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Disentangled Representation Learning for
Controllable Person Image Generation

Wenju Xu, Chengjiang Long, Yongwei Nie and Guanghui Wang, Senior Member, IEEE.

Abstract—In this paper, we propose a novel framework named
DRL-CPG to learn disentangled latent representation for con-
trollable person image generation, which can produce realistic
person images with desired poses and human attributes (e.g.
pose, head, upper clothes, and pants) provided by various source
persons. Unlike the existing works leveraging the semantic masks
to obtain the representation of each component, we propose to
generate disentangled latent code via a novel attribute encoder
with transformers trained in a manner of curriculum learning
from a relatively easy step to a gradually hard one. A random
component mask-agnostic strategy is introduced to randomly
remove component masks from the person segmentation masks,
which aims at increasing the difficulty of training and promoting
the transformer encoder to recognize the underlying boundaries
between each component. This enables the model to transfer
both the shape and texture of the components. Furthermore, we
propose a novel attribute decoder network to integrate multi-level
attributes (e.g. the structure feature and the attribute representa-
tion) with well-designed Dual Adaptive Denormalization (DAD)
residual blocks. Extensive experiments strongly demonstrate that
the proposed approach is able to transfer both the texture and
shape of different human parts and yield realistic results. To
our knowledge, we are the first to learn disentangled latent
representations with transformers for person image generation.

Index Terms—Disentangled representation, Transformer, con-
trollable person synthesize.

I. INTRODUCTION

Deep generative adversarial network [1], [2] has recently
drawn increasing attention due to its impressive performance
in image/video synthesis [3], [4], which shows great potential
in dealing with MultiMedia applications [5], [6], [7]. For
instance, exploring synthesized features has been proven to be
an effective way to improve the performance of deep neural
networks [8], [9], [10]. Manipulating facial images [11], [12],
[13] and translating human faces into anime [14], [15] have
become popular in social media applications. More recently,
researchers have attempted to synthesize human images that
can be controlled by user inputs [16], [17]. We can imag-
ine that using synthesized digital humans for broadcasting,
advertising, and educating will be promising. However, this
is still an open problem that needs more endeavor and will
significantly impact multimedia society.
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Fig. 1: Given a target pose and source person images with
semantic masks, the goal of this paper is to design a uni-
fied approach for controllable person image generation and
attribute transfer.

Controllable person image generation aims to synthesize a
person image conditioned on the given pose and attributes at
the component-level from source person images with the cor-
responding semantic masks, preserving attributes like person
identity, cloth color, cloth texture, background etc., as shown
in Figure 1. This topic has attracted great attention due to
its potentially wide applications in movie composition, image
editing, person re-identification, virtual clothes try-on, and so
on.

ADGAN [18] was proposed as the first work for controllable
person attribute editing based on the semantic mask to separate
each component. Although it achieves success in controllable
image editing, the synthesized images are not realistic. In
particular, separation in image level does not guarantee the
disentanglement of the encoded attributes. Moreover, editing
person attributes by simply replacing the entangled semantic
representations tends to create artifacts or unrealistic results.

To solve the above issues of previous work, we propose
a novel and unified framework, termed as DRL-CPG, for
controllable person synthetic image generation. As shown in
Figure 2, the framework consists of two major parts, i.e. an
attribute encoder with transformers learned to generate disen-
tangled representation and an attribute decoder that integrates
the structure features and attribute representations for control-
lable person image generation. In contrast to ADGAN [18]
which encodes each component into latent code directly, we
introduce transformers [19] in the attribute encoder to generate
an intermediate representation set for each component and
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select the corresponding one as the final representation of
this component. Note that a global receptive field via self-
attention provided in the transformer encoder is essential for
the disentangled representation of a person’s image as small
components often share similar textures and context with
their surroundings. Then the transformer decoder integrates
learnable component queries with the transformer encoder
output to generate the attribute latent representation for the
subsequent attribute decoder to conduct attribute transfer.

To enable an efficient and robust way for attribute editing,
we introduce a random component mask-agnostic strategy,
i.e., randomly removing several component masks from the
entire person mask. The more component masks are removed,
the more difficult to distinguish or recognize. Obviously, this
treatment is to increase the difficulty for our model to learn
how to encode the parts without masks to separate each
other into disentangled semantic representations. It requires
our model to robustly recognize the underlying boundaries
between different components and be able to transfer both
the shape and texture of components.

Motivated by human’s easy-to-hard learning process, we
adopt the curriculum learning strategy [20] and start from a
relatively easy step, then gradually increase the difficulty levels
to the complete mask-agnostic step. Unlike NTED [21] relied
on explicitly learned correlation matrices for feature extraction
and distribution, we observe that the generated latent attribute
representations are well clustered with the component mask-
agnostic strategy. This easy-to-hard learning process not only
enables our model to recognize the component boundary but
also provides a way to preserve semantic completeness when
distributing the extracted neural textures to different target
poses. The learned attribute encoder can generate disentan-
gled attribute representations for components in the person
image. This significantly increases the flexibility of our model
compared to PISE [22] which requires to prediction of a
parsing mask and injects texture code into different parts of
the predicted mask for person generation. Without requiring
predicted masks, our model avoids the issues, e.g. , holes and
artifacts in the generations raised by misclassified regions in
the predicted masks. Our model is also able to adaptively
transfer the shape of the components to fit the source person,
which is not possible for mask prediction based methods
without sufficient guidance to reshape the predicted masks.

Regarding our attribute decoder, it can adaptively integrate
the structure feature and the attribute representation for person
image generation. Note that the pose map only provides
the structural connection between different joints, while it
does not contain any structural information within the local
region, making it difficult to synthesize rich local structures.
Inspired by SPADE [23] and AdaIN [24], [25], we design Dual
Adaptive Denormalization (DAD) residual blocks to explore
the rich structure information for attribute transfer to ensure
high-quality person image generation.

In summary, the novelty of our proposed DRL-CPG is
mainly reflected in a novel encoder with transformers and
a curriculum learning with a random mask-agnostic strategy
to enforce the encoder explored to learn better representa-
tion from hard examples. This strategy creates a challenging

learning task that requires holistically understanding each
component region given the guidance of semantic mask and
transferring the learned understanding to encode components
without masks as guidance. Thus it ensures our model robustly
recognizes the underlying boundaries between different com-
ponents and is able to localize each component. As a result,
our model learning disentangled representations of attended
regions works for both pose transfer and attribute transfer
with well-preserved texture details and consistent component
shapes. Extensive experimental evaluations strongly demon-
strate that our proposed DRL-CPG yields more realistic results
that are more faithful to the inputs than other state-of-the-art
methods in both pose transfer and component attribute transfer.

II. RELATED WORK

Person image synthesis. Benefiting from the success in image
synthesis [26], [27], [16], [17], many works have focused
on synthesizing person images. PG2 [28] firstly proposed a
two-stage GAN architecture [1] to generate person images.
Esser et al. [29] leveraged a variational autoencoder combined
with a conditional U-Net [30] to model the inherent shape
and appearance. Siarohin et al. [31] used a U-Net based
generator with deformable skip connections to handle the
pixel-to-pixel misalignments between different poses. Zhu et
al. [32] introduced cascaded Pose-Attentional Transfer Blocks
to progressively guide the person image synthesis. [33], [34]
utilized a bidirectional strategy for synthesizing person images
in an unsupervised manner. SMIS [35] proposed to generate
diverse person images with semantic grouping and injection.
SPG [36] and PISE [22] deal with the human generation task
by predicting semantic parsing masks as guidance. CASD [37]
and NTED [21] introduces the attention based style distribu-
tion module that learns representative features. ADGAN [18]
introduced a controllable way to synthesize person images that
allow for attribute editing. However, it lacks efficient ways to
learn disentangled representation for efficient person editing.
Our method overcomes these challenges with a novel encoder
architecture and a better training strategy.

Disentangled representation learning. Generating disentan-
gled representations [38], [39], [12], [40], [41], [42] is es-
sential for tasks involving attribute editing. InfoGAN [43]
applies information regularization to obtain interpretable latent
representations. StyleGAN [27] is able to synthesize impres-
sive images in high-resolution by integrating adaptive instance
normalization layers [24] in a new generator architecture that
learns disentangled latent representations. DPIG [44] learns
pose and appearance representations separately. Our model
is the first attempt to learn disentangled latent semantic rep-
resentations with transformers for controllable person image
generation.

Visual Transformers. Transformer has achieved impressive
success in object detection [45], [46] and semantic segmen-
tation [47], [48], [49]. Transformer [19] introduces a new
attention mechanism that has been successfully applied in
various vision tasks [50], [51], [52]. Similar to non-local neural
networks [53], [54], [19], the transformer directly works on
sequences of image patches to aggregate information. ViT [55]
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Fig. 2: The framework of our proposed DRL-CPG. It consists of an attribute encoder with transformers and an attribute
decoder for pose and style transfer. The attribute encoder is trained with curriculum learning starting from a relatively easy
step gradually to a complex complete mask-agnostic step, which can encode a person into latent attribute space robustly based
on semantic masks. At the testing stage, the learned encoder can generate meaningful component attribute representations of a
source person image. With the latent component attributes extracted, the attribute decoder with dually adaptive denormalization
(DAD) ResBlocks integrates multiple attributes with the given pose to generate the desired image and achieve pose and attribute
transfer.

Fig. 3: Detailed views of (left) a DAD ResBlk; (right) a Dual adaptive denormalization layer.

cuts the image into small patches and globally attends all the
patches at every transformer layer. The PVT [56] introduces
a versatile backbone for dense prediction. Our model takes
transformer layers to extract disentangled representations for
controllable person generation.

Curriculum learning. Inspired by the human learning pro-
cess, Bengio et al. [20] proposed curriculum learning which
starts from a relatively easy task and gradually increases
the difficulty of training. It benefits both performance im-
provement and speed of convergence in various deep learning
tasks such as weakly supervised object detection [57], image
captioning [58], [59], and video application [60]. We exploit
curriculum learning by scheduling the difficulty according to
our proposed random mask-agnostic strategy.

III. PROPOSED APPROACH

We propose a novel framework DRL-CPG to synthesize
person images with user-controlled human attributes, such
as pose, head, upper clothes, and pants. As illustrated in
Figure 2, our DRL-CPG takes a collection of source person
image Is and the corresponding semantic mask Ms to provide
component attributes, and a target keypoint-based pose Pt to
provide the target pose attribute. The framework consists of

two components, i.e. , an attribute encoder with transformer
trained in a manner of curriculum learning, and an attribute
decoder with dual adaptive denormalization for attribute trans-
fer.

A. Attribute Encoder with Transformers

To learn disentangled representation for controllable per-
son generation, we propose a novel attribute encoder with
transformers to generate the intermediate representation set.
The attribute encoder flattens region components in source
images and supplements them with a positional encoding
before passing it into a transformer encoder. A transformer
decoder then takes as input of the encoded feature map,
and searches for matching with a small fixed number of
learned component embeddings, which we call “component
queries”. The overall attribute encoder architecture consists of
a transformer encoder and a transformer decoder that generates
the final feature representations.

Transformer encoder. Our transformer encoder is adopted
from PVT [56]. Given an input image of size (H,W, 3),
along with fixed positional encodings to compensate for the
missing spatial information, the transformer encoder generates
a (H8 ,

W
8 , C) feature map, which is then flattened into a
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Component Queries

Fig. 4: Attribute encoder works at random component mask-
agnostic strategy.

sequence of (H8 × W
8 , C). The H,W,C refer to the height,

width, and channel dimensions. For simplification, we denote
the size of this flattened feature as (T,C), where T = H

8 ×W
8 .

The encoder is composed of stacked transformer layers, each
of which consists of a multi-head self-attention module and a
feed-forward network.
Transformer decoder. The goal of our transformer decoder
is to take input a set of learnable component embedding as
“component queries”, denoted by Ec ∈ RN×L, the encoded
feature as key and value, denoted by Ef ∈ RT×C , and output a
new component embedding. L stands for the feature dimension
and N refers to the number of components. This can be
formulated as below:

Qattn(Ec) = softmax((EcWθ)
T (EfWϕ)), (1)

Zc
att = (Qattn(Ec)(EfWz))Wc, (2)

where each W represents the parameters of MLP and Qattn
is a query attention map used to highlight different individual
components. Finally, the output Zc

att ∈ RN×L is taken
as the intermediate feature with the dimension of L. We
take the positioning index so that each item in Zc

att learns
representative information for a specific person component.
This is different from most previous transformers working at
the instance level. We use the transformers to learn localizable
features within objects (different parts in the same instance).

B. Random Component Mask-Agnostic

In order to learn the texture and shape representation of
each component, existing methods take the semantic mask to
separate each component at the pixel level and let the encoder
learn the representation of each separated component. This
tends to learn entangled representation since the component
shape is correlated with other components. For instance, the
length of the uncovered arm is directly determined by the
upper cloth. As a result, the original cloth item that is not
completely removed causes problems in learning the latent
representation.

To address this, we propose a random component mask-
agnostic strategy to train the model, which truly eliminates the
correlation of each component and promotes the model to learn
disentangled representation. The workflow is shown in Figure
4. Given a semantic mask Ms containing N attribute regions,
e.g. , head, upper clothes, skirt, and pants, we first randomly
generate a set of indexes indicating the need to remove the
component masks from Ms. After removing the component

masks, we extract components based on the remaining compo-
nent masks Mc. This creates two types of components, denoted
by {Ic, U}, where Ic = Mc ∗Is given that Mc is not removed.
U is termed as the mask-agnostic component obtained as
U = I −

∑
Ic, where superscript c refers to the c-th com-

ponent. Then we treat these two types of components equally
and feed them into the attribute encoder. For each component,
the encoder produces Zc

att ∈ RN×L. We then pick out an item
from Zc

att as the representation of each individual component.
This can be described as Zc

attj = Sj(Z
c
att) ∈ R1×L, where

Sj(·) represents the feature selection that takes the j-th row as
output. Finally, we concatenate the selected representations to
get Z̄att = concat(Zc

attj ) ∈ RN×L. Z̄att is the final latent
representation of the person image Is.

Our random component mask-agnostic strategy introduces
different learning tasks in terms of recognition difficulty. If
all the component masks are removed, we feed the complete
person image into the attribute encoder. The attribute encoder
needs to recognize each component without supervision. This
is the most difficult task. If parts of the component masks
are removed, the remaining component masks are used in ex-
tracting components. If all the component masks are available,
each component will be separated at the image level. This is an
easy task for the attribute encoder to produce representations
for each extracted component. According to different levels of
difficulty, we further introduce the curriculum learning strategy
to train our model.

Curriculum learning. Let the number of available component
masks k indicate the difficulty of a task. k = N indicates
an easy task where a complete semantic mask is available to
separate different components. While k = 0 indicates a hard
task where no semantic mask is available to separate each
component. As we can see, the random component mask-
agnostic strategy increases the difficulty in learning latent
representations and thus enhances the encoder to recognize
each component with or without component masks. To further
alleviate the training difficulty in early steps, we adopt a
curriculum learning scheme[20]. At the early training stage,
our network is given fully separated components (i.e. k = N ).
After α epochs, we start to take in the random component
mask-agnostic strategy to randomly remove component masks
(i.e. k < N ).

Base Cloth PISE + Predicted mask ADGAN Ours

Fig. 5: Comparison between different methods. (Top) The
results of component attribute transfer; (Bottom) The results
of pose transfer.
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Performance preview. To demonstrate how well our approach
works, we compare three performances on person generation
task in Figure 5. In this case, we try to transfer the upper
cloth from the source person to the base. We observe that
our DRL-CPG yields better person images with a short sleeve
that is consistent with the source cloth, while ADGAN fails
to create a consistent sleeve style and PISE creates a long
sleeve style following the mask estimated by itself. The
predicted problematic mask will introduce holes and artifacts
into the generated person. Our model is robust to recognize
the underlying boundaries between different components and
is able to transfer both the shape and texture of components.

C. Attribute Decoder

The attribute decoder is to generate person images condi-
tioned on semantic attributes and the target pose. This network
consists of a pose-guided structure completion network and a
dual adaptive denormalization generator. In the beginning, we
take a multilayer perceptron (MLP) module to recombine the
disentangled features into a more global representation Zatt.

Pose-guided structure completion network. The previous
models generate person images conditioned on the pose, which
is defined by several landmarks indicating the positions of
each joint. However, this lacks details on the structure, making
the person image synthesis an ill-posed problem. In order to
create the structural details, we propose to generate multi-level
feature maps based on the input pose. Specifically, we feed
the target pose Pt into a UNet-like structure and select the
intermediate feature maps Sk

e from the kth level feature map
of the UNet decoder. These features reflect the spatial structure
indicated by the target pose. They are further utilized to guide
the person image generation.
Dually adaptive denormalization generator. Our generator
integrates two types of representation, Zatt and Se, to generate
a person image Ig . As discussed, the Zatt is a one-dimensional
semantic representation, while Se is a spatial feature. We pro-
pose a novel Dually Adaptive Denormalization (DAD) layer,
as shown in Figure 3, to integrate them in a more adaptive
fashion. Let hk

in ∈ RCk×Hk×Wk

denote one activation map
that is fed into the kth layer, with Ck being the number of
channels and Hk × W k being the spatial dimensions. The
output is calculated by

hk
out = γk

att ⊗
hk
in − µk

σk
+ βk

att, (3)

where µk ∈ RCk

and σk ∈ RCk

are the means and
standard deviations of the channel-wise activations within hk

in;
and γk

att and βk
att are two modulation parameters used to

inject semantic information into the normalized activations.
Typically, these two parameters are calculated from two-
dimensional semantic segmentation maps. Since our spatial
features Sk

e contain only structural information, we adopt
another modulation operator to adaptively adjust its effective
regions, and inject the semantic information learned in Zatt
into corresponding regions. This produces a semantic feature
map Sk

att. Formally, this can be described as

Sk
att = γk

z ⊗ Sk
e − µk

e

σk
e

+ βk
z , (4)

where µk
e and σk

e are the means and standard deviations of
the channel-wise activations within Sk

e ; and γk
z and βk

z are
two modulation parameters both mapped from Zatt with two
full connection layers. Two convolutional layers are used to
generate γk

att and βk
att based on Sk

att.
The DAD Residual Block (DAD ResBlk) is designed as

a combination of “DAD+Relu+Conv” with a residual con-
nection [61]. With the attribute representation Zatt and the
structure feature Se, we cascade DAD residual blocks to
generate the target person Ig .

D. Loss Functions
The joint loss function is formulated with an adversarial loss

Ladv , a reconstruction loss Lrec, a perceptual loss Lper [62],
and a contextual loss Lctx [63], [18] as

L = Ladv + λrecLrec + λperLper + λctxLctx (5)

where we set λrec = 1, λper = 5 and λctx = 1 in our
experiments.
Adversarial loss. We employ an adversarial loss Ladv with
discriminators Dp and Dt to help the generator G synthesize
the target person image with visual textures similar to the
reference one, as well as following the target pose. It penalizes
for the distance between the distribution of real pair(Pt, It)
and the distribution of fake pair (Pt, Ig) containing generated
images

Ladv = E[log(Dt(Is, It)Dp(Pt, It))] + E[log((1−Dt(Is, Ig))

(1−Dp(Pt, Ig)))]
(6)

Reconstruction loss. We define a reconstruction loss as the
pixel-level L1 distance between the target image It and the
generated image

Lrec = ||G(Is, Pt)− It||1. (7)

Fig. 6: Architecture of our DAD generator. TConv refers to
the TransposeConvolutional layer.

IV. EXPERIMENTS

To evaluate the effectiveness of our DRL-CPG, we compete
it with two types of person generation methods including (a)
pose transfer method i.e. PG2 [28], DPIG [44], Def-GAN
[31], PATN [32] and SPG [36]; (b) both pose transfer and
component attribute transfer method i.e. ADGAN [18] and
PISE [22]. Following the data pre-processing manner in [32],
[18], from the DeepFashion [64] dataset we take 101,966
pairs of images for training and 8,750 pairs for testing. We
also evaluate the performance on the Market1501 dataset [65]
which contains 12,936 training images and 19,732 testing
images. For each image, we acquire the semantic map of a
person image with the human parser [66]. All the images are
with a resolution of 256× 256.
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Person Pose Ours Pose Ours Pose Ours Person Pose Ours Pose Ours Pose Ours
Fig. 7: Results of synthesizing person images in arbitrary poses.

Base GT DPIG Def-GAN PATN ADGAN SPG PISE CASD NTED Ours
Fig. 8: Qualitative comparison with baseline methods.

Person Pose ADGAN PISE SPG Ours
Fig. 9: Swap pose transfer results.

Configuration of Our DRL-CPG Networks. In the trans-
former encoder, the embedding dim, number of layers, and
MLP ratio are set to be 256, 4, and 2, respectively. The
dimension of component attribute embedding L is set to 64.
For each human image, we separate it into N = 8 different
semantic components, i.e. hair, head, arm, upper cloth, leg,
pant, background, and skirt. A basic Conv layer contains a 3×3
convolution operation, a normalization, and a ReLU activation
sequentially. Our pose-guided structure completion network
consists of 7 Conv layers with stride size 2 and 7 Deconv

Method CAT FID↓ SSIM↑ LPIPS ↓
PG2 [28] N 23.202 0.773 0.259
DPIG [44] N 21.323 0.745 0.246
Def-GAN [31] N 18.475 0.760 0.2330
PATN [32] N 20.739 0.773 0.2533
SPG [36] N 12.243 0.790 0.2105
ADGAN [18] Y 14.460 0.772 0.2256
PISE [22] Y 13.610 0.778 0.2059
CASD [37] Y 13.939 0.768 0.2174
NTED [21] Y 9.216 0.781 0.1961
DRL-CPG (Ours) Y 13.514 0.792 0.2027

TABLE I: Quantitative comparison on the DeepFashion
dataset. CAT is component attribute transfer.

layers with stride size 2. Our dually adaptive denormalization
generator consists of 7 up-sampling layers with stride size 2.
Each of them is followed by one DAD ResBlk. The structure
of our DAD generator is shown in Figure 6.

Implementation Details. We adopt Adam optimizer [67] to
train our model for 100 epochs. The initial learning rate is
set to 0.0001 and linearly decayed to 0 after 60 epochs.
Without using a curriculum learning strategy (such as Base +
MA model), we start to randomly remove component masks
(i.e. k < N ) from the first epoch. Under curriculum learning
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Method CAT FID ↓ SSIM ↑ LPIPS ↓
SPG [36] N 23.331 0.315 0.2779
ADGAN [18] Y 26.784 0.261 0.3162
PISE [22] Y 24.852 0.273 0.3073
DRL-CPG (Ours) Y 22.517 0.310 0.2789

TABLE II: Quantitative comparison on the Market1501
dataset. CAT indicates component attribute transfer.

Source Target ADGAN PISE SPG Ours

Fig. 10: Visual performance comparison on the market-1501
dataset.

strategy (such as Base + MA + CL model and our DRL-
CPG model), our network is given fully separated components
(i.e. k = N ) at the early training stage. We then randomly
remove component masks (i.e. k < N ) after α epochs.
In our experiment, we take α = 50. At the testing stage,
our DRL-CPG model takes use of all segmentation masks
to generate the best person images. We also observe that
our trained Base + MA + CL model can generate decent
person images and handle component attribute transfer without
using segmentation masks to extract components. This proves
the effectiveness of our proposed random component mask-
agnostic strategy in learning disentangled representation.
Evaluation metrics. We conduct several metrics to evaluate
the performance of the human pose transfer task. With the
source and target image pairs available, we calculate the
metrics scores, including Learned Structural Similarity Index
Measure (SSIM [68]), Fréchet Inception Distance (FID [69])
and Learned Perceptual Image Patch Similarity (LPIPS [70]),
to compute the distance between the generated images and the
corresponding ground-truth images.

A. Pose Transfer

Given a source person image and target pose extracted from
another person image, the task of pose transfer is to generate
a natural and realistic person in the shape of the target pose
while preserving the person’s identity.

1) DeepFashion Dataset: We first conduct experiments on
the DeepFashion Dataset. In Figure 7, we show some results
synthesized by our method. Based on the person image and the
target poses, our model generates realistic images. In Figure
8, we compare the performance on the pose transfer task. As
we can see, our DRL-CPG produces realistic person images

Setting User study ↑
Component attribute transfer Pose transfer Swap pose transfer

ADGAN 32.63% 20.75% 21.2%
PISE 29.01% 24.34% 27.6%
SPG N/ 28.28% 13.4%
Ours 38.36% 26.63% 37.8%

TABLE III: User study of different methods on person image
generation tasks. N/ indicates that the method is not able to
perform on this task.

with a better cloth texture and local structure. To further
demonstrate the outperformance of our approach, in Figure 9
we visualize some comparison results where the target poses
are from different persons. Our DRL-CPG produces person
images maintaining the attributes consistent with the source
person, while PISE and SPG wrongly generate female heads
when the target poses are adopted from women. Because these
two methods only inject the texture code into the estimated
masks that determine the final shape of the created person, one
of the issues is that the estimated masks are heavily correlated
with the poses and thus the generated person preserves features
from the target person, such as traces of objects and shapes
of components.

In Table I, we list the quantitative results. Our DRL-CPG
generates the best person images in terms of SSIM score and
preserves the similarity of the texture as proved by the LPIPS
values; DRL-CPG achieves comparable FID scores, which
indicates our method is able to preserve the shape and texture.

We shall emphasize that although the quantitative improve-
ment in pose transfer performance of the state-of-the-art meth-
ods SPG [36] and PISE [22] is marginal, the improvements in
swap pose transfer (Figure 11) and attribute transfer tasks are
obvious. Our method produces person images maintaining the
attributes consistent to the source/target person, while PISE
and SPG struggle to generate a person of the same gender as
the source person (Figure 9) or maintain the style consistency
(Figure 12). Although NTED [21] produces the best FID
and LIPIPS scores with the fact that it takes a coarse-to-fine
generation strategy to deploy the NTED operations at different
scales, in the second row of Figure 8 a bag that does not exist
in the input image was created by NTED along with the female
model. The similar phenomenon can also be observed in the
8th column of Figure 9, where NTED additionally generated a
chair. These reflect that NTED fails to completely disentangle
the representation as it opts to introduce nonnegligible residues
of the target image into the generated output. By contrast, due
to the well-learned latent representation our method performs
pose transfer with consistent semantic regions without being
affected by artifacts.

2) Market1501 Dataset: We also evaluate our model on the
Market1501 dataset. Note that SPG [36] is the state-of-the-art
method designed for pose transfer only without learning repre-
sentations for attribute transfer, while ADGAN [18], PISE [22]
and our method work for both pose transfer and attribute
transfer. In spite of this, our method achieves comparable
performance to SPG. See Table II and Figure 10. These
strongly demonstrate the superiority of our method.
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Person Pose Source ADGAN PISE SPGNet CASD NTED Ours
Fig. 11: Performance comparison on swap pose transfer task.

B. Component Attribute Transfer

Component attribute transfer is the replacement of the
attribute of a person in the source image with that of another
person in the target image while preserving other attributes
of the source person. We compare our proposed DRL-CPG
with ADGAN and PISE which are able to edit component-

level human attributes based on the corresponding semantic
mask that provides guidance to separate each component at
the image level, and summarize the results in Figure 12. As
we can observe, our DRL-CPG generates natural images with
new attributes introduced harmoniously while preserving the
textures of the remaining components. In contrast, ADGAN
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Cloth Ours PISE ADGAN Pant Ours PISE ADGAN

Fig. 12: Component attribute transfer results.

Settings FID↓ SSIM↑ LPIPS ↓
Base 38.238 0.362 0.3537
Base + MA 15.521 0.772 0.229
Base + MA + CL 14.845 0.781 0.217
Base + MA + CL + Mask (DRL-CPG) 13.514 0.792 0.2027

TABLE IV: Ablation study on pose transfer task.

fails to create a consistent sleeve style. This can be explained
by the fact that the representations learned by ADGAN are
not well disentangled; PISE generates person images with
new attributes but fails to change the shape of the clothes
accordingly.

C. User Study

We report the results of a user study comparing our model to
ADGAN, PISE and SPG on pose transfer, component attribute
transfer, and swap pose transfer tasks. For the tasks, we select
200 pairs from the test subset to synthesize person images.
Eight participants are required to make a choice about which
output they prefer in terms of the visual quality, and more
importantly, the pose and component attribute consistency
with ground-truth. Note that SPG does not learn disentangled
latent representation for different attribute components. This
is partly the reason that it works well on pose transfer tasks
but fails to work on tasks requiring disentanglement like swap
pose transfer. Inherently, it does not hold the capability of
conducting component attribute transfer tasks.

Although the quantitative improvement in pose transfer is
marginal, the improvements in swap pose transfer and attribute
transfer tasks are obvious. Our method produces person im-
ages maintaining the attributes consistent to the source/target
person, while PISE and SPG struggle to generate person of
the same gender as the source person and maintain the style
consistency (Figure 15). Results are listed in Table III. We can
see the results of ours outperform the state of the arts, which
further indicates the superiority of our method.

D. Ablation Study

We ablate our training mechanism by training our model
with different combinations of strategies. To evaluate the
effectiveness of the training strategies assisting in learning
disentangled representations, we test the trained model variants

Person Cloth Base +MA +MA+CL Ours ADGAN PISE

Fig. 13: Ablation study on component attribute transfer task.
The results of ADGAN and PISE are listed as references.

Source Target Ours@512 Ours@256 w/o λctx w/o Lper

Fig. 14: Ablation study on loss function and resolution.

Settings FID↓ SSIM↑ LPIPS ↓
No-TX 18.374 0.762 0.2403
Small-TX 16.386 0.775 0.2297
Medium-TX 13.514 0.792 0.2027
Large-TX 14.403 0.777 0.2170

TABLE V: Performance of Transformer (TX) at different
sizes.

Settings FID↓ SSIM↑ LPIPS ↓
Full model 13.514 0.792 0.2027
w/o λctx 13.724 0.787 0.2070
w/o Lper 13.962 0.772 0.2121

TABLE VI: Ablation study on different loss functions.

without masks. In this way, we feed the complete person image
into the trained model for person generation tasks. Note our
full model is tested with masks to extract the components.
Base model. We train a base model without any strategy, and
test the trained model without masks.
Base + MA model. The random component mask-agnostic
(MA) strategy is included to train the base model.
Base + MA + CL model. The curriculum learning (CL)
strategy is further added to improve performance.
Base + MA + CL + Mask (DRL-CPG) model. Given the
previous model variants are tested without masks, we take all
the masks to extract components at the testing stage. This is
the proposed full model.

We summarize the quantitative results in Table IV and
demonstrate the qualitative comparison in Figure 13. At the
testing stage, the base model fails to generate realistic images
without masks. After taking the random component mask-
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Source Target ADGAN PISE Base+MA Ours

Fig. 15: Performance comparison in terms of fidelity.

Fig. 16: Visualize of attribute distribution map of
Base + MA + CL + Mask (DRL-CPG) model (top),
Base + MA + CL model (middle) and Base model (bottom).

agnostic strategy to train the model, the trained model is
able to generate images without masks at the testing stage.
This shows the capability of the MA strategy in assisting
the transformer encoder to recognize each component and
extract meaningful representation from the complete person
images. The curriculum learning strategy further improves the
performance. Our full model generates the best person images
by taking full use of segmentation masks at the testing stage.
Resolution. We train another model with minor modifications
on images of 512 × 352 resolution. As shown in Figure 14,
we observe that our model@512 produces faithful synthetic
images with well-preserved texture details. It demonstrates
that training on high-resolution images consistently learns
the model to better distinguish boundaries between different
semantic regions and significantly improves the generation
quality.
Loss function. We further compare the effect of different loss
in Figure 14 and list the quantitative scores in Table VI. As can
be seen, w/o contextual loss λctx the model fails to achieve
the completeness of semantic regions, such as the cloth in the
first row of Figure 14. Without making use of the perceptual
loss Lper, the model tends to create artifacts in the synthesized
image, making the generation quality degraded to some degree.

E. Analysis and Discussion

We conduct further experiments for analysis and discussion
of the effectiveness of transformers and disentangling latent

ADGAN PISE Base model Ours
Fig. 17: Latent code distribution comparison using t-SNE.

Source 1 Source 2

Fig. 18: Cloth Style Interpolation between two source images.

Fig. 19: Comparison between different attribute decoders in
terms of loss curve.

ResBlk0 ResBlk8

h2 h6

Fig. 20: Left: input person image and pose; Top: feature
maps in Residual Blocks of ADGAN; Bottom: feature maps
in Attribute Decoder of DRL-CPG.

representation in the attribute encoder.

Effectiveness of preserving texture details. We show the
comparison on the fidelity of cloth texture in Figure 15.
Compared to our base+MA model, our proposed strategy
enables our method to transfer component shapes and preserve
the texture details missed in generated images from ADGAN
and PISE.

Effectiveness of transformer encoder. We provide an abla-
tion study on different model sizes of DRL-CPG. In particular,
we investigate three different transformer configurations, the
“Small-TX”, “Medium-TX” and “Large-TX” models. For the
“Small-TX” model, the embedding dim, number of layers and
MLP ratio are set to be 128, 1, 1, respectively. While those
hyperparameters for the “Medium-TX” model are 256, 4, 2
and those for the “Large-TX” model are 768, 8, 4. “No-TX”
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Person Model Skeleton Pose Cloth Pant Head

Fig. 21: Video demonstration of Controllable Person Synthetic Image Generation. More detainls are in the supplemental video
(DRL-CPG video.mp4).

indicates a CNN attribute encoder without transformers. As
shown in Table V, we observe that with the increase of the
transformer size, the performance first becomes better and then
turns worse. We conclude that the medium model results in a
better performance.

We further apply the trained attribute encoder in our DRL-
CPG, Base model, and Base + MA + CL model to a source
person image, respectively. As we can observe in Figure 16,
our attribute encoder with transformers is robust in extract-
ing main attributes from different components, regardless of
whether a semantic mask is provided or not. However, the

Ours Ours Ours ADGAN PISE

Person Source Pose Style Pose + style

Fig. 22: Performance comparison in terms of different tasks.

attribute encoder in Base model can not obtain a proper
attention map on different components. This model variant
fails to operate controllable person synthetic image generation
without a semantic mask. Again, this observation strongly
demonstrates the efficacy of our well-designed DRL-CPG.
As we can observe in Figure 16, our attribute encoder with
transformers is robust in extracting main attributes from dif-
ferent components, regardless of whether a semantic mask is
provided or not.

Effectiveness of disentangling latent representation. To
illustrate the encoded latent space learned by different model
variants, we show the feature distribution comparison in Figure
17 using t-SNE. With semantic masks available, our encoded
features can form more compact and separable clusters than
the ADGAN and PISE networks. Thanks to the transformer
encoder, our base model trained without any strategy can
project all the intermediate features to well-separated regions.
However, these latent features do not learn semantic meanings
as proven by the results listed in the third column of Figure 13.
Therefore, although the distribution of our base model looks
well separated, it cannot deal with some hard or ambiguous
cases, while our DRL-CPG can handle them well. In Figure
18, we demonstrate the interpolation results. The smooth
transition between two clothe styles proves our model learns
a well latent structure.

Effectiveness of Attribute Decoder. To evaluate the effec-
tiveness of our proposed DAD-based attribute decoder, we
train a variant of our model, which consists of a decoder used
by ADGAN. As AdaIN residual block is the main building
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block of ADGAN’s decoder, we denote this decoder as AdaIN
decoder. Specifically, we take the same encoder to obtain
the component attribute representations and feed them to
different decoders to synthesize person images. The loss curve
for the effects of our DAD-based attribute decoder during
training is shown in Figure 19. We observe that our decoder
achieves lower L1 loss. Our DAD module integrating semantic
representations into different spatial regions outperforms the
AdaIN which only focuses on the semantic representations and
ignores the spatial information. Thus, our proposed DRL-CPG
can synthesis better person images.

Additionally, we compare the feature maps from the residual
blocks of ADGAN and the attribute decoder of our model
in Figure 20. These feature maps show that our decoder
establishes the relation between different joints and gradually
constructs the person under guidance, while ADGAN focuses
on local regions around joints. and creates unsmooth features.

V. MORE VISUALIZATION RESULTS

Controllable Person Synthetic Image Generation. For the
original person image, our proposed DRL-CPG can change
its component attributes (e.g., upper clothes, pants, and head)
with another person image providing the desired attribute. In
Figure 22, we show more results on the challenging task,
which requires to transfer multiple attributes into the source
person. By learning the disentangled representations, our
model successfully transfers multiple attributes into the person,
while other baseline methods struggle with reconstructing the
attributes.
Video demonstration of Controllable Person Synthetic
Image Generation. To further demonstrate the capability of
our model in learning disentangled representation, we perform
video generation. Given a source person, a video containing a
walking motion of a fashion model and desired attributes, e.g.
, cloth, pant, hair, our model can synthesize a motion for the
source person under a series of target poses extracted from
the fashion model, and simultaneously sharing component
attributes transferred from other person. In Figure 21 we show
the synthetic person with different attributes, and list two
typical poses extracted from the fashion model as reference.
It is strongly recommended to watch the supplemental video
(DRL-CPG video.mp4) for the visualization, which proves
the effectiveness of controllable person synthetic image gen-
eration. This demonstrates that our model learns a smooth
and well-distributed latent space that is constituted of various
human attributes of the person images, including pose, upper
clothes, pants, head and so on.

VI. CONCLUSION

In this paper, we have proposed a novel framework with
transformers to learn disentangled representation with trans-
formers for controllable person image synthesis. Our model
learns well disentangled latent representations via the proposed
random component mask-agnostic strategies and is able to
operate on human editing. While very promising results have
been achieved in all experiments, the texture details of the
synthesized images are not entirely realistic. We plan to

synthesize images in high-resolution and improve the quality
of our future work.
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