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Explore Contextual Information for 3D Scene
Graph Generation

—Supplementary Material—

Abstract—This supplemental material presents additional in-
formation and results supporting the main manuscript. Sec. I
shows additional qualitative examples of our method and a
detailed ablation study of our proposed architecture. Sec. II
provides a mapping between fine-grained object categories and
coarse-grained object categories.

I. MORE QUANTITATIVE AND QUALITATIVE RESULTS

In the main manuscript, we perform all evaluation meth-
ods on the 3DSSG [1] dataset. 3DSSG is composed of
3RSCAN [2] and scene graph annotations. It features 1482
scene graphs, which contain 534 classes of objects and 40
relationships. To alleviate the severe object class imbalance
problem in the SGG task, SGGPoint [3] only retains 27
object classes and 16 relation classes (3DSSG-O27R16) in the
3DSSG dataset. And it also combines multi-label relationships
between nodes into one relationship. This results in its network
not being able to understand complex scenes with fine-grained
objects and multiple relationships well. We argue that scene
graphs based on coarse-grained labels and single relationships
contain little scene context and are challenging to apply to
subsequent high-level tasks. So we take the same 160 object
categories and 26 predicate labels as in [1]. To demonstrate
that our method can be applied to scenarios with different
levels of complexity, we additionally provide the results of
our method on 3DSSG-O27R16. As shown in Table I, our
method outperforms SGGPoint on the few-category scene
graph generation task.

TABLE I
QUANTITATIVE COMPARISON WITH SGGPOINT ON 3DSSG-O27R16.

Model
Object Class

Prediction
Predicate
Prediction

Relationship
Prediction

R@5 R@10 R@3 R@5 R@50 R@100
SGGPoint 90.10 97.12 81.54 82.10 54.65 55.17
Ours 91.23 97.92 96.80 98.81 94.28 96.52

In the main manuscript, we mentioned the drawback of
KERN. When the object labels are predicted incorrectly, the
relation prediction will be significantly affected, as wrong
object labels will bring invalid co-occurrence knowledge to the
process of feature information organization. The inconsistency
between the final SGG results and the actual visual information
also exists in other methods that simply use prior knowledge to
organize environmental information. We additionally provide
the results of [4], as shown in Table II, [4] advocates the use
of graph auto-encoder to automatically extract class-dependent
representations and topological patterns as prior knowledge to
enhance the accuracy of relationship predictions. Perception
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Fig. 1. Comparisons against the Meta-SGG. For clarity, we only show the
results for a local area of the scene. We use gray boxes to indicate the entities
and underlines to indicate the relations. The different colors of entity names
and relation labels are the same as the colors of the class-agnostic instance
labels, except that red indicates an incorrect prediction result.

and prior are naively treated as separate components, which are
trained separately from different inputs (from images, triples,
or label embeddings), and their predictions are usually fused
in a probability space. As shown in the Table II, our method
outperforms it in entity and relation prediction.

TABLE II
QUANTITATIVE COMPARISON WITH META-SGG.

Model
Object Class

Prediction
Predicate
Prediction

Relationship
Prediction

R@5 R@10 R@3 R@5 R@50 R@100
Meta-SGG [4] 47.73 51.46 83.99 90.12 35.98 37.50
Ours 73.40 82.59 89.90 96.10 61.94 68.24

At the same time, we can also see the shortcomings of Meta-
SGG in Figure 1. Since its graph encoder is independently
trained, its prediction results are inconsistent with visual
information, resulting in its prediction results only satisfying
prior knowledge, and predicting a large number of entities
that do not appear in the current scene, such as table and
shelf.
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Fig. 2. Comparisons against the state-of-the-arts. We only show the results for a local area of the scene. We use gray boxes to indicate the entities and
underlines to indicate the relations. The different colors of entity names and relation labels are the same as the colors of the class-agnostic instance labels,
except that red indicates an incorrect prediction result.
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Fig. 3. Visualization results for ablation study. For clarity, we only show the results for a locally representative area of the scene. The rest of the annotation
is the same as described above.



IEEE TRANS VIS COMPUT GRAPH, VOL. X, NO. X, XXX 3

Ground TruthInput Point Clouds

laptoplaptop

monitormonitor
monitormonitor

pcpc

chairchair

chairchair
chairchair

heaterheater
plantplant

plantplant

windowwindow

backpackbackpack

boxbox
folderfolder

windowsillwindowsill

telephonetelephone

packpack

laptoplaptop

monitormonitor
monitormonitor

pcpc

chairchair

chairchair
chairchair

heaterheater
plantplant

plantplant

windowwindow

backpackbackpack

boxbox
folderfolder

windowsillwindowsill

telephonetelephone

itemitem

Ours

Fig. 4. Results of small object predictions. The desktop and windowsill have a large number of small objects placed in clutter, including plants, books,
folder and pack. And the point clouds of objects such as pc and heater only contain fragmented point cloud inputs.

Fig. 5. Scene translation and rotation. We marked three areas where the
relationship changes correspondingly due to scene changes. Two operations,
rotation and object translation, occur simultaneously from Scene 1 to Scene
2. Due to the scene rotation, the relationship between the objects in the
blue and green areas changes from front-behind/right-left to
right-left. Due to object translation, the relationship entity in the red
area is changed.

In main manuscript, we showed the SGG results for three
categories of indoor scenes, kitchen, cafe, and study room.
Here we add two more scenes, as shown in Figure 2. Our
method has a higher accuracy in predicting both objects and
relationships compared to the other methods. We also present a
detailed ablation study of our proposed architecture in the main
manuscript, where we show additional qualitative examples in
Figure 3.

We additionally show the prediction of our method for
objects in scenes with a large number of complex small objects
in Figure 4. Our method successfully predicts the labels of
most of the objects, even if they only have partial point cloud
inputs, such as pc, plant, and folder.

Also, we test the effect of scene changes (translation and
rotation) on the result of scene graph generation in Figure 5

and observe that these changes mainly affect the labels of
relationship. Scene rotation causes a shift in the observation
perspective of the scene graph, which results in a different
perception of the corresponding positions between objects,
and therefore generates different relationship labels. And the
substantial position translation of objects may lead to the
change of interaction objects. At the same time, we also
find that the effects of small-scale scene rotation and object
translation on the scene graph are not obvious, which means
scene graph cannot perceive subtle environmental changes.

II. COARSE-TO-FINE OBJECT CLASS MAPPING

The 3RSCAN dataset provides multiple granularity object
labels, including NYU40 [5], RIO27 [2] and RIO7 [2]. Our
approach selects NYU40 as the coarse-grained object label and
we show the mapping between the fine-grained object labels
and the coarse-grained NYU40 object labels in Fig 6.
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Fig. 6. Mapping the 160 fine-grained object categories to 40 coarse-grained NYU40 [5] object categories. The word with orange color indicates the
fine-grained class categories, the word with yellow color indicates the coarse-grained NYU40 object categories.


