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Explore Contextual Information for 3D Scene
Graph Generation

Yuanyuan Liu, Chengjiang Long, Zhaoxuan Zhang, Bokai Liu, Qiang Zhang, Baocai Yin, and Xin Yang*

Abstract—3D scene graph generation (SGG) has been of high interest in computer vision. Although the accuracy of 3D SGG on
coarse classification and single relation label has been gradually improved, the performance of existing works is still far from being
perfect for fine-grained and multi-label situations. In this paper, we propose a framework fully exploring contextual information for the
3D SGG task, which attempts to satisfy the requirements of fine-grained entity class, multiple relation labels, and high accuracy
simultaneously. Our proposed approach is composed of a Graph Feature Extraction module and a Graph Contextual Reasoning
module, achieving appropriate information-redundancy feature extraction, structured organization, and hierarchical inferring. Our
approach achieves superior or competitive performance over previous methods on the 3DSSG dataset, especially on the relationship
prediction sub-task.

Index Terms—scene understanding, context exploration, graph skeleton, scene graph generation.

✦

1 INTRODUCTION

THE Scene Graph (SG) organizes the content of a scene
into a graph-based representation, which encodes ob-

jects as nodes, connected via pairwise relationships as edges,
thus representing complex scene knowledge as a compact
graphical structure. Scene graph generation (SGG) enables
adequate perception and comprehensive understanding of
scenes, especially for 3D real-world scenes, and therefore
is beneficial to widespread applications, e.g., robot navi-
gation [1], task planning [2], and scene modification and
manipulation [3], [4].

One of the main challenges that current models face
is the existence of multi-granularity of objects and multi-
relationships between objects, as illustrated in Fig. 1(b).
The multi-granularity of objects depends not only on the
diverse appearances of objects, but also on the surrounding
environment of objects. For example, when chairs surround
a table, it most likely becomes a dining table. On the
other hand, the interaction between two objects is hard
to define with a single relationship, which leads to multi-
relationships between objects. For example, there can be
both a spatial relationship left and a semantic relationship
same as between chairs.

A common approach to address this problem is to define
effective visual patterns and collect sufficient contextual
information before classifying entities. While a series of
SGG methods [5], [6], [7], [8], [9], [10] have achieved great
success in 2D scenes by using the union region as the visual
pattern and message passing between all the entities, we
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Fig. 1. (a) Different visual patterns for relationship representation.
Corresponding modeling regions for the relationship between a table
and a chair. (b) Multi-granularity of objects and multi-relationships
between objects. Without the message propagation phase, PointNet
cannot infer table as dining table. The full-graph-based message
propagation blurs the discrimination of the delicate features, which
leads 3DSSG to perform worse than PointNet. With structured orga-
nization rules and hierarchical object labels for message propagation,
our method accurately predicts fine-grained entities and multiple relation
labels. The word marked in red color denotes the wrong prediction.

cannot apply these 2D methods to 3D scenes directly. The
reason is that, compared with 2D image pixels, 3D point
clouds are highly unstructured and irregular [11], and due
to the inevitable noise in the data, it is more difficult to
perform appropriate information extraction and fusion. In a
3D scene, using union regions as visual patterns will lead
to noise multiplication. The union region refers to the union
of the object bounding boxes, so every time a relationship is
modeled, the object region is remodeled (see Fig. 1(a)). The
redundant information generated by the repeated modeling
of the identical region confuses the learning ability of the
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algorithm to a large extent.
In the message passing stage, the features extracted by

the visual pattern are used as initial features, which will be
propagated indiscriminately among all possible neighbors.
The unreasonable information fusion process leads to the
explosive propagation of noise. In theory, with a certain
depth, all nodes’ representations will converge to a station-
ary point, leading to feature consistency [12], [13]. Resulting
in the prediction performance of the fused features being
even lower than the original features (see Fig. 1(b)). These
two factors lead to the fact that although the recent 3D SGG
works [14], [15] take extra class-agnostic instance informa-
tion as input, they still cannot obtain satisfactory results
with both fine-grained classification and multiple relation
labels.

Based on the observations of humans’ scene understand-
ing process. People will adaptively adjust the information
redundancy [16] when entering an unknown environment
by extracting efficient visual patterns. These visual patterns,
as well as environmental contexts, are then structurally or-
ganized and hierarchically inferred in the prefrontal cortex
(PFC) [17]. So scene knowledge can be rapidly formed in
the brain through optimal processing of small amounts of
information.

Inspired by this, we propose a framework for exploring
contextual information in 3D SGG, as shown in Fig. 2.
The Graph Feature Extraction module extracts entity and
relation features with appropriate information redundancy.
And the Graph Contextual Reasoning module structurally
organizes and hierarchically infers these features, as shown
in Fig 4. As a result, we can generate an accurate scene graph
with fine-grained entity classes and multiple relation labels.

In the Graph Feature Extraction module, we use the
intersection space of the object bounding boxes to replace
the union region to reduce the repeated modeling of the
identical area. It has been confirmed that the intersection
region of the 2D object bounding box proposed by [18] has
a better relationship representation effect than the union
region. However, applying it directly to the 3D bounding
boxes usually yields inaccurate and unreasonable predic-
tions. To extract rich contextual information between the
3D objects, we present the “interaction space” (see Fig. 3)
together with bounding box position information as a new
visual pattern for 3D SSG task. In particular, while we
reduce the redundancy by adjusting the union region as
intersection space, information about objects, relative rela-
tionships, and surrounding contextual information is miss-
ing in relation features due to the variation of the receptive
field. While keeping the information redundancy constant,
we recover the over-removed information by region expan-
sion and position information encoding to ensure that the
extracted features can cover the underlying properties of
the relationship.

In the Graph Contextual Reasoning module, we take
a multi-task learning approach by introducing the Graph
Skeleton Learning (GSL) block and the Hierarchy Object
Learning (HOL) block on top of the Message Passing block.
We use graph skeleton information to represent the correla-
tion between object pairs, where graph skeleton information
represents the ground truth of the scene graph with the label
information removed. The GSL block reconstructs the fully

connected graph into an edge-weighted skeleton graph (see
Fig. 5), and captures the contextual information by propa-
gating node messages in the graph. By jointly training the
GSL and message passing blocks, the joint action between
the two blocks is strengthened, preventing the GSL blocks
from converging independently in static space. GSL utilizes
the skeleton to incorporate the structured organization pro-
cess into the contextual information fusion stage, reducing
ineffective information exchange and thus preventing noise
propagation.

The GSL block can be regarded as a binary classification
task with a simple form and high accuracy. Yet, due to the
imbalance of relation and non-relation data among nodes,
GSL may block the communication between most nodes.
This requires us to use limited contextual information for
efficient reasoning to achieve fine-grained classification of
entities. Therefore, we design the HOL module, which
builds a two-level hierarchical tree using coarse-grained
and fine-grained object labels (see in Fig. 6). Coarse-grained
object labels supervise initial features that contain only at-
tribute information, and fine-grained object labels supervise
features for context fusion. Therefore, HOL reduces the
task’s difficulty by hierarchically decomposing the object
classification task. As demonstrated in our experimental
results, the proposed SGG approach significantly outper-
forms existing state-of-the-art methods quantitatively and
qualitatively.

In summary, our contributions are three-fold as follows:

• We utilize a new visual pattern based on interaction
region and bounding box position information to ex-
tract relation features with appropriate redundancy.

• We propose a multi-task learning strategy in our
Graph Contextual Reasoning module, which struc-
turally organizes and hierarchically infers the in-
formation, predicting multiple labels from similar
features. We are the first method to use the graph
skeleton information as supervision information.

• Extensive experiments have demonstrated that our
3D SGG has achieved significant performance im-
provement to state-of-the-art methods on various
scene graph benchmarks, especially on relationship
prediction, and even better overcoming the long-tail
effect.

2 RELATED WORK

2D and 3D SGG Tremendous 2D SGG progress [19], [20]
has been made since [21] firstly mentioned the scene graph.
In 3D, SGs have only recently gained more popularity [14],
[15], [22], [23], [24] thanks to the introduction of the 3DSSG
dataset [14], which contains semantically rich scene graphs
of 3D scenes. [14] also proposes an end-to-end network
that employs a graph convolutional network (GCN) [25]
to handle the message passing stage. SGGPoint [15] builds
two associated twin interaction mechanisms between nodes
and edges to effectively bridge perception and reasoning.
However, SGGPoint only retains 27 object classes and 16
relation classes, and converts multi-label relations into sin-
gle relation. Hence, it only performs well on the SGG
task of coarse classification and single relation label. [24]
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Fig. 2. Overview of our proposed framework. We only show partial SGG results corresponding to the circularly marked area of the input scene.
Our Graph Contextual Reasoning module introduces a Graph Skeleton Learning (GSL) block and a Hierarchy Object Learning (HOL) block on top
of the Message Passing block. We differentiate each block with colors and list the evolution of the scene graph as thumbnails below each block. The
internal implementation details are shown in Fig. 4. The generated results demonstrate that our method enables the detection of both left (spatial)
and same as (semantic) relationships between two chairs. And it achieves accurate predictions for both coarse and fine object labels, table, and
coffee table that belong to the same class but with different granularity. The word marked in red color denotes the wrong prediction.

advocates using graph auto-encoder to automatically extract
class-dependent representations and topological patterns as
prior knowledge to enhance the accuracy of relationship
predictions. Unlike other methods [26], [27] that use prior
knowledge to guide the contextual fusion stage, percep-
tion and prior are naively treated as separate components.
They are trained separately from different inputs (from
images, triples, or label embeddings), and their predictions
are usually fused in a probability space. As [28], we train
multiple tasks in parallel to achieve better fusion. Our work
successfully builds discriminative features based on feature
extraction methods and environmental context fusion, en-
abling us to map between similar features and multiple
labels.

Relationship Feature Extraction [14] uses the same union
region as the 2D SGG methods to represent relationship
features. [15], [24] use feature engineering [29] and a con-
catenation scheme to generate relation features from entity
features. However, both of them suffer from information
redundancy. This redundancy is mainly due to repeated
modeling of the same region. Noise in the information is
replicated exponentially, reducing features’ comprehensibil-
ity, ambiguity, and fault tolerance [16]. Most 3D methods
try to minimize the noise by reducing the receptive field or
locating regions of interest. [30] attempts point set filtering
on point clouds to reconstruct noise-free point sets from
corresponding noisy inputs. [31] learns and predicts interest
points in 3D point clouds using multiple feature descrip-
tors. Therefore, we refer to the intersection region [18] and
design a new visual pattern, ”interaction space”, which has
a smaller receptive field and focuses more on the interaction
area between objects than the object area. Combined with
position feature calculation, our visual pattern can strike a
good balance between information content and redundancy.

Graph Contextual Reasoning Context modeling strate-
gies [32], [33], [34], [35], [36] in SGG are mainly used to learn
discriminative representation for node and edge prediction,
either by designing graph structures or leveraging scene
context via various message propagation mechanisms [37],
[38], [39]. The most popular graph structure is the fully-
connected graph [40], [41], [42]. Recent works [43], [44],

[45], [46] tried to model the context based on the sparse
graph structures, using either downstream tasks (e.g.VQA)
or trimming functions to cut unessential subject-object pairs.
These approaches require additional supervised data [47] to
realize the downstream tasks, and the loss of information
caused by pruning behavior is not reversible. On the other
hand, message propagation mechanisms aim to aggregate
the contextual information between entities [48] and pred-
icates [49], [50], [51]. Our work borrows ideas from both
sides, which can be seen as incorporating the graph struc-
ture into the message propagation process. And like [52],
we design a hierarchy inferring block for object features,
thereby reducing the difficulty of object classification and
inference tasks through hierarchical decomposition.

3 APPROACH

3.1 Overview
Given a scene point cloud O labeled with its class-agnostic
instance segmentation I as input, we first split O into sev-
eral object point clouds {o1, o2, ..., on}. Our goal is to predict
semantic labels for each object and relations among them.
To achieve this, we feed all these objects into Graph Feature
Extraction module (Sec. 3.2) to obtain entity features FE and
relation features FR, which form a fully connected feature
graph. Then, these two feature sets FE and FR will be struc-
turally organized and hierarchically inferred by Graph Con-
textual Reasoning module (Sec. 3.3), which finally outputs a
scene graph denoted as G = (E,P ). E is a semantic labeled
entity set as E = {el1, el2, ..., eln}, and P is a relation labeled
predicate set as P = {pl12, pl13, ..., plij , ..., pln,n−1| i ̸= j}. For
each relation plij , it is represented as a binary m-dimension
vector where m is the number of all relation labels. If
kth dimension’s value is 1 means that plij contains kth
relation (All-zero vector represents no relationship between
ei and ej). To be noted that the predicted relations are with
multiple relationship labels, so there may be not only one
dimension in plij with a value of 1.

3.2 Graph Feature Extraction
Given a scene point cloud O, we extract the point set of each
instance i separately, labeled with its class-agnostic instance
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Fig. 3. Eight cases of interaction space. Intersectant-(i) Inclusive,
Intersectant-(ii) Overlap, (iii) X-direction disjoint , (iv) Y-direction dis-
joint, (v)Z-direction disjoint, (vi) XY-direction disjoint, (vii) YZ-direction
disjoint, (viii) XZ-direction disjoint and (ix) XYZ-direction disjoint.

segmentation I , same as [14], [18], [24]. For the object point
cloud set {o1, o2, ..., on}, we first extract the object feature
f i
E by a PointNet [54] based feature extractor EncE(·) for

each object oi, then traverse the following processes for any
two objects: 1) calculate the interaction space Bij between
bounding box bi and bj and encode bi, bj to a position
feature vector f ij

pos; 2) extract the features of the points inside
Bij by feature extractor EncR(·) and obtain the relation
feature f ij

R concatenated with f ij
pos. The calculation details of

interaction space and position feature are described below.
Interaction Space Calculation Traditional 3D SGG [14],
[15], [24] methods represent the relationships that use either
union regions or feature engineering. From the perspective
of a single pair of objects, these visual patterns contain
interaction information, relative position information, sur-
rounding scene information, etc, which can cover more con-
textual information in the relationship features. But looking
at the whole scene, the regions of entities are repeatedly
modeled by relations, and the relations between several
pairs of adjacent objects contain similar or even the same
information, resulting in information redundancy. In the
subsequent message passing phase, this redundant infor-
mation will continue to diffuse and grow with iterations,
eventually making the features indistinguishable. Therefore,
in the feature extraction stage, we design a new visual pat-
tern with reference to the intersection region of [18], which
is highly coincident with the 3D points in the Interaction
Region (IR) [55] computed using the Interaction Bisector
Surfaces (IBS) plane, hence the name Interaction Space (InS).
We successfully control the information redundancy by re-
ducing the perceptual regions of relational visual patterns.

To fit the 3D case, we use three auxiliary conditions Eq. 1,
Eq. 2 and Eq. 3 to classify the relative position between bi
and bj into eight cases: intersectant (inclusive, overlap), X-
direction disjoint, Y-direction disjoint, Z-direction disjoint,
XY-direction disjoint, YZ-direction disjoint, XZ-direction

disjoint and XYZ-direction disjoint, as shown in Fig. 3.∣∣xi
c − xj

c

∣∣ ≥ li + lj

2
, (1)∣∣yic − yjc

∣∣ ≥ wi + wj

2
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2
, (3)

where
(
xi
c, y

i
c, z

i
c

)
denote the center coordinates of bounding

box bi, and li, wi, hi denote bi’s length, width, and height,
respectively. The three auxiliary conditions are mainly used
to determine whether the projection planes of bi and bj in
the x, y, and z directions intersect.

We first initialize the interaction space Bij with the union
bounding box of bi and bj :

Bij = [x
Uij

1 , yUij
1 , z

Uij

1 , x
Uij
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Uij
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Uij

2 ] (4)
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Uij
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1 ) and the upper right
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Uij

2 , y
Uij

2 , z
Uij

2 ) are used to represent the union
bounding box of bi and bj . Judging according to Eq. 1, Eq. 2
and Eq. 3 in sequence, if a certain auxiliary condition is
satisfied, we replace the coordinates of Bij in this direction
as below:

Bij =


x
Uij
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j
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j
c), Eq.1,
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(5)
For intersectant (inclusive and overlap) case, which no

auxiliary condition is met, we first calculate the intersection
space of bi and bj :

BInT
ij = [max(xi

1, x
j
1),max(yi1, y

j
1),max(zi1, z

j
1),
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2, x
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We use the coordinates of the lower left corner(xi
1, y

i
1, z

i
1)

and the upper right corner(xi
2, y

i
2, z

i
2) to represent box bi.

It is worth mentioning that, as for the intersectant case,
we perform region expansion to obtain more environmental
context. As the overlap areas of the object bounding boxes
are often obscured or inaccessible, there are no or few
points in these areas, which makes it difficult to extract
relationship features. The interaction space after expansion
can be expressed as:

Bij = [
xij
1 + x

Uij

1

2
,
yij1 + y

Uij

1

2
,
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Uij

1

2
,

xij
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where
[
xij
1 , y

ij
1 , zij1 , xij

2 , y
ij
2 , zij2

]
denotes the intersection

bounding box BInT
ij of bi and bj , calculated by Eq. 6.

Position Feature Calculation The interaction space can ef-
fectively reduce information redundancy by narrowing the
perception region. However, according to the observation, it
can be found that the interaction space is more concerned
with the area between objects than the object area. This
means that there is a lack of information about objects,
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Fig. 4. Graph Contextual Reasoning Module. The GSL block is supervised by unlabeled graph skeleton information. Coarse and fine-grained
entity labels supervise the HOL block. We show part of the labels in the form of a tree structure, where the word with orange color indicates the
fine-grained class categories, and the word with yellow color indicates the coarse-grained NYU40 [53] object categories.

relative relationships, and surrounding contextual informa-
tion in relationship features. Among them, the object and
surrounding contextual information can be supplemented
in subsequent message passing stages. But the relative rela-
tionships are challenging to learn directly from the features
due to the disorder of 3D points. Therefore, we need to
additionally encode objects’ relative positional relationship,
which is of great significance for distinguishing the subject-
object relationship between objects [56]. Thus we sort the
object 3D bounding box coordinates in a subject-object order
as [57]:

f ij
pos = Encpos([p

i
min, p

i
max, p

j
min, p

j
max]), (8)

pimin =

[
xbi
min − x

Uij

min

lUij
,
ybimin − y

Uij

min

wUij
,
zbimin − z

Uij

min

hUij

]
, (9)

where i denotes the subject, j the object, xbi
min the minimum

value for bi’s coordinates on X-direction, x
Uij

min the mini-
mum value for union region’s coordinates on X-direction.
For brevity, we only report the calculation of pimin, the
other items are calculated by exchanging min to max or
i to j. Therefore, we obtain a 12-d bounding box position
vector and then extract the position feature f ij

pos by a fully
connected network Encpos(·). In general, the feature ini-
tialization process for fully connected scene graph can be
expressed as:

FE = {f1
E , f

2
E , ..., f

n
E } : f i

E = EncE (oi) , (10)

FR = {f12
R , f13

R , ..., fn,n−1
R } : f ij

R = EncR(ôij)⊕ f ij
pos,

(11)

where ôij denotes the points inside intersection space bij , ⊕
the concatenation.

3.3 Contextual Reasoning for Scene Graph Generation

The entity and relation features extracted by the graph
feature extraction module form a fully connected graph.
Message passing propagates messages through the graph
to incorporate contextual information into each node. The
contextual information here refers to the underlying depen-
dencies and relations existing in 3D point clouds, which are
highly noisy relative to 2D images, so the indiscriminate
information communication will aggravate noise propaga-
tion. Therefore, we utilize the GSL block to reconstruct
the fully connected graph into a skeleton graph, which

effectively organizes contextual information by assigning
weights to different nodes in the adjacent node set. After
the message passing phase, the HOL block establishes long-
term connections between initial features and contextual
representations by forming coarse-grained and fine-grained
labels into a two-level hierarchical tree. We adopt a multi-
task learning approach, introduce GSL and HOL blocks on
top of the message passing block, and utilize structured
organization and hierarchical inferring to achieve context-
based reasoning. The implementation details of the three
blocks are shown in the Fig. 4.

In particular, the relation features FR are first fed into
Graph Skeleton Learning (GSL) block to generate an edge
weighted graph skeleton, or in other words a structured
organization rule set SG = {r12, r13, ..., rn,n−1}. Then entity
features FE , relation features FR and SG are then feed into
the Message Passing block, a graph neural network [58],
[59], to obtain structurally organized F̃E and F̃R. F̃R will
then be fed into a predicate predictor to obtain the final
predicate set P . Finally, we predict the coarse-grained and
fine-grained labels for each entity by inputting FE and F̃E to
Hierarchy Object Learning block. The details of each module
are described below.

Graph Skeleton Learning The message passing block im-
plements contextual representation learning by aggregating
features between associated nodes. To compute the associ-
ations between nodes, we extract the graph skeleton infor-
mation, which consists of the scene graph ground truth with
node and edge labels removed. As shown in Fig. 5, under
the supervision of the graph skeleton, the GSL block can
be viewed as a binary classification task of judging whether
there is a relationship between nodes. Its classification confi-
dence can intuitively reflect the associations between nodes.
By replacing the edges with the classification confidence, the
fully connected graph is reconstructed as an edge-weighted
skeleton graph. Our GSL module is implemented by a 3-
layer fully connected network with ReLU non-linearity be-
tween each layer. It directly takes the initial relation features
FR as input and defines organizational rules for each edge
on the fully connected graph. In particular, for predicate
pij from entity ei to ej , GSL block takes f ij

R as input, and
predicts its organizational rule rij . We only take the positive
predictive value as the final confidence score and normalize
it with softmax option. To achieve hard control for high
or low confidence scores, we then feed these scores into
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Fig. 5. Edge-weighted Skeleton Graph. The graph skeleton informa-
tion consists of the scene graph ground truth with labels removed. After
passing through the GSL block, the edges in the fully connected graph
are replaced by the classification confidence. Colors of different edges
represent confidence, dark colors represent high confidence, and vice
versa.

the gating function τ(·) proposed by [60]. This function can
make the predicted organization closer to GT scene graph
skeleton. The above process can be described as follows:

rij = τ
(
softmax(GSL(f ij

R ))
)
,

τ(x) =


0 x ≤ β

αx− αβ β < x < 1/α+ β
1 x ≥ 1/α+ β

, (12)

where α and β are two learnable hyperparameters.
Message Passing After computing the organizational rules
SG, we propagate information from each entity to its rele-
vant predicates and vice versa under the guidance of these
rules. To this end, we use a multi-stage bipartite graph neu-
ral network to propagate the contextual feature on the fully-
connected graph within the constraints of organizational
rules to get discriminative feature representations. More
specifically, the organizational rule rij affects the informa-
tion flow of both entity-to-predicate ge→p and predicate-
to-entity gp→e. At time step t, we denote the hidden state
of the entity node oi as H

(t)
ei and the hidden state of the

predicate node oij as H(t)
pij . We use the feature vector f i

E and
f ij
R obtained by the feature extraction module to initialize

the hidden state.

H(0)
ei = f i

E , H(0)
pij

= f ij
R (13)

Our visual pattern narrows the perceptual area to re-
duce repetitive modeling of the entity area. Therefore, more
attention is paid to the area between objects than to the
object area. This means that there is a lack of information
about objects and surrounding contextual information in
relation features. Therefore, this information needs to be
supplemented in the message passing phase. Each predi-
cate aggregates messages from its neighbors according to
organizational rules, with the formula:

M (t)
pij

= ge→p(rij , H
(t)
ei , H

(t)
ej )

= mean
(
gs

(
rij ·H(t)

ei

)
+ go

(
rij ·H(t)

ej

))
, (14)

where M
(t)
pij denotes predicate pij ’s message at iteration t,

gs and go are independent multi-layer perceptron (MLP) for
subject and object, along with a mean operation mean(·).

For each entity node ei, its neighbor nodes will be
divided into two categories: Ni∗ and N∗i, respectively corre-
sponding to the neighbor nodes where ei is the subject and

Fig. 6. Two-layer Hierarchical Tree. We show part of the labels in the
form of a tree structure, where the word marked in orange color indicates
the fine-grained class categories, and the word marked in yellow color
indicates the coarse-grained NYU40 [53] object categories.

ei is the object. Message from different relationship nodes is
aggregated according to their corresponding organizational
rules, using the formula:

M (t)
ei = gp→e(rij , rji, H

(t)
pij

, H(t)
pji

)

= mean

 ∑
j∈Ni∗

gp
(
rij ·H(t)

pij

)

+
∑

j∈N∗i(i)

gp
(
rji ·H(t)

pji

) , (15)

where M
(t)
ei denotes entity ei’s message at iteration t, gp is

a independent multi-layer perceptron (MLP) for predicate.
After the message passing process, we update the feature
using two Gated Recurrent Units (GRU) [61]:

H(t+1)
ei = GRUe

(
H(t)

ei ,M
(t)
ei

)
, (16)

H(t+1)
pij

= GRUp

(
H(t)

pij
,M (t)

pij

)
. (17)

We fuse the information u times to get the final updated
contextual-fused object feature F̃E = {H(u)

e1 , H
(u)
e2 , ...,H

(u)
en }

and relation feature F̃R = {H(u)
p12 , H

(u)
p13 , ...,H

(u)
pn,n−1}. The

organizational rules generated by GSL based on the ini-
tial features remain unchanged in the subsequent u fu-
sion processes to prevent the fused relation features from
strengthening the association between nodes. After feeding
F̃R into the predicate predictor, we obtain the relation labels
P = {pl12, pl13, ..., pln,n−1}.
Hierarchy Object Learning Due to the imbalance of relation
and non-relation data, most communication between nodes
will be blocked by GSL, and entity nodes can only obtain
limited environmental information. Therefore, we utilize
the HOL block to perform a hierarchical decomposition of
the entity classification task. The HOL block uses coarse-
grained and fine-grained entity labels to form a two-level
hierarchical tree, as shown in Fig. 6. We construct hier-
archical constraints for features containing attribute and
contextual information, establishing long-term connections
between features and enabling context-based reasoning on
objects. The inputs of the HOL block are the initial entity
feature FE and information-fused feature F̃E . There are two
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entity predictors in HOL block, each entity predictor is im-
plemented by a 3-layer fully connected network with ReLU
non-linearity between each layer, which predict coarse and
fine entity labels separately:

lcei = DeccoarseE (f i
E), lfei = DecfineE (H(u)

ei ). (18)

After labeling ei with lcei and lfei , we obtain coarse labels
Ec = {elc1 , e

lc
2 , ...e

lc
n } and fine labels Ef = {elf1 , e

lf
2 , ...e

lf
n }.

Combined with predicate set P , we finally generate the
scene graph G from point cloud O.

3.4 Loss Functions

The supervisory signal in the traditional SGG methods is
deformed into a triplet form (eli, p

l
ij , e

l
j), instead of scene

graphs in the intuitive sense, which lacks structure and
hierarchy. Under this deformation, the intuitive structured
information is transformed into an implicit representation,
leading to unsatisfactory performance. Thus we propose
GSL block to generate graph skeleton SG and supervised
it with ground truth skeleton SGT = {b12, b13, ...bn,n−1},
where bij = 1 indicates that there is an edge from ei to ej
and bij = 0 the edge does not exist:

Lgsl = BCE(SG,SGT ), (19)

where BCE(·) is a binary cross entropy loss function. Note
that our graph skeleton data does not contain any label of
nodes and edges, which is intended to limit the model to
focus on learning structured information.

Regarding the HOL block, two granularity object labels
were applied as supervision information. Hence, we split
the ground truth scene graph into three supervisory signals:
1) skeleton graph; 2) coarse and fine-grained object labels,
and 3) predicates. We train our model end-to-end, and our
total loss function is described below:

Ltotal = Lgsl + Lp + λcLc
e + λfLf

e , (20)

where λc and λf are weighting factors, Lp denotes the per-
class binary cross entropy loss, Lc

e and Lf
e are the standard

cross entropy loss for multi-class classification task with
coarse and fine-grained labels. By jointly training multiple
tasks, the modules can be prevented from converging inde-
pendently in a static space, resulting in better incorporation
of structured information and hierarchical labels into visual
information.

3.5 Implementation Details

We adopt PointNet [54] as the feature extraction network,
which processes the points inside the object bounding box or
interaction space with three channels (x, y, z) and outputs
a final 256-d feature vector. Our message passing block
iterates u = 3 times. The total number m of relation labels
is 26. In our model, all entity and predicate predictors are
composed of three fully connected layers followed by batch
normalization and ReLU activation. The α, β are initialized
as 2.2 and 0.025 as suggested by [60]. The hyperparameters
λc, λf in our loss function are both set as 0.1. Adam is
chosen as our model optimizer with a learning rate of 10−4.

4 EXPERIMENTS

4.1 Dataset and Evaluation Metrics
3DSSG [14] is a large-scale 3D dataset extended from the
3RSCAN dataset [62] with scene graph annotations. It fea-
tures 1482 scene graphs, which contain 534 classes of objects
and 40 relationships. We take the same 160 object categories
and 26 predicate labels as in [14]. The dataset provides a
variety of object categories with different coarse and fine
grains by mapping categories to NYU40 [53], RIO27 [62] and
Eigen [63]. In this paper, NYU40 is selected as the coarse-
grained object label, and the specific mapping relationship
is provided in the supplementary material.

For evaluation, we applied the same scene-level split
specified in [14] on the point cloud representations. Follow-
ing [14], [15], [23], the scene graph prediction performance is
evaluated upon the three perspectives using the top-k recall
metric, namely object class prediction, predicate prediction,
and relationship prediction. Of which the relationship level
confidence scores are obtained by multiplying each respec-
tive score of the subject, predicate, and object in order.

4.2 Comparison with State-of-the-art Approaches
We evaluate our proposed method against state-of-the-art
scene graph generation methods: MSDN [64], KERN [65],
3DSSG [14], BGNN [60], SGGPoint [15]. In addition to
these methods, we also design a simple PointNet [54] based
method by directly adding the same entity and predicate
predictors to justify whether the discrimination of the fea-
tures will be reduced. Among them, MSDN, KERN, and
BGNN are 2D SSG methods. For a fair comparison, we re-
moved the 2D object detector and added the same PointNet
based feature extractor as ours (see more comparison results
in the supplementary material).
Quantitative Results As shown in Tab. 1, our method is the
only one that outperforms PointNet on all three sub-tasks
without using any prior knowledge. It shows that our de-
fined interaction space minimizes each node’s information
redundancy, and the contextual reasoning process retains
the discrimination of features even after multiple iterations.
Our method outperforms PointNet with significant margin
of 6.7 and 5.1 on object class prediction. Besides, despite
the absence of prior statistical co-occurrence knowledge,
our method is slightly inferior to KERN by 0.2 and 0.5 on
predicate prediction. Ultimately, our method outperforms
the others on the relationship prediction sub-task by a large
margin.

It is worth mentioning that to alleviate the severe object
class imbalance problem in the SGG task, SGGPoint only
retains 27 object classes and 16 relation classes (3DSSG-
O27R16) in the 3DSSG dataset. And it also combines multi-
label relationships between nodes into one relationship. Re-
sulting in its network not being able to understand complex
scenes with fine-grained objects and multiple relationships
well (see our results on 3DSSG-O27R16 in the supplemen-
tary material). Our method can accurately classify entities
at a fine-grained level, allowing the construction of scene
graphs with more scene knowledge. To more directly com-
pare the performance improvements of fine-grained object
classes with MSDN, we further demonstrate the R@10 im-
provements for some entities in Fig. 7.
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TABLE 1
Quantitative comparisons of our method against existing methods

on 3DSSG [14] dataset. † denotes results reproduced with the
authors’ code.

Model

Object Class
Prediction

Predicate
Prediction

Relationship
Prediction

R@5 R@10 R@3 R@5 R@50 R@100

PointNet† [54] 63.39 74.54 89.07 96.03 50.05 55.73

MSDN† [64] 61.07 72.41 85.99 93.60 46.55 53.20
KERN† [65] 66.58 76.52 90.13 96.61 51.36 58.49
3DSSG [14] 66.41 77.26 82.58 94.34 51.16 56.48
BGNN† [60] 71.19 81.98 86.98 93.80 55.20 60.85
SGGPoint [15] 27.82 35.85 68.18 87.32 7.94 9.91

Ours 73.40 82.59 89.90 96.10 61.94 68.24

Fig. 7. Quantitative prediction results about fine-grained object
labels. The R@10 improvement of different entities of our methods to
the MSDN.

It is well-known that SGG models trained on biased
datasets have low performances for less frequent categories.
Therefore, we additionally introduce mean recall (mR@K)
of [66] to examine how well the method learns for uncom-
mon predicates. The metric independently computes the
recall for each predicate category and averages the results.
So, each category contributes equally. Since our method
does not rely on labels or prior knowledge, both of which
are biased information, the long-tail effect can be mitigated.
As shown in Tab. 2, our method outperforms all three sub-
tasks, effectively reducing the impact of some common but
meaningless predicates, such as on, near by, and paying
equal attention to those less common predicates, such as
build in, belonging to, which are more valuable for
high-level reasoning.

Moreover, we divided the relationship categories into
three disjoint groups according to the instance number in
the training split: head (more than 104), body (103 ∼ 104),
and tail (less than 103). As shown in Fig. 8, we compute the
mean recall on each long-tail category group in the relation-
ship prediction sub-task and find our method significantly
outperforms the prior works on the tail group. As a result,
we achieve the highest mean recall over all categories.
Qualitative Results As shown in Fig. 9, we chose three
categories of indoor scenes, kitchen, cafe, and study room,
to verify that the proposed method can accurately explore
contextual information to predict scene entities and relation-
ships. In complex environments like kitchens, our method
can identify small objects like plates and stoves and
accurately distinguish between kitchen cabinet and
kitchen counter with similar characteristics. For rela-
tions, we successfully predict stove-built in-kitchen
counter when other methods only can predict lying on,

TABLE 2
Quantitative comparisons of our method against existing methods

by mR@K.

Model

Object Class
Prediction

Predicate
Prediction

Relationship
Prediction

mR@5 mR@10 mR@3 mR@5 mR@50 mR@100

MSDN [64] 23.59 35.51 47.41 62.10 44.61 50.17
KERN [65] 23.48 35.89 45.68 61.97 43.46 49.14
3DSSG [14] 23.33 34.43 45.82 63.93 51.16 52.21
BGNN [60] 28.49 41.79 45.15 58.98 49.08 54.21
SGGPoint [15] 10.54 12.37 25.65 47.59 1.04 3.52

Ours 33.87 45.18 47.10 64.16 53.21 61.50

Fig. 8. The performance of overcoming the long tail effect. The per-
group mR@50 and mR@100 results on each long-tail category groups
in relationship prediction subtask.

which requires a deeper semantic understanding of the
relationship.

Our method has a stable prediction for scenes with
certain environmental patterns, such as a cafe with mul-
tiple sets of tables and chairs. Meanwhile, the prediction
result also reflects the drawback of KERN: when the ob-
ject labels are predicted incorrectly, the relation prediction
will be greatly affected, as wrong object labels will bring
invalid co-occurrence knowledge to the process of feature
information organization. Since KERN relies heavily on
prior knowledge, the final SGG results are inconsistent
with actual visual information, which is also present in
other methods that simply utilize prior knowledge to or-
ganize environmental information (see more results in the
supplementary materials). Compared with other methods,
our result has an excellent performance in predicting the
bidirectional relationship between objects. Our method can
predict multiple labels accurately from similar features by
constructing more discriminative features through effective
feature extraction and contextual information fusion (see
more qualitative results in the supplementary material).
We can also predict incomplete objects in the study scene,
such as side table and commode, by supplementing the
surrounding contextual information.

4.3 Ablation Study
Model Components As shown in Tab. 3, we first verify the
effectiveness of each component by incrementally adding
each one of them to a common baseline MSDN [64], denoted
as M0. It is worth mentioning that, MSDN uses the union
region as the visual pattern, and transfers information in-
discriminately between entities and relationships based on
a bipartite graph neural network.
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Input Point Clouds PointNet MSDN KERN 3DSSG

Instance Label BGNN SGGPoint Ours Ground Truth

Input Point Clouds PointNet MSDN KERN 3DSSG

Instance Label BGNN SGGPoint Ours Ground Truth

Input Point Clouds PointNet MSDN KERN 3DSSG

Instance Label BGNN SGGPoint Ours Ground Truth

Fig. 9. Comparisons against the state-of-the-arts. We only show the results for a local area of the scene. We use gray boxes to indicate the entities
and underlines to indicate the relations. The different colors of entity names and relation labels are the same as the colors of the class-agnostic
instance labels, except that red indicates an incorrect prediction result.
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Input Point Clouds (a) M0 (b) M2 (c) M3 (d) M4

Instance Label (e) M7 (f) M8 (g) Ours (M9) (h) GT

Fig. 10. Visualization results for ablation study. For clarity, we only show the results for a locally representative area of the scene. The rest of the
annotation is the same as described above.

TABLE 3
Ablation study of our proposed network. InS: Interaction space; PoF: Position feature; MsP: Message Passing block; GSL: Graph Skeleton

Learning block; HOL: Hierarchy Object Learning block. →X indicates replacing the corresponding component with X. ✓ and ✗ represent yes and
no, respectively. The best results are marked in bold.

Graph Feature
Extraction

Graph Contextual
Reasoning

Object Class
Prediction

Predicate
Prediction

Relationship
Prediction

Method InS PoF MsP GSL HOL R@50 R@100 R@50 R@100 R@50 R@100
M0 → Union ✗ ✓ ✗ ✗ 61.07 72.41 85.99 93.60 46.55 53.20
M1 → InT ✗ ✓ ✗ ✗ 61.62 73.02 83.72 92.99 46.98 53.92
M2 ✓ ✗ ✓ ✗ ✗ 63.18 74.67 84.96 93.57 48.92 56.25
M3 ✓ ✓ ✓ ✗ ✗ 69.65 79.75 91.41 96.70 60.92 66.24
M4 → Union ✗ ✓ ✓ ✗ 71.97 81.54 87.44 94.26 58.97 65.05
M5 → Union ✗ ✓ → KERN ✗ 66.54 76.53 89.10 95.31 51.32 57.98
M6 → Union ✗ ✓ → BGNN ✗ 70.10 80.28 84.59 92.40 54.18 59.60
M7 → Union ✗ ✓ ✗ ✓ 65.69 76.44 86.24 93.23 50.32 56.78
M8 → Union ✗ ✓ ✓ ✓ 72.87 81.92 87.62 94.92 60.41 66.16
M9 ✓ ✓ ✓ ✓ ✓ 73.40 82.59 91.43 96.49 61.94 68.24

We first make quantitative ablation studies on each
component. As we claimed in our paper, repeated mod-
eling and meaningless information communication in the
contextual extraction and fusion stages are the main causes
for the indistinguishable features. InS reduces the repetitive
modeling of the object area by narrowing the perception
area (M2: results in object accuracy improved by 2 points).
On the other hand, PoF provides InS with information such
as the size, location, and subject-predicate relationship of
objects that it cannot perceive (M3: results in improved
object and predicate accuracy, and relationship prediction
task improved for 13 points). Another source of noise is
indiscriminate information fusion. Therefore, GSL reduces
meaningless information transmission in the message pass-
ing process, and HOL imposes hierarchical constraints on
the features before and after fusion (M8: relationship accu-
racy improved by 12 points).

Visual Patterns As shown in Tab. 3, we additionally provide
the quantitative comparison results between our interaction
space and the intersection region (InT-M1) of [18]. To fit

the data characteristics of 3D point clouds, we expand
the interaction space, effectively improving the quality of
relation features and the accuracy of relationship prediction
by 2 points.
Graph Skeleton Learning Block Our GSL module provides
rules for organizing information at the message passing
stage. Moreover, as shown in Tab. 3, our rules can bet-
ter reduce meaningless information communication com-
pared with the organization rules established by using prior
knowledge (KERN-M5) or relationship labels (BGNN-M6),
thereby reducing the noise in features.
Qualitative Results As shown in Fig. 10, the specific analy-
sis of each case is as follows:

(1) M2: Interaction space is often tiny and covers less
environmental context than the union region, which causes
lower relationship prediction accuracy. However, due to
the reduction of information redundancy, the accuracy of
object prediction is improved. As shown in Fig. 10(a) and
Fig. 10(b), the entity label radiator has been successfully
predicted, but the number of incorrectly predicted relations
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has also increased.
(2) M3: PoF compensates for the missing position infor-

mation in InS. Because InS cannot perceive object positions
and subject-object orders, resulting in the same features
on the bidirectional edge between objects. As shown in
Fig. 10(b), model predict the bidirectional edges as left
and cannot perceive higher than and lower than re-
lationships because the lack of object positions. By adding
PoF, as shown in Fig. 10(c), the incorrect relation predic-
tions are corrected while maintaining the accuracy of object
prediction.

(3) M4: Compared to baseline MSDN, the additional
structured organization rules enable the algorithm to han-
dle the information with high redundancy, even if it has
been iterated many times, and still retain sufficient feature
discrimination. As shown in Fig. 10(a) and Fig. 10(d), struc-
tured organization rules improve the prediction results for
both entities and relations.

(4) M7: By processing information hierarchically, we
realize the process of classifying objects from coarse to fine-
grained, and substantially improve object recognition accu-
racy. As shown in Fig. 10(a) and Fig. 10(e), the prediction
of entities is significantly improved.

(5) M8: The GSL and HOL blocks together with the Mes-
sage Passing block form the Graph Contextual Reasoning
module, which structurally organizes the information and
hierarchically infers the coarse to fine features, as shown in
Fig. 10(f).

5 CONCLUSION

In this work, we propose a framework for the 3D scene
graph generation. It explores contextual information via a
well-designed graph feature extraction module and a graph
contextual reasoning module. First, we propose a new visual
pattern with appropriate information redundancy. Second,
the features extracted from visual patterns are contextually
fused by structured organization and hierarchical inferring,
retaining the discrimination of features. The experiments
demonstrate that the proposed method significantly outper-
forms the state-of-the-arts methods. In the future, we will try
to perform scene understanding for more incomplete scenes
through scene completion [67] or object reconstruction [68].
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