those of constant 𝜋 . We find that
the values of the learned shared 𝜋 fall in the range of [0.021, 0.029],
which are nearly equally distributed.
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Table 3: Comparison on four additional metrics: ADE-m, FDE-m, FID, and ACC.

Human3.6M [2] HumanEva-I [5]
ADE-m ↓ FDE-m ↓ FID ↓ ACC ↑ ADE-m ↓ FDE-m ↓ FID ↓ ACC ↑

DLow [6] 0.896 1.284 1.566 0.227 0.577 0.717 3.472 0.527
GSPS [3] 1.013 1.372 1.915 0.222 0.686 0.794 1.604 0.516
Ours 0.924 1.344 2.060 0.261 0.716 0.770 1.106 0.609

Table 4: Comparison with DLow [6] when adding random noises of different variance to its Gaussian distributions.

Human3.6M [2] HumanEva-I [5]

Ours DLow [6] DLow-variant [6] w/o retraining DLow-variant [6] w/ retraining Ours DLow [6] DLow-variant [6] w/o retraining DLow-variant [6] w/ retraining
𝜎 = 1 𝜎 = 1.7 𝜎 = 2 𝜎 = 1 𝜎 = 1.7 𝜎 = 2 𝜎 = 1 𝜎 = 5.7 𝜎 = 6 𝜎 = 1 𝜎 = 5.7 𝜎 = 6

APD ↑ 15.310 11.741 15.190 19.295 20.894 11.100 15.373 18.667 6.109 4.855 4.753 6.147 6.243 4.488 6.135 6.205
ADE ↓ 0.370 0.425 0.560 0.721 0.795 0.526 0.675 0.748 0.220 0.251 0.305 0.647 0.654 0.297 0.638 0.649
FDE ↓ 0.485 0.518 0.674 0.863 0.949 0.627 0.799 0.883 0.234 0.268 0.327 0.658 0.664 0.321 0.648 0.657

MMADE ↓ 0.475 0.495 0.612 0.764 0.835 0.579 0.719 0.789 0.342 0.362 0.387 0.659 0.666 0.381 0.652 0.664
MMFDE ↓ 0.516 0.531 0.682 0.868 0.953 0.634 0.804 0.889 0.316 0.339 0.372 0.661 0.667 0.368 0.650 0.661

Table 5: Comparison with learning 𝜋 (in Eq. 12) automatically.

Human3.6M [2] HumanEva-I [5]
APD ↑ ADE↓ FDE ↓ MMADE ↓ MMFDE ↓ APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓

DLow [6] 11.741 0.425 0.518 0.495 0.531 4.855 0.251 0.268 0.362 0.339
GSPS [3] 14.757 0.389 0.496 0.476 0.525 5.825 0.233 0.244 0.343 0.331
Ours 15.310 0.370 0.485 0.475 0.516 6.109 0.220 0.234 0.342 0.316

Ours-Individual-𝜋 13.530 0.372 0.493 0.481 0.525 5.606 0.229 0.239 0.338 0.317
Ours-Shared-𝜋 14.440 0.368 0.485 0.477 0.519 5.690 0.228 0.235 0.324 0.295

6 MORE ABLATION STUDIES ON PARAMETER
𝐾

In the main paper, we have demonstrated that 𝐾 , i.e., the number of
predictions for an input, has a large effect on the accuracy but not
the diversity of the results produced by our method. Here, we show
more ablation studies on 𝐾 , and perform comparisons between
CVAE random sampling, DLow [6], GSPS [3] and our method.

The results are plotted in Figure 3. The first row shows the
predicted results’ diversity measured by APD. As can be seen, for all
the compared methods, APD does not change much as 𝐾 increases.
We can also see that the diversity of our results is the largest among
all the methods, while that of CVAE is the smallest.

The second and third rows show the predicted results’ accuracy
measured by ADE and FDE. As can be seen, for all the compared
methods, ADE and FDE decrease as 𝐾 increases, indicating that
more accurate results are obtained.

The fourth and fifth rows show the predicted results’ accuracy
measured by MMADE and MMFDE. For all the compared methods,
MMADE and MMFDE decreases too as 𝐾 increases.

Observing all the results in Figure 3, we can see that our method
outputs more diverse results than DLow and GSPS, and at the same
time our results are more accurate than those of DLow and GSPS.
Generally, diversity and accuracy are two contradictory objectives.
Low diversity usually means high accuracy. That is why CVAE,
which generates results of the lowest diversity, produces the most
accurate results in the second to fifth rows.

7 MORE QUALITATIVE COMPARISONS
In Figure 4 and Figure 5, we show more qualitative comparisons
between CVAE, DLow [6], GSPS [3] and our method on the Hu-
man3.6M dataset [2] and the HumanEva-I dataset [5]. For each
input sequence, we generate 50 future pose sequences by these
methods, and show the end poses of ten of them. In the brackets
under the names of different methods, we show the diversity of
the corresponding results computed by these methods. For these
examples, our method produces more diverse results than the other
compared methods.

8 FAILURE CASES
Overall, our method is better than GSPS in term of diversity. There-
fore, for most of the test cases our method generates more diverse
results than GSPS. Inevitably there are cases for which our method
generates less diverse results than GSPS. For example, Figure 6
shows such two cases.

While most of our results look reasonable, there are occasional
ones that are implausible. Figure 7 shows some examples. We ob-
serve that DLow and GSPS suffer from this problem too, and the
implausible poses in their results are highlighted too. One can
reduce the number of implausible poses by toning down the re-
quirement for diversity. A more effective way is to collect more data
covering more actions of humans to enrich the training dataset.
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Figure 3: The first row shows how APD of different methods (including CVAE, DLow, GSPS, and our method) varies as 𝐾
increases. The other rows show the trends of ADE, FDE, MMADE, MMFDE, respectively. The figures on the left are plotted
based on the data computed on Human3.6M, while those on the right are plotted based on HumanEva-I.
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Figure 4: More qualitative results of CVAE, DLow, GSPS, and our method. The numbers in the brackets below the names of
different methods show the diversity of the results computed by these methods. In these examples, our results are more diverse
than the results of the other methods.
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Figure 5: More qualitative results of CVAE, DLow, GSPS, and our method. The numbers in the brackets below the names of
different methods show the diversity of the results computed by these methods. In these examples, our results are more diverse
than the results of the other methods.
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Figure 6: Two examples for which our method generates lower diverse results than GSPS.

History GT

End Pose of 50 Samples

History GT

End Pose of 50 Samples

(a) CVAE (b) DLow

History GT

End Pose of 50 Samples

History GT

End Pose of 50 Samples

(c) GSPS (d) Ours

Figure 7: Examples of implausible poses in the results of DLow, GSPS, and our method.
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