

A Hybrid Attention Mechanism for Weakly-Supervised Temporal Action Localization

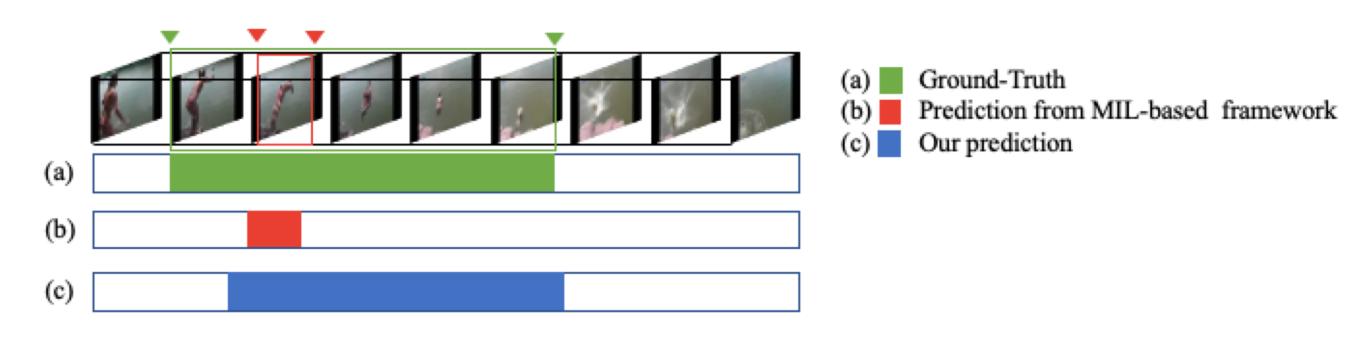
Ashraful Islam¹, Chengjiang Long², Richard J. Radke¹

¹Dept. Of Electrical, Computer, and Sytems Engineering, Rensselaer Polytechnic Institute; ²JD Digits Al Lab

Problem & Background

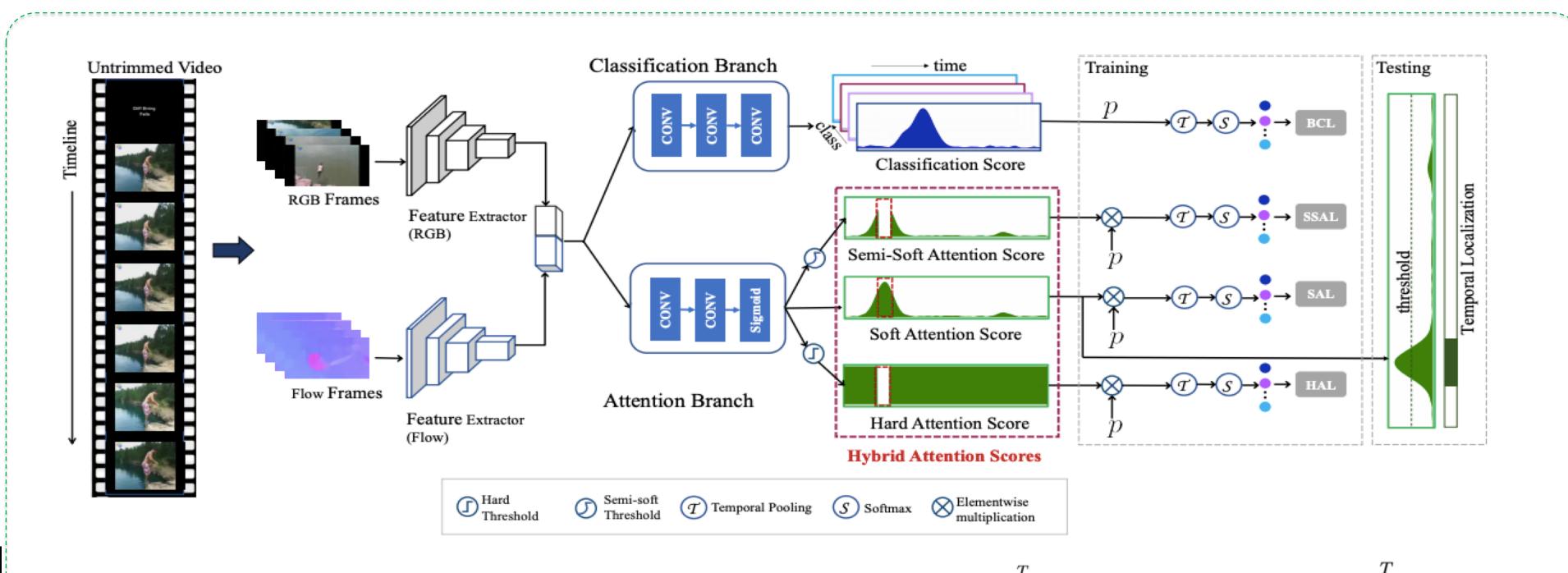
- Most current action localization methods depend on untrimmed videos with full temporal annotations
- Full temporal annotations are expensive and time-consuming
- We propose a weakly supervised temporal action localization method that only requires video-level action instances as supervision during training
- During evaluation, the model predicts both action instances and temporal localizations

{ CleanAndJerk

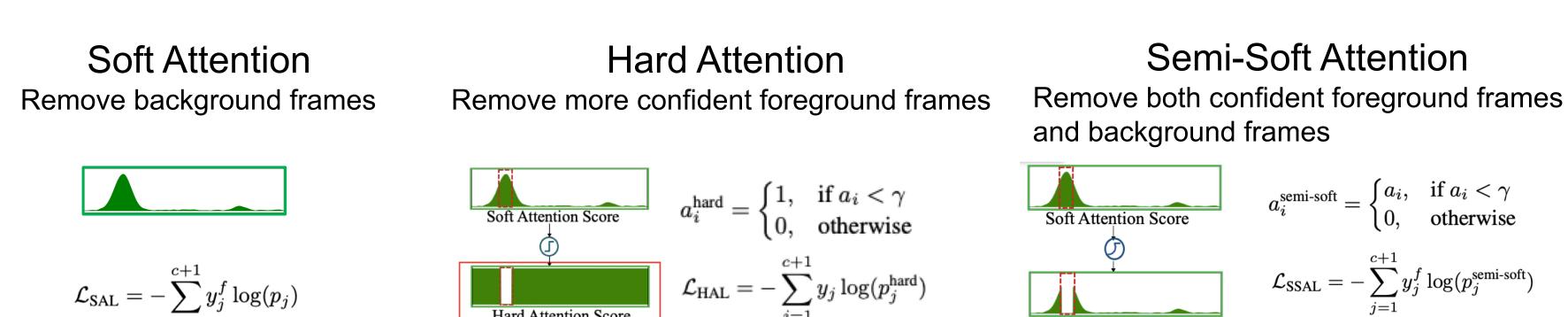


LongJump

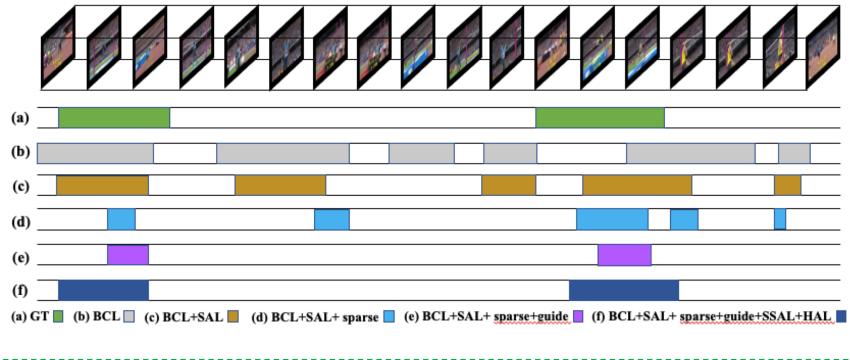
LongJump


Contributions

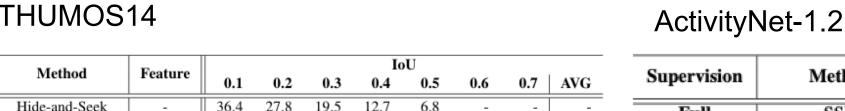
- We propose a hybrid attention mechanism to
- Detect complete actions
- Model background activity



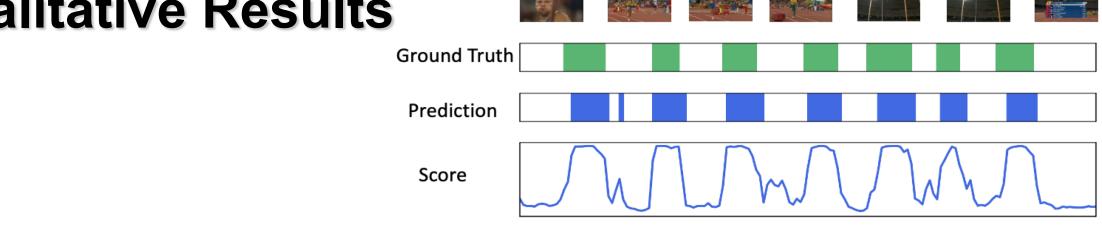
- We achieve state-of-the-art performance on both the THUMOS14 and ActivityNet-1.2 datasets
- We describe extensive experiments to demonstrate the efficacy of different components of our approach

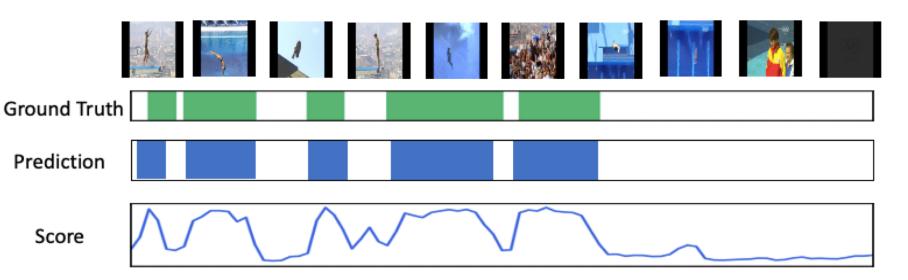

Proposed Approach

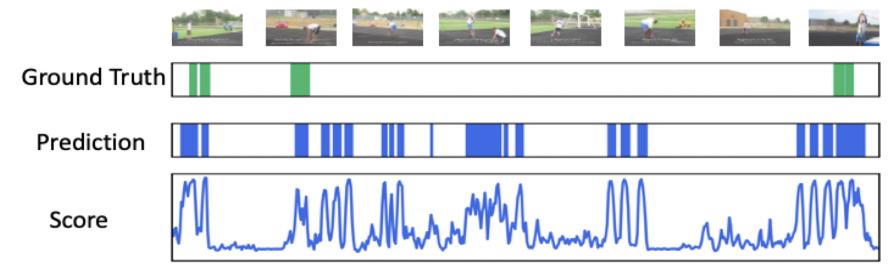
Attention Modules



Ablation Studies on THUMOS14


	Exp	$\mathcal{L}_{ ext{BCL}}$	$\mathcal{L}_{ ext{SAL}}$	\mathcal{L}_{HAL}	$\mathcal{L}_{ ext{SSAL}}$	$\mathcal{L}_{ ext{sparse}}$	$\mathcal{L}_{ ext{guide}}$	AVG mAP
-	1	/	-	-	-	-	-	24.6
	2	✓	✓	-	-	-	-	30.8
	3	✓	1	-	-	-	✓ /	28.9
	4	✓	✓	-	-	/	-	30.9
	5	✓	1	-	-	✓	✓	34.8
-	6	✓	✓	√	✓	-	-	30.9
	7	✓	✓	✓	✓	-	/	31.1
	8	✓	✓	✓	✓	/	-	37.9
	9	✓	✓	✓	-	/	/ /	36.6
	10	✓	✓	-	/	/	/ /	38.1
	11	✓	1	✓	✓	✓	✓	39.8


Quantitative Results


Method	Feature	100								Cuparvisian	Method	100			
Wicthou		0.1	0.2	0.3	0.4	0.5	0.6	0.7	AVG	Supervision	Method	0.5	0.75	0.95	AV
de-and-Seek	-	36.4	27.8	19.5	12.7	6.8	-	-	-	Full	SSN	41.3	27.0	6.1	26.
trimmedNets	-	44.4	37.7	28.2	21.1	13.7	-	-	-		UntrimmedNets	7.4	3.2	0.7	3.
STPN	I3D	52.0	44.7	35.5	25.8	16.9	9.9	4.3	26.4						
AutoLoc	UNT	-	-	35.8	29.0	21.2	13.4	5.8	_		AutoLoc	27.3	15.1	3.3	16.
W-TALC	I3D	55.2	49.6	40.1	31.1	22.8	-	7.6	-		W-TALC	37.0	12.7	1.5	18.
Liu et al	I3D	57.4	50.8	41.2	32.1	23.1	15.0	7.0	32.4		Islam et al	35.2	-	-	
MAAN	I3D	59.8	50.8	41.1	30.6	20.3	12.0	6.9	31.6		TSM	28.3	17.0	3.5	17.
CleanNet	UNT	-	-	37.0	30.9	23.9	13.9	7.1	-	Weak	3C-Net	35.4	-	-	21.
3C-Net	I3D	56.8	49.8	40.9	32.3	24.6	-	7.7	-		CleanNet	37.1	20.3	5.0	21.
lguyen <i>et al</i>	I3D	60.4	56.0	46.6	37.5	26.8	17.6	9.0	36.3		Liu et al	36.8	22.0	5.6	22.
Islam et al	I3D	62.3	-	46.8	-	29.6	-	9.7	_						
BaS-Net	I3D	58.2	52.3	44.6	36.0	27.0	18.6	10.4	35.3		BaS-Net	34.5	22.5	4.9	22.
DGAM	I3D	60.0	54.2	46.8	38.2	28.8	19.8	11.4	37.0		DGAM	41.0	23.5	5.3	24.
M-Net (Ours)	I3D	65.9	59.6	52.2	43.1	32.6	21.9	12.5	39.8		HAM-Net (Ours)	41.0	24.8	5.3	25.

Qualitative Results

Failure Case

person starts to do the high jump activity but stops short without completing the full action

Limitations:

- Cannot detect multiple overlapping actions
- Cannot always solve action ambiguity

Both are partly due to the inherent limitations of the weakly supervised action localization paradigm. Additional supervision is required to solve these issues.

Nguyen, P. X.; Ramanan, D.; and Fowlkes, C. C. 2019. Weakly-supervised action localization with background modeling. In Proceedings of the IEEE International Conference on Computer Vision

Liu, D.; Jiang, T.; and Wang, Y. 2019. Completeness Modeling and Context Separation for Weakly Supervised Temporal Action Localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

 $\mathcal{L}_{ ext{guide}} = \sum |1 - a_i - \bar{s}_{c+1}|$

This material is based upon work supported by the U.S. Department of Homeland Security under Award Number 2013-ST-061-ED0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.