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Abstract—Representing multimodal behaviors is a critical challenge for pedestrian trajectory prediction. Previous methods commonly
represent this multimodality with multiple latent variables repeatedly sampled from a latent space, encountering difficulties in interpretable
trajectory prediction. Moreover, the latent space is usually built by encoding global interaction into future trajectory, which inevitably
introduces superfluous interactions and thus leads to performance reduction. To tackle these issues, we propose a novel Interpretable
Multimodality Predictor (IMP) for pedestrian trajectory prediction, whose core is to represent a specific mode by its mean location. We
model the distribution of mean location as a Gaussian Mixture Model (GMM) conditioned on sparse spatio-temporal features, and sample
multiple mean locations from the decoupled components of GMM to encourage multimodality. Our IMP brings four-fold benefits: 1)
Interpretable prediction to provide semantics about the motion behavior of a specific mode; 2) Friendly visualization to present multimodal
behaviors; 3) Well theoretical feasibility to estimate the distribution of mean locations supported by the central-limit theorem; 4) Effective
sparse spatio-temporal features to reduce superfluous interactions and model temporal continuity of interaction. Extensive experiments
validate that our IMP not only outperforms state-of-the-art methods but also can achieve a controllable prediction by customizing the
corresponding mean location.

Index Terms—Pedestrian Trajectory Prediction, Multimodal Trajectory Prediction, Central-limit Theorem.

✦

1 INTRODUCTION

1 G IVEN the observed trajectories of a pedestrian and its2

neighbors, pedestrian trajectory prediction is to predict a3

sequence of the future locations of the pedestrian. This task plays4

a critical role in various vision applications, such as autonomous5

vehicles [1], [2], surveillance systems [3], [4], and other motion6

prediction tasks [5], [6].7

One key challenge of pedestrian trajectory prediction is inherent8

multimodality incurred by the multiple possibilities of future9

behavior. In other words, given an observed trajectory, there are10

multimodal behaviors represented by diverse future trajectories [7],11

[8] that a pedestrian could take. For example, a pedestrian may go12

straight, turn left/right, or keep still. This motivates the community13

to address the multimodal prediction task.14

Previous methods commonly embed multimodal behaviors into15

a latent space by the Conditional Variational Autoencoder (CVAE)16

framework [9], [10] conditioned on individual temporal dependen-17

cies and complex spatial interactions. Especially, global interac-18

tion [7], [10], [11] is usually employed to model spatial interaction19

from all neighbors of a pedestrian at each time step. After that,20

a latent variable is sampled from the latent space to represent a21

specific mode. Hence, multiple latent variables sampled repeatedly22

from the latent space can represent multimodal behaviors, and23

• Liushuai Shi, Le Wang, Sanping Zhou, and Nanning Zheng are with the
Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong Univer-
sity, Xi’an, Shaanxi 710049, China. E-mail: shiliushuai@stu.xjtu.edu.cn,
{lewang,spzhou,nnzheng}@mail.xjtu.edu.cn. (Corresponding author: Le
Wang.)

• Chengjiang Long is with Meta Reality Labs (formerly Facebook Reality
Labs), Burlingame, CA 94010, USA. E-mail: cjfykx@gmail.com.

• Wei Tang is with the Department of Computer Science, University of Illinois
at Chicago, Chicago, IL 60607, USA. E-mail: tangw@uic.edu.

• Gang Hua is with Wormpex AI Research, Bellevue, WA 98004, USA. E-mail:
ganghua@gmail.com.

𝒩(0, 𝑰)

…

× 𝑘

Latent Variables
Diverse Future Trajectories

Mean Locations Diverse Future Trajectories

Observed Trajectory

Future Trajectory

Neighbor

Turning 

left/right ?  

Going Straight ? 

…

Turning right

Fig. 1. Contrastive illustration between previous latent-based methods
(upper branch) and our proposed method (lower branch). Latent-based
methods present multimodal behaviors by multiple latent variables sam-
pled from a prior distribution, while ours presents multimodal behaviors
via the mean locations of the full trajectories.

further achieving multimodal prediction. The upper branch of 24

Figure 1 illustrates this process. Despite the advances of these 25

latent methods, they still suffer from the following two limitations. 26

First, representing multimodality by an inscrutable latent space 27

lacks interpretability. This causes two disadvantages in practice. On 28

the one hand, we cannot understand the distribution of multimodal 29

motion behaviors based on the inscrutable latent space. On the 30

other hand, it is hard to obtain a controllable prediction because it 31

is unknown how the latent variable, randomly sampled from the 32

latent space, encodes the multimodal behaviors of a pedestrian. 33
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For instance, a robot needs to understand how a pedestrian will34

turn left to avoid an accident, but it is impossible to sample35

trajectories specific to this mode from the uninterpretable latent36

space. To handle these problems, prior methods need to repeatedly37

sample trajectories of multimodal behaviors to fill the distribution38

of multimodal future trajectories and search for trajectories of the39

desired mode. However, it is unstable and unfriendly for tasks that40

testing time is short, such as accident avoidance.41

Second, prior methods usually model the global interaction [7],42

[9], [11], [12] at each time step, assuming that a pedestrian interacts43

with all the neighbors due to the efficient computation. As the upper44

branch of Figure 2 illustrates, the pedestrian interacts with all the45

neighbors at each time step. However, as shown in the lower46

branch of Figure 2, a pedestrian hardly interacts with all others47

spatially. Hence, the global interaction can introduce superfluous48

interactions that disturb the trajectory prediction. In addition, the49

global interaction at each step is time-independent, and thus it is50

not suitable to model the temporal continuous interaction.51

To address the above issues, we attempt to explore a simple52

yet effective representation of a pedestrian’s mode. We identify53

two necessary criteria. 1) The representation should connect to the54

physical world. That is, humans could understand the pedestrian’s55

behavior, such as turning left/right or going straight, given the56

representation. This can further enhance the interpretability of57

multimodal future trajectories and contribute to achieving a58

controllable prediction. 2) The representation should account for the59

spatio-temporal relationships between pedestrians. In other words,60

the representation should capture the temporal dependence between61

the observed trajectory and multimodal future behaviors manifested62

by diverse future trajectories. In addition, the representation also63

should model the complex spatial interaction between a pedestrian64

and its neighbors, which contributes to the predicted trajectories65

abide by the social traffic rules, such as avoiding traffic collisions.66

Driven by these analyses, we propose a novel Interpretable67

Multimodality Predictor (IMP) for pedestrian trajectory prediction.68

Our IMP jointly employs an interpretable intention representation69

and a social interaction representation to represent the trajectory of70

each pedestrian.71

Concretely, the interpretable intention representation models72

the future behavior mode in the physical world by the mean location73

of a full trajectory. The full trajectory includes both the observed74

trajectory and the corresponding future trajectory. Meanwhile, we75

extract sparse spatio-temporal features as the social interaction76

representation in the feature space to model the spatio-temporal77

relationships between pedestrians. According to the central-limit78

theorem, we model the distribution of mean locations via an explicit79

Gaussian Mixture Model (GMM) conditioned on sparse spatio-80

temporal features. Because only one future trajectory (ground81

truth) is observed for one pedestrian during training, we predict82

diverse future trajectories greedily by a teacher-forcing strategy.83

Specifically, the current full trajectory is converted into its mean84

location to represent the current mode. Then, the mean location85

of current mode is directly encoded and then concatenated with86

the sparse spatio-temporal features to predict the single future87

trajectory in the training phase. In the inference phase, we sample88

diverse mean locations from separate components of the GMM89

to predict diverse future trajectories. Sampling in this way can90

ensure that the model treats each mode fairly and thus improve the91

diversity of predicted trajectories to cover multimodal behaviors.92

The social interaction representation in the feature space is93

regarded as the extraction of sparse spatio-temporal features.94
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Fig. 2. Comparison between global interaction (upper branch) and our
proposed sparse interaction (lower branch). Global interaction assumes
a pedestrian interacts with all neighbors at each time step, while our
proposed sparse interaction assumes a pedestrian adaptively interacts
with partial neighbors at each trajectory snippet.

Specifically, a snippet-level embedding divides the observed 95

trajectory with length T into multiple non-overlapping trajectory 96

snippets with length l and then extracts the embedding of each 97

trajectory snippet. As shown in Figure 2, the trajectory snippet 98

integrates multiple continuous trajectory points temporally. Thus, 99

it can model the temporal continuity of interaction by unifying 100

similar interactions at multiple time steps into a single interaction 101

in a trajectory snippet. Subsequently, a sparse spatial interaction is 102

built to drop superfluous neighbors at each trajectory snippet. For 103

instance, the pedestrian interacts with its partial neighbors at each 104

trajectory snippet, as illustrated in the lower branch of Figure 2. 105

Moreover, we capture the snippet-level temporal dependencies 106

among the snippets, reducing the computation complexity from 107

O(T 2) to O(T 2/l2) and maintaining the prediction accuracy. 108

Four-fold benefits are brought by our IMP in pedestrian 109

trajectory prediction: 1) Interpretable multimodal motion behaviors. 110

The learned GMM connects the multimodal motion behaviors to 111

the physical world instead of an inscrutable space. Thus, the mean 112

location can provide semantic information (motion behavior) of a 113

specific mode. As illustrated in Figure 1, the mean location marked 114

by the right yellow star could indicate the pedestrian will turn 115

right. Furthermore, predicting the future trajectory of the turning 116

right mode via the mean location provides the rationale behind 117

the prediction. 2) Friendly visualization. The mean location can 118

be visualized to reflect the distribution of multimodal behaviors 119

in the 2D coordinate, without the post-processing of trajectory 120

prediction. Thus, it can accelerate intelligent systems such as 121

autopilot to understand the pedestrian’s multimodal behaviors. 3) 122

Well theoretic feasibility. The mean location follows a normal 123

distribution approximately according to the central-limit theorem, 124

supporting the feasibility of estimating the distribution of the 125

mean locations. 4) Effective spatio-temporal feature extraction. 126

The sparse spatio-temporal features could reduce the superfluous 127

interactions and model the temporal continuity of interaction. It 128

contributes to achieving a better performance as shown in Table 4. 129

Extensive experiments on ETH [13], UCY [14], Stanford 130

Drones Dataset (SDD) [15], nuScenes [16], and Argoverse [17] 131

show that our IMP outperforms the state-of-the-art methods. 132

Besides, the ablation study and visualization results validate the 133

effectiveness of the proposed interpretable intention representation 134

and social interaction representation. What’s more, our method is 135
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able to achieve a controllable prediction by customizing the cor-136

responding mean location, which is very critical to understanding137

how the pedestrian moves in some emergency situations.138

In summary, the contributions of this paper are summarized139

below.140

• We propose a novel interpretable multimodality predic-141

tor for pedestrian trajectory prediction, with advantages142

in interpretable motion behaviors, friendly visualization,143

theoretical feasibility, and controllable prediction.144

• We propose to extract the sparse spatio-temporal features to145

reduce the superfluous interactions and model the temporal146

continuity of interaction. It is also beneficial to reduce147

the time complexity and maintain/improve the accuracy in148

temporal dependence capturing.149

• Extensive experiments on two benchmarks demonstrate the150

efficacy of our proposed method against existing state-of-151

the-art methods.152

This paper extends our previous conference paper [18], and the153

new major contributions include:154

• A simple yet effective interpretable intention representation,155

i.e., mean location, is proposed to represent multimodal156

behaviors, thus enabling the prediction of diverse future157

trajectories.158

• A snippet-level embedding is added to extend the sparse159

interaction proposed in the conference paper from each160

time step to each trajectory snippet, thus modeling the161

temporal continuity of interaction and reducing the time162

complexity in capturing temporal dependence.163

• More technical details about the proposed method are164

presented.165

• More experiments (including comparisons on the Stanford166

Drone Dataset and more ablation studies) are carried out to167

evaluate the effectiveness of proposed method.168

The rest of the paper is organized as follows. Section 2 briefly169

reviews related work in pedestrian trajectory prediction. Subse-170

quently, we present the technical details of the proposed method in171

Section 3. Experimental results are presented in Section 4. Finally,172

we conclude this paper in Section 5.173

2 RELATED WORK174

We briefly review related work in spatio-temporal feature extraction,175

multimodal trajectory prediction, and self-attention for pedestrian176

trajectory prediction.177

2.1 Spatio-Temporal Feature Extraction178

Prior works capture temporal dependence on the observed individ-179

ual trajectory and model the spatial interaction by integrating neigh-180

bors’ motion to obtain spatio-temporal features. Many works [7],181

[19], [20] employ the Recurrent Neural Networks (RNN) [21]182

or its variants such as LSTM [22] and GRU [23] to capture183

the temporal dependence of trajectory. Correspondingly, the184

local [19] and global [7] pooling mechanisms are leveraged to185

model spatial interaction. The local one integrates hidden states of186

neighbors within a certain radius, while the global one integrates187

hidden states of all neighbors involved in a scene. Due to the188

inefficiency of recurrent architectures, the temporal convolutional189

networks (TCNs) [12], [24] and the self-attention mechanism [11],190

[25] are employed to capture temporal dependence in an efficient 191

parallel computation manner. 192

Since the graph structure can better describe the trajectory 193

scene, another track of works models the spatial interaction 194

using the graph. Social-BiGAT [8] employs the Graph Attention 195

Network (GAT) [26] on the hidden representation of pedestrians 196

to model spatial interaction. To better represent the interaction 197

between pedestrians, Social-STGCNN [12] directly models the 198

trajectory as a graph, where the edges weighted by the pedes- 199

trian relative distance represent interactions between pedestrians. 200

EvolveGraph [27] builds a dynamic interaction graph to represent 201

multiple possible interaction types by its edge. A multi-class edge 202

classification task is conducted to recognize the interaction types 203

of two pedestrians. Specially, “no edge” is one interaction type that 204

implies no interaction between pedestrians. 205

Sun et al. [28] indicate there are strong interactions between 206

some distant pedestrian pairs, hence inviting sociologists to 207

manually divide the pedestrians into different groups according 208

to specific physical rules and sociological actions. Motivated by 209

the success of Transformer [25], some works [11], [29] employ 210

the Transformer architecture to extract spatio-temporal features. 211

In addition, several works [30], [31], [32], [33], [34] leverage the 212

visual features of the scene to improve the spatio-temporal features. 213

This paper aims to represent multimodal behaviors and predict 214

diverse future trajectories without using visual features, like most 215

works. 216

Prior methods model the global interaction [7], [9], [11], 217

[12] at each time step, thus inevitably introducing superfluous 218

spatial interactions from non-interactive neighbors. Moreover, 219

global interaction is time-independent, and thus cannot model 220

the temporal continuity of interaction. In contrast, our sparse sptio- 221

temporal features build a sparse interaction at each snippet to reduce 222

superfluous interactions and model the temporal continuity of 223

interaction. In addition, capturing the temporal dependence among 224

snippets has lower computation complexity than prior methods 225

among time steps. 226

2.2 Multimodal Trajectory Prediction 227

Given the observed trajectory of a pedestrian, there are multiple 228

reasonable future trajectories that the pedestrian could take. 229

Hence, pedestrian trajectory prediction is inherently a multimodal 230

trajectory prediction task [7], [30]. Many works [10], [29], [30], 231

[35] encode the future trajectories into a CVAE-based latent space 232

and then sample multiple latent variables to represent multimodal 233

behaviors. Then, the multimodal future trajectories are predicted by 234

decoding these sampled latent variables. Specifically, PECNet [10] 235

treats multimodal behaviors as multimodal future destinations and 236

encodes the destinations into a standard Gaussian distribution 237

based on CVAE. SGAN [7] and SoPhie [32] replace CVAE 238

with a generative adversarial network (GAN) for multimodal 239

trajectory prediction. STAR [11] adds random noise sampled from 240

a prior distribution onto the learned spatio-temporal features to 241

obtain the multimodal future trajectories. In contrast, our IMP 242

represents a specific mode by the mean location of the full 243

trajectory. It has shown its advantages in interpretable mutlimodal 244

motion behaviors, friendly visualization, theoretical feasibility, and 245

controllable prediction. 246

TNT [36] and DenseTNT [37] regard multimodal behaviors as 247

multimodal future destinations, and they focus on vehicle trajectory 248

prediction (VTP). Unlike pedestrian trajectory prediction, VTP 249
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Fig. 3. The framework of our proposed IMP. The naive full trajectories are first normalized by trajectory translation and then fed into the next two
parallel branches. The upper branch models the social interaction representation, where the egocentric observed trajectories are first represented by
the graph representation matrices and then the snippet-level embedding module embeds the snippet of graph representation matrices to obtain the
snippet spatio-temporal embedding E and the isolated snippet temporal embedding Et. Next, E and Et are fed into the sparse learning module
to extract sparse interaction features Fs. Et is fed into a standard Transformer block to capture snippet-level temporal dependence features Ft.
Fusing Fs and Ft, the sparse spatio-temporal features F are generated as the social interaction representation to represent observed information.
The lower branch models the proposed interpretable intention representation. It converts the egocentric full trajectory to its mean location with a
specific mode. Supervised by the mean location, a Gaussian Mixture Model (GMM) is estimated based on F to obtain the distribution of the mean
locations. Meanwhile, we encode the mean location and then concatenate with F to predict the future trajectory. In inference, we sample multiple
mean locations from the GMM to predict diverse future trajectories, which can cover multimodal behaviors.

could use the HD map, which contains multiple helpful traffic250

elements (e.g., lane and traffic sign), to restrict the movement of251

traffic agents. Thus, they directly sample abundant destinations252

according to the lanes. Then, regression and scoring are performed253

on the sampled destinations to optimize and filter the trajectories.254

However, the only provided information in pedestrian trajectory255

prediction is the trajectory, resulting in weak physical constraints256

for moving pedestrians. Thus, pedestrians have much larger moving257

flexibility compared with vehicles. It is challenging to model the258

distribution of multimodal motion behaviors in the physical world259

without the physical constraints in such a flexible scene. In contrast,260

the mean location is an average of trajectory, which can model261

the multimodal motion behaviors into a Gaussian distribution in262

the physical world. Also, the destination/middle point is an exact263

position, i.e., the last or middle point. It requires the model to264

sample the destination/point with high accuracy, leading to greater265

difficulty in sampling. In contrast, the mean location as an average266

of trajectory smooths the future state, being a coarse position. The267

coarse position provides a higher error-tolerant rate than the exact268

position in sampling.269

2.3 Central-Limit Theorem270

The central-limit theorem (CLT) is an essential concept in statistics.271

It proves that the summation or mean of independent random272

variables tends to follow a normal distribution, even the original273

random variables are not normally distributed.274

Classic CLT is built on independent and identically distributed 275

(i.i.d.) random variables, while many works [38], [39], [40], [41] 276

have evaluated the effectiveness of CLT on dependent random 277

variables. For example, the CLT also works on a mixing sequence, 278

meaning the data-generating process is asymptotically independent. 279

Namely, the random variables temporally far apart from one another 280

are nearly independent. As for the trajectory similar to a time series 281

sequence, it is natural that two distant trajectory points tend to 282

be independent, such as the beginning point and the destination. 283

Moreover, the experimental results show that the mean location 284

modeled as the Gaussian distribution works well. Thus, we believe 285

that the CLT for a mixing sequence is worthy of further study in 286

pedestrian trajectory prediction to provide statistical interpretability. 287

2.4 Self-attention 288

The core idea of Transformer [25], i.e., self-attention, has success- 289

fully exhibited its advantage over RNNs [22], [23] on a series of 290

sequence modeling tasks in natural language processing, such as 291

text generation [42] and machine translation [43]. Self-attention 292

decouples the attention into the query, key, and value, which can 293

capture long-range dependencies and take advantage of parallel 294

computation compared with RNNs. To describe the relationship 295

between every pair of elements in the input sequence, self-attention 296

computes attention scores by a matrix multiplication between the 297

query and key. 298

To reduce the computational complexity of Transformer, sparse 299

Transformer [44] is proposed to reduce the length of the sequence 300
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by dropping the elements at a longer distance. Unlike them, our301

proposed sparse interaction employs a sparse attention mechanism,302

which can reduce superfluous interactions in a learnable style303

instead of manually setting the distance.304

3 PROPOSED METHOD305

3.1 Problem Definition306

Pedestrian trajectory prediction aims to predict future location307

coordinates of pedestrians based on the observed trajectory. We308

follow existing methods [11], [45] that assume the spatial trajectory309

coordinates (2D-Cartesian) of pedestrian are preprocessed by the310

tracking algorithm at each time step. The trajectory coordinate of311

pedestrian n at the time step t is denoted by (xn
t , y

n
t ). We observe312

a trajectory from time step 1 to T , and predict the next trajectory313

from time step T + 1 to T + q. Note that the model is required to314

predict diverse future trajectories to cover multimodal behaviors,315

while only a single real future trajectory (ground truth) is provided316

in the dataset to train the model.317

3.2 Method Overview318

We introduce our proposed Interpretabl Multimodality Predic-319

tor (IMP) for pedestrian trajectory prediction, which consists320

of one trajectory preprocessing and two parallel branches, as321

illustrated in Figure 3. Firstly, the trajectory is normalized to322

reduce trajectory variance and improve trajectory prediction.323

Here, we use the egocentric trajectory normalization [46], [47]324

commonly used in vehicle trajectory prediction to obtain the325

egocentric trajectory, which is fed into the next two parallel326

branches. The upper branch illustrates the process of building327

the social interaction representation. Since spatial interaction328

is continuous in temporal, a snippet-level embedding module329

proceeds to embed the snippet of egocentric observed trajectories330

represented by the graph representation matrices (M ) and produces331

snippet spatio-temporal embedding E on the egocentric trajectory332

representation. Subsequently, a sparse learning module models333

the sparse interaction features Fs on E to alleviate superfluous334

interactions. Meanwhile, isolated from the embedding of neighbors335

in E, the snippet temporal embedding Et is fed into a standard336

Transformer block to capture the snippet-level temporal dependence337

features Ft. Afterward, a feature fusion operates on Fs and Ft to338

obtain the sparse spatio-temporal features F .339

The lower branch models the interpretable intention represen-340

tation conditioned on the sparse spatio-temporal feature F and341

predicts diverse future trajectories to cover multimodal behaviors.342

As illustrated in Figure 3, it first converts the egocentric full343

trajectory of a specific mode into its mean location. After that, we344

cluster the mean locations via a Gaussian Mixture Model (GMM),345

which are estimated via a fully connected layer (FC) on F346

supervised by the mean location. Subsequently, we predict the347

multimodal future trajectories greedily with the teacher-forcing348

strategy [48] due to the given single future trajectory (ground349

truth). Specifically, the mean location in the current scene is350

directly encoded and then concatenated with F to predict the351

single future trajectory in the training phase. While in the inference352

phase, multiple mean locations are sampled from the separated353

components of the GMM to predict diverse future trajectories, and354

thus cover multimodal behaviors.355

3.3 Trajectory Normalization 356

Trajectory normalization [10], [11] is capable of reducing trajectory 357

variance and improving prediction performance. Here, we employ 358

the egocentric trajectory normalization [46], [47], [49], [50] 359

commonly used in vehicle trajectory prediction to normalize the 360

input trajectory. 361

Given the naive full trajectory X ∈ RN×(T+q)×D of N
pedestrians in the scene, where T denoted the length of observed
trajectory, q is the length of future trajectory and D denotes the
dimension of trajectory coordinate, we center the T trajectory point
of X for each pedestrian in the coordinate system to obtain the
end-observed-centered trajectory X̄ ∈ RN×(T+q)×D, which is
generated by a trajectory subtraction operation. Specifically, the
trajectory points of pedestrian n at time step t ∈ {1, ..., T + q}
subtract the trajectory point at the time step T as follows:

X̄t
n = Xt

n −XT
n , (1)

where Xt
n and XT

n are the trajectory points at time steps t and T , 362

respectively. X̄t
n is the end-observed-centered trajectory point of 363

pedestrian n at time step t. The end-observed-centered trajectory 364

X̄n ∈ R(T+q)×D of pedestrian n is generated by stacking 365

{X̄t
n}

T+q
t=1 . Hence, X̄ is generated by stacking {X̄n}Nn=1. 366

As the translation destroys the relative positions between a
pedestrian and its neighbors, we calculate the relative displacement
between a pedestrian and its neighbors to store the relative positions.
From the view of the pedestrian n, the relative displacement ∆t

n|j
between pedestrian n and its neighbor j at time step t is calculated
by a trajectory subtraction as below:

∆t
n|j = Xt

n −Xt
j , (2)

where Xt
n and Xt

j are trajectory points of pedestrian n and 367

neighbor j, respectively, at the time step t. The relative displace- 368

ment ∆n|j ∈ R(T+q)×D between pedestrian n and its neighbor 369

j can be obtained by stacking {∆t
n|j}

T+q
t=1 . Accordingly, the 370

relative displacement ∆n ∈ RN×(T+q)×D between pedestrian 371

n and its N neighbors is generated by stacking {∆n|j}Nj=1. 372

Note that the pedestrian self belongs to one of its neighbors 373

for computational convenience. Hence, the relative displacement 374

∆ ∈ RN×N×(T+q)×D for each pedestrian is gained by stacking 375

{∆n}Nn=1. 376

After that, we use a trajectory addition operation between
the relative displacement and end-observed-centered trajectory to
restore the relative positions. To be specific, the end-observed-
centered trajectory X̄n of pedestrian n adds the relative displace-
ment ∆n|j to restore the relative position of neighbor j as:

X̂n|j = X̄n +∆n|j , (3)

where X̂n|j ∈ R(T+q)×D is the egocentric full trajectory of 377

neighbor j refer to pedestrian n. Accordingly, the egocentric full 378

trajectory X̂n ∈ RN×(T+q)×D of pedestrian n is obtained by 379

stacking {X̂n|j}Nj=1. 380

By stacking {X̂n}Nn=1, the egocentric full trajectory X ∈ 381

RN×N×(T+q)×D is generated to represent the trajectory scene. 382

The egocentric observed trajectory Xobs ∈ RN×N×T×D is 383

produced by deleting the future part of X. Note that the whole 384

computation including the stacking operation can be processed 385

parallel to reduce time consumption. 386
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GRM (𝑀)

(𝑁 = 2 for illustration)

S-STE (𝐸)

S-TE (𝐸𝑡)

(𝑙 = 2 for illustration)

Fig. 4. Illustration of snippet-level embedding. It embeds the non-
overlapped snippets on the egocentric observed trajectory to model
the temporal continuity of interaction.

3.4 Snippet-level Embedding387

Since the interaction is a continuous process, we employ a snippet-388

level embedding module on egocentric observed trajectory Xobs.389

It unifies the similar interactions over multiple continuous time390

steps into a single interaction at a snippet and produces the snippet391

spatio-temporal embedding E.392

As illustrated in Figure 4, we present the value of Xobs with
the graph representation matrices (GRM) {Mn}Nn=1 ∈ RN×T×D ,
in which each element is a D-dimension trajectory coordinate,
the row represents the trajectory coordinate of each neighbor at a
time step and the column represents the trajectory coordinate of
a neighbor at each time step. Based on the assumption that the
direction of a trajectory will not change too abruptly, we divide
an observed trajectory sequence with length T into multiple non-
overlapped trajectory snippets with length l marked by the blue
dotted rectangular in Mn. To embed the snippet, a 1D convolution
kernel o with size k, stride s, and zero padding is operated on the
column of each Mn to obtain the snippet-level spatio-temporal
embedding En for pedestrian n, where k = s = l due to the
non-overlapped snippets. An example with l = 2 and N = 2 is
illustrated in Figure 4. The process is described as

En = Mn ⊗ o+ bm, (4)

where Mn ∈ RN×T×D, En ∈ RN×L×De , and L = T/l. ⊗393

is the convolutional operation with the learnable kernel o. bm394

is a learnable bias following o. By stacking {E1, .., EN}, we395

obtain the final snippet spatio-temporal embedding (S-STE) E ∈396

RN×N×L×D .397

Afterward, we isolate the embedding of neighbors on E by398

stacking the first column of {En}Nn=1 to obtain the snippet-level399

temporal embedding (S-TE) Et ∈ RN×1×L×De , as shown in400

Figure 4. E and Et are fed into the next sparse learning module401

to model sparse spatial interaction. Thanks to the snippet-level402

embedding, the sparse spatial interaction could model the temporal403

continuity of interaction. Meanwhile, Et is used to capture the404

snippet-level temporal dependence by a standard Transformer [25]405

block. The snippet-level embedding also can reduce the computa- 406

tion complexity of capturing temporal dependence from O(T 2) to 407

O((T/l)2) and maintain or even improve prediction performance, 408

as discussed in Section 4.2.2. 409

3.5 Sparse Spatio-temporal Feature Extraction 410

We extract the sparse spatio-temporal features F to model our social 411

interaction representation by building sparse spatial interaction 412

features Fs and capturing snippet-level temporal dependence 413

features Ft. Concretely, Fs is modeled by our sparse learning 414

module with sparse cross attention, while Ft is captured by the 415

Transformer [25] block with standard self-attention. Finally, F is 416

obtained by a feature fusion between Fs and Ft. 417

3.5.1 Sparse Learning Module 418

The snippet-level embedding encapsulates the continuous interac- 419

tion into a snippet and thus can model the temporal continuity 420

of interaction. Here, our sparse learning module (SLM) aims 421

to reduce superfluous spatial interactions generated from the 422

non-interactive neighbors at each snippet. It inputs the snippet- 423

level spatio-temporal embedding E and temporal embedding Et, 424

and outputs the corresponding sparse spatial interaction Fs. The 425

core design of SLM is like a dictionary lookup. Considering the 426

pedestrian as query and its neighbors as keys, the goal of SLM is 427

to find the interactive keys and drop the superfluous keys out. This 428

relationship between the query and its keys is represented by a 429

sparse attention matrix, which is generated by the designed sparse 430

attention learning block, as illustrated in Figure 5. In the sparse 431

attention matrix, the superfluous keys are quantified to zero, while 432

the interactive ones are quantified to interaction weights. 433

To build the dictionary lookup, we first employ a linear 434

transformation on E and Et to obtain the keys and query, 435

respectively. Then, both the keys and query are decomposed into 436

H subspaces by splitting the feature dimension into H equal parts. 437

In subspace h ∈ {1, ...,H}, the cross-attention mechanism is used 438

to compute the global attention Ah ∈ RN×L×1×N . By stacking 439

{Ah}Hh=1, the multi-head global attention A ∈ RN×L×H×N is 440

obtained to represent the feature similarities between the query and 441

keys, measured by the dot-product of the pair-wise query and key. 442

The process is as follows: 443

Q = splitting(ϕ(Et,W
Q)),

K = splitting(ϕ(E,WK)),

A = Softmax(
QKT

√
d

),

(5)

where ϕ(·, ·) denotes linear transformation. WQ ∈ RDe×DQ and 444

WK ∈ RDe×DK are weights of the linear transformation. Q = 445

{Qh}Hh=1 and K = {Kh}Hh=1 are the query and key in each sub- 446

space, respectively.
√
d =

√
DQ is a scaled factor [25] in ensuring 447

numerical stability. {Ah}Hh=1 = Softmax({QhK
T
h }Hh=1/

√
d). 448

Since A represents the attention between a query and its all 449

keys, the superfluous attention from the superfluous keys could 450

disturb the trajectory prediction. Thus, a sparse attention learning 451

block is designed to learn a sparse attention matrix, as illustrated 452

at the right of Figure 5. It first receives the multi-head global 453

attention A to measure whether there is an interaction or not 454

by considering various feature similarities comprehensively in H 455

subspaces. Namely, assume a = {ah}Hh=1 represents the feature 456

similarities between a query and a specific key in H subspaces. 457
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Fig. 5. Illustration of our proposed sparse learning module. The multi-
head global attention is first learned to represent the feature similarity.
The subsequent sparse attention learning is used to generate the sparse
attention matrix, which drops the non-interactive neighbors out and
quantifies the interactive.

A set of parameters w = {wh}Hh=1 are learned to judge whether458

the query interacts with the key. To achieve this, we consider the459

head (subspace) dimension of A as the channel and cascade L460

non-linear convolution blocks with 1× 1 kernel on A to obtain the461

fused feature similarities FA, as shown in Figure 5. After that, a462

logistic regression, i.e., sigmoid function, is used to generate an463

attention mask as follows:464

FA = A⊗K + ba,

R = I {σ (FA) ≥ 0.5} ,
(6)

where ⊗ is a convolutional operation. K is the learnable 1 × 1465

convolution kernel. ba is a learnable bias following K. I{·} is the466

indicator function, which outputs 1 if the corresponding inequality467

holds, otherwise 0. σ is the sigmoid function. R is the attention468

mask represented by 0/1 matrices. Since a pedestrian could interact469

with a specific neighbor in a subspace but no interaction in another470

subspace, the last convolution block outputs the feature with 1471

channel, i.e., FA ∈ RN×L×1×N and R ∈ RN×L×1×N , to avoid472

inconsistent interactions in various subspaces.473

Since personal motion strongly influences the future trajectory474

prediction, we assume each pedestrian is self-interactive. Namely,475

we amend R to R̂ by assigning the elements in the main diagonal476

of R to 1. Accordingly, an element-wise matrix multiplication477

between R̂ and A is used to generate a sparse attention Ā ∈478

RN×L×H×N by broadcasting the shape of R̂ same as A.479

Similar to the above consistent interactions in various subspaces
of R, a max-pooling mechanism along the head dimension is oper-
ated on Ā to build the consistent sparse attention Ã ∈ RN×L×1×N ,
whose benefit is evaluated empirically in Section 4.2.3. The
interactive keys and superfluous keys are quantified to zero and non-
zero values in Ā, respectively. Subsequently, we need to normalize
the values of interactive keys to obtain the quantitative weights.
Unfortunately, the naive self-attention [25] uses the “Softmax” on
the attention score to obtain probability representation, which leads
to a side-effect: the sparse matrix will be back to a dense matrix
again because Softmax outputs non-zero values for zero inputs. It

leads to the sparse interaction will be back to a global interaction
again. Hence, a sparse-softmax function is employed to prevent
this problem as follows:

âi =
exp(ãi) · ri∑D

j exp(ãj) · rj + ϵ
, (7)

where ãi is the i-th element at the normalized dimension of Ã. ri is 480

the i-th element at the normalized dimension of R̂. · is an element- 481

wise multiplication operation. D is the number of normalized 482

dimension of Ã and R̂. ϵ is a neglectable small constant to ensure 483

numerical stability. âi is the i-th element of the final sparse attention 484

matrix Â. 485

After above processes, the final sparse attention matrix Â can 486

represent the results of the above dictionary lookup. Each row 487

of Â is regarded as the interaction between a pedestrian and its 488

neighbors in a specific snippet, where the zero value is a mask to 489

drop superfluous key out, while the non-zero value is an interactive 490

weight to quantify the interaction. 491

Afterward, we extract the sparse interaction feature on the 492

sparse attention matrix Â. Based on the Transformer [25] archi- 493

tecture as illustrated in Figure 5, we make a weighted summation 494

among the embedding of interactive keys in E into Et. The subse- 495

quent feed-forward network incorporated with residual connection 496

is used to increase non-linearity and extract deep interactive features 497

as follows: 498

F̂s = LN(ÂEWs + Et),

Fs = LN(FFN(F̂s) + F̂s),
(8)

where Ws ∈ RDe×Dg is the learnable parameter matrix. LN is the 499

layer normalization. FFN is the feed-forward network implemented 500

by two fully-connected layers with a RELU activation function. 501

Fs is the final interactive feature of our proposed sparse spatial 502

interaction. 503

Due to the non-differentiable sign function, i.e., Eq. (4), we 504

customize the backpropagation by a skip gradient [51] strategy 505

illustrated in Figure 5 to ensure the whole network can be trained 506

end-to-end. Specifically, we skip the process to compute the 507

gradient of the sigh function and propagate the gradient from 508

the back layer to the front layer, i.e., from the operation of element- 509

wise multiplication to the sigmoid function. 510

3.5.2 Temporal Dependence Learning 511

The future trajectory is not only influenced by the spatial interaction 512

from its neighbors but also by the temporal dependence on the 513

observed personal trajectory. Focusing on the temporal dependence, 514

we input the snippet temporal embedding Et into a standard 515

Transformer block to capture the snippet-level temporal dependence 516

features Ft. Note that Et is first added to the position encoding [25] 517

due to the sequential trajectory in temporal dependence. 518

After obtaining the sparse spatial interaction features Fs and 519

the snippet-level temporal dependence features Ft, we fuse them 520

to gain the sparse spatio-temporal features F by a feature addition, 521

which is regared as the social interaction representation. 522

3.6 Interpretable Intention Representation 523

Our IMP builds the interpretable intention representation of 524

multimodal behaviors conditioned on the extracted sparse spatio- 525

temporal features F . It contains two steps: representing multimodal 526

behaviors by mean location and clustering mean location via a 527
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(A) Representing each mode with mean location

(B) Representing a specific mode with mean location

(turning right for illustration)
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Fig. 6. Illustration of mean location. The observed trajectory and the future
trajectory are concatenated and then converted into its mean location to
represent multimodal behaviors. According to the central-limit theorem,
the mean locations of a specific mode follow a normal distribution. A
GMM is used to model multiple modes jointly.

GMM according to the central-limit theorem. The detailed process528

is described immediately below.529

Representation by Mean Location. Due to the the inherent530

multimodality about the pedestrian’s motion, the pedestrian per-531

forms multimodal behaviors in future, such as turning left/right, or532

going straight, given the similar observed trajectory as illustrated533

in Figure 6 (A). We represent these multimodal behaviors by534

their mean location of the full trajectory, i.e. the green observed535

trajectory concatenated with the red dotted future trajectory.536

We use the training data in ETH [13] and UCY [14] to give an537

intuitive evaluation about the mean location representing motion538

behavior. As shown in Figure 7, (A) shows the selected full539

trajectories with similar observed trajectories, i.e., going straight.540

Note that the full trajectories are first shifted to the origin and541

then rotated to align the positive direction to the negative X-axis542

in the 2D cartesian coordinate system. (A) indicates the future543

behaviors are multimodal, such as going straight, turning left and544

right, conditioned on similar observed trajectories. We sample full545

trajectories from (A) to illustrate that the mean location (yellow546

star) follows the motion tendency of the future trajectory as shown547

in (C) and (D). (B) shows the clustered mixture distribution of548

mean locations calculated from the full trajectories in (A) by the549

Expectation-Maximization (EM) algorithm, where different colors550

represent different motion behaviors.551

Thus, the mean location generated from the full trajectory552

can provide semantic information (motion behavior) to interpret553

future behavior. Predicting the future trajectory of the a specific554

mode, such as turning left, via the right mean location provides555

the rationale behind the prediction. Furthermore, the mean location556

achieves a controllable prediction. Due to the 2D coordinate,557

we can customize the mean location in coordinate system to558

represent desired mode. Such as, setting the mean location right the559

pedestrian and then predicting corresponding future trajectory could560

understand how the pedestrian turns right in future as illustrated in561

Figure 8.562

Mean Location Distribution. Since the mean location comes563

from the full trajectory, we cannot acquire it directly in inference564

time. Thus, a Gaussian Mixture Model (GMM) is estimated565

on the extracted sparse spatio-temporal features F to represent566

the distribution of mean location supported by the central-limit567

theorem.568
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Fig. 7. Visualization of the mean location from training data. (A) is the
sampled full trajectories with similar going straight observed trajectory.
(B) is the clustered distribution of the mean locations from (A) by
the Expectation-Maximization (EM) algorithm. (C) and (D) are the full
trajectories and its mean location sampled from (A).

For a specific mode, the pedestrian performs various motion 569

behaviors due to the randomness of the pedestrian’s motion, such as 570

turning right at various angles or distances, as illustrated in Figure 6 571

(B). Thus, there are multiple full trajectories {Yi}mi=1 = {yt
i}

T+q
t=1 572

with the specific mode given the similar observed trajectory, where 573

m is the number of full trajectories. Then, we convert these full 574

trajectories into its mean locations as 575

yi =

∑T+q
t=1 yt

i

T + q
, (9)

where T + q is the length of the full trajectory, and yi is the mean 576

location of the full trajectory Yi. 577

Once that, ȳi has well theoretical feasibility to estimate its 578

distribution according to the central-limit theorem described in 579

Theorem 1. 580

Theorem 1 (Central-limit theorem). Let {X1,X2, ...,Xn} be 581

random samples drawn from a population with an overall mean 582

µ and finite variance σ2. If X̄n is the sample mean of n 583

samples, the distribution of X̄n approximately obeys a normal 584

distribution with the mean µ and variance σ2/n. 585

The classic central-limit theorem (CLT) is built on independent 586

and identically distributed (i.i.d.) random variables, while the 587

trajectory is a time series sequence owing to dependence. Despite 588

that, many works [38], [39], [40], [41] have verified that the CLT 589

still works for the dependent sequence in practice. For example, 590

the mixing sequence similar to the trajectory is asymptotically 591

independent in data generation. Namely, the data points in sequence 592

temporally far apart from one another are nearly independent. 593

Naturally, two distant trajectory points are independent, such as the 594

beginning point and the destination. We refer to a lecture1 which 595

introduces details about CLT on a mixing sequences. In this way, 596

the CLT built on the i.i.d. cases will still be applicable. 597

Let us assume that a specific mode is a mixing sequence con- 598

sisting of m(T + q) samples of some continuous two-dimensional 599

1. https://www.stat.cmu.edu/∼cshalizi/754/2006/notes/lecture-27.pdf
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variables {yt
i |t ∈ {1, ..., T + q}, i ∈ {1, ...,m}}, namely the600

trajectory points of the full trajectory. These samples follow a601

conditional distribution p(y|c) with the expectation u and the602

variance Σ, where c is the prior information, i.e., observed603

trajectory. According to the CLT, the mean location of the samples604

follows the normal distribution N (u, Σ̄) approximatively, where605

Σ̄ = Σ/[m(T + q)]. Due to the multiple behaviors, e.g., turning606

left/right and going straight, there are multiple normal distributions607

{N (µi, Σ̄i)}Ki=1 to model the mean location of multimodal608

behaviors, where K is the number of modes. Hence, a GMM q(y|c)609

is used to model the distribution of the multimodal behaviors jointly610

as below:611

q(y|c) =
K∑

k=1

αkN (µk,Σk) (10)

where K is the number of Gaussian components, i.e., multiple612

modes. αk, µ, and Σk are the probability, mean and covariance613

matrix of the k-th Gaussian component, respectively.614

Then, we estimate the GMM conditioned on the prior infor-615

mation. Since the future trajectory is influenced by the temporal616

dependence and spatial information together, the sparse spatio-617

temporal features F are considered as the prior information618

to estimate the parameters of the GMM by a fully connected619

layer (FC). Due to the single provided real future trajectory (ground620

truth) in each training iteration, we use the mean location ȳ of T+q621

samples generated from the full trajectory of the current iteration to622

estimate the mean location of the population. Therefore, a negative623

log-likelihood loss function LNLL is leveraged to optimize the624

GMM iteratively supervised by ȳ as follows:625

LNLL =
−
∑N

n=1 log(P(ȳ|
∑K

k=1 α̂kN (µ̂k, Σ̂k)))

N
, (11)

where α̂k, µ̂k, and Σ̂ are the estimated probability, mean, and626

covariance matrix of the k-th Gaussian component, respectively.627

N is the number of pedestrians.628

After obtaining the GMM, we can sample multiple mean629

locations to represent the multimodal behaviors and then predict the630

diverse future trajectories via the sampled mean locations to cover631

multimodal behaviors. Thanks to the mean location, the prediction632

process is intepretable and controllable as described in Section 4.4.633

Furthermore, it could reduce the “stress” of the model compared634

with estimating the specific mode via the full trajectory and thus635

achieve better performance, as discussed in Section 4.2.1.636

3.7 Multimodal Trajectory Prediction637

After obtaining the social interaction representation and inter-638

pretable intention representation, the final process predicts diverse639

future trajectories to cover multimodal behaviors. Due to the single640

provided future trajectory (ground truth), the model will collapse641

into “mean mode” and thus fail to cover multimodal behaviors642

if we directly learn multiple future trajectories supervised by the643

single ground truth [7]. Thus, we predict them greedily with the644

teacher-forcing strategy in the training phase, while the diverse645

future trajectories are predicted in the inference phase.646

Greedy Prediction in Training Phase. In the training phase,647

we employ the teacher-forcing strategy to avoid weak capacity of648

model in early training stage. Namely, we directly encode the mean649

location ȳ of the current iteration instead of sampling one from the650

GMM to gain the feature of mean location. Then, we concatenate651

the feature of mean location and sparse spatio-temporal features652

F to obtain the predicted trajectory Ŷ of a specific mode via a 653

multilayer perceptron (MLP). The loss function supervised by the 654

ground truth Y is shown by 655

LREG =

∑N
n=1 ||Y − Ŷ||22

N
, (12)

where N is the number of pedestrians. 656

The whole network can be trained in an end-to-end way by 657

minimizing the total loss L as follows: 658

L = λ1LNLL + λ2LREG, (13)

where the λ1 and λ2 are used to balance the total loss L. 659

Multimodal Prediction in Inference Step. In the inference 660

phase, we disentangle the GMM into K separated Gaussian dis- 661

tributions {N (ûk, Σ̂k)}Kk=1 and sample multiple mean locations 662

from each separated component to predict diverse future trajectories. 663

Compared with sampling from the GMM, sampling from the 664

disentangled distributions can ensure the model plays each mode 665

fairly and thus improve the diversity of predicted trajectories. 666

4 EXPERIMENTS AND DISCUSSIONS 667

In this section, we evaluate the pedestrian trajectory prediction 668

performance of our proposed IMP, and carry out detailed ablation 669

studies to explore the performance contribution of each component 670

in IMP. Meanwhile, we compare our method with existing state-of- 671

the-art methods on two standard benchmark datasets. 672

4.1 Experimental Setting 673

Evaluation Datasets. We evaluate our method on ETH [13], 674

UCY [14], Stanford Drones Dataset (SDD) [15], nuScenes [16], 675

and Argoverse [17]. ETH [13] and UCY [14] are the most widely 676

used benchmarks for pedestrian trajectory prediction. They contain 677

four unique traffic scenes, where ETH includes ETH and HOTEL 678

scenes, and UCY includes UNIV and ZARA scenes. There are 679

1, 536 individual pedestrians with challenging interactive scenes, 680

such as pedestrian crossing, group walking, and collision avoidance. 681

Following prior works [10], [11], we divide ETU and UCY into 682

five subsets, where ETH includes ETH and HOTEL subsets, and 683

UCY includes UNIV, ZARA1, and ZARA2 subsets. We use the 684

leave-one-out [10] strategy to execute our method, i.e., training 685

on four subsets and testing on the resting one. The trajectories in 686

ETH-UCY are recorded in the world coordinate system with meter 687

as a unit. We use the egocentric trajectory normalization [46], [47] 688

to normalize the trajectory on ETH-UCY. 689

SDD [15] is a large-scale benchmark for pedestrian trajectory 690

prediction from a bird’s eye view. It collects multi-agent trajectories 691

(e.g., pedestrians, bicyclists, skateboarders, cars, buses, and golf 692

carts) on a university campus. Over 11, 000 individual pedestrians 693

generate more than 185, 000 interactions among pedestrians and 694

40, 000 interactions between pedestrians and scenes. We use 695

standard training and testing splits as in prior works [10], [45]. The 696

trajectories in SDD are recorded in the pixel coordinate system 697

with pixel as a unit. The last point of trajectory is translated into 698

the origin to normalize the trajectory on SDD. 699

nuScenes [16] and Argoverse [17] are two large-scale au- 700

tonomous driving datasets focusing on vehicle trajectory prediction. 701

nuScenes [16] contains 1, 000 driving scenes and the corresponding 702

HD semantic maps with 11 semantic classes sampled at 2Hz. 703

Argoverse [17] consists of 333K driving sequences sampled at 704
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TABLE 1
Ablation study about interpretable intention representation on ETH-UCY in ADE/FDE metrics. The lower the better.

Method ETH HOTEL UNIV ZARA1 ZARA2 Average

LV1 0.57/1.10 0.25/0.45 0.59/1.19 0.40/0.82 0.32/0.67 0.42/0.84
LV2 0.56/1.05 0.26/0.47 0.58/1.18 0.40/0.84 0.32/0.67 0.42/0.84
Ours 0.29/0.47 0.12/0.18 0.29/0.51 0.20/0.35 0.15/0.27 0.21/0.35

SR1 0.38/0.69 0.14/0.23 0.34/0.62 0.26/0.49 0.19/0.35 0.26/0.47
SR2 0.31/0.52 0.14/0.21 0.29/0.52 0.20/0.36 0.16/0.30 0.22/0.38
Ours 0.29/0.47 0.12/0.18 0.29/0.51 0.20/0.35 0.15/0.27 0.21/0.35

K = 1 0.35/0.60 0.15/0.22 0.36/0.64 0.24/0.44 0.20/0.39 0.26/0.45
K = 2 0.31/0.53 0.13/0.20 0.30/0.54 0.20/0.35 0.16/0.29 0.22/0.38
K = 4 0.30/0.50 0.12/0.18 0.30/0.54 0.20/0.36 0.16/0.29 0.21/0.37
K = 5 0.30/0.48 0.13/0.18 0.30/0.53 0.20/0.36 0.15/0.28 0.21/0.36
K = 20 0.29/0.49 0.12/0.18 0.29/0.51 0.20/0.36 0.15/0.27 0.21/0.36

Ours (K = 10) 0.29/0.47 0.12/0.18 0.29/0.51 0.20/0.35 0.15/0.27 0.21/0.35

MEAN 0.14/0.30 0.06/0.11 0.12/0.29 0.09/0.22 0.07/0.17 0.09/0.21

10Hz in dense traffic, where each sequence contains one target705

vehicle for prediction. As this paper focuses on the pedestrian706

trajectory prediction, the map information is deleted to match the707

setting of pedestrian trajectory prediction in a flexible scene.708

We observe trajectory of 8 time steps (3.2 seconds) and predict709

future trajectory of 12 time steps (4.8 seconds) both on ETH-UCY710

and SDD like existing methods. On nuScenes, we observe the711

trajectory of 8 time steps (4 seconds) and predict the next trajectory712

of 12 time steps (6 seconds). On Argoverse, we observe 2 time713

steps (2 seconds) trajectory and predict the subsequent trajectory714

of 3 time steps (3 seconds).715

Evaluation Metrics. We follow the common metrics of prior716

works [7], [19] to evaluate the trajectory prediction performance.717

They are718

• Average Displacement Error (ADE): Average L2 distance719

between the predicted trajectory points and ground-truth720

future trajectory points.721

• Final Displacement Error (FDE): L2 distance between722

the destination of the predicted trajectory and the final723

destination of the ground-truth future trajectory point.724

To evaluate the predicted multimodal future trajectories, we725

compute the ADE and FDE on 20 predicted future trajectories and726

report the minimum ADE and FDE to compare with the existing727

methods fairly.728

Experimental Settings. The trajectories in training set are729

flipped to augment the training data [10], [45]. We set the730

snippet length l = 4 empirically and the snippet-level embedding731

dimension De = 128. The dimensions of DQ and DK in732

the sparse learning module are equal to 128. The number of733

subspaces H is 8. In the sparse attention learning block, we stack734

two 1 × 1 convolution blocks, whose input channels and output735

channels at each layer are set to (8, 16), (16, 16), (16, 16), (16, 1),736

respectively. The hidden dimension of the feed-forward layer is737

256. We use two Transformer [25] blocks to model the snippet-738

level temporal dependence. The hidden and output dimensions739

of the MLP used to encode the mean location are 64 and 128,740

respectively. The number K of the GMM components is 10 and741

1 on ETH-UCY and SDD, repectively. λ1 and λ2 are set to 1 in742

the total loss L. Our method is trained on ETH-UCY using the743

AdamW optimizer for 150 epochs with data batch size 128. The 744

initial learning rate is set to 0.001, decaying by a factor of 0.5 745

with an interval of 40 epochs. On SDD, the initial learning rate is 746

0.01 for 500 epochs with batch size 512. We use the NORMALIZE 747

operation in Pytorch [52] to scale the embedding of large pixel 748

values on SDD. 749

4.2 Ablation Study 750

We conduct a series of ablative experiments to evaluate the 751

performance contribution of each component of our proposed 752

IMP, where each component is replaced by the corresponding 753

counterpart or removed while keeping the others unchanged. 754

4.2.1 Interpretable Intention Representation 755

The major contribution of our proposed method reflects on the 756

proposed interpretable intention representation, which represents a 757

specific mode by the mean location. We first replace it with a pre- 758

viously commonly used latent variable to evaluate its effectiveness. 759

Then, multiple strategies for building the interpretable intention 760

representation are leveraged to investigate the effectiveness of the 761

mean location of the full trajectory. Furthermore, a hyper-parameter 762

calibration is conducted to measure the impact of the number of 763

modes. Finally, we provide an empirical argument to indicate 764

whether the mean location is important for pedestrian trajectory 765

prediction or not. 766

Comparison with Latent Variable-based Methods. We 767

replace our proposed mean location with the latent variable to 768

evaluate its effectiveness. Similar to [10], we conduct an experiment 769

LV1 to encode the future trajectory into a high-dimensional 770

standard Gaussian distribution, i.e., the latent space, by CVAE [53]. 771

A sample (latent variable) is drawn from the latent space to decode 772

the future trajectory conditioned on the sparse spatio-temporal 773

features F . Repeatedly, multiple samples are drawn to predict 774

the multimodal future trajectories in the inference phase. We also 775

conduct an experiment LV2 to encode the mean location of full 776

trajectory into a high-dimensional standard Gaussian distribution 777

similar to LV1. As shown in the first block of Table 1, our method 778

outperforms LV1 and LV2 by a large margin. It validates the 779

efficacy of our proposed IMP to represent multimodal behaviors, 780

which is the major contribution of our method. 781
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Comparison with Other Interpretable Intention Represen-782

tations. Our proposed IMP is dedicated to explicitly generating an783

interpretable representation to reveal the future motion behaviors784

of pedestrians. Besides the mean location of full trajectory, we785

employ two variants SR1 and SR2 to replace the mean location of786

full trajectory. SR1 and SR2 denote the last point (destination) and787

the middle point of full trajectory, respectively. Here, SR2 is the788

⌈T/2⌉-th trajectory point, assuming the length of the full trajectory789

is T . Since SR1 and SR2 carry the motion behavior of full or future790

trajectory, they also can build the intrepretable representation for791

multimodal behaviors. As shown in the second block of Table 1,792

the mean location (Ours) achieves the best performance, indicating793

its effectiveness in representing future behaviors. The results also794

reveal that the mean location (Ours) and the middle point (SR2)795

are better than the destination (SR1) to represent the trajectory. The796

reason could be that the destination or middle point is an exact797

point, it requires the model samples the destination/point with high798

accuracy, leading to greater difficulty in sampling. In contrast, the799

mean location is the mean of observed and future trajectory, being800

a coarse position to represent multimodal motion behaviors. In801

this case, the coarse position provides a higher error-tolerant rate802

than the exact position in sampling. Besides, the destination is803

far from the observed value, leading to higher uncertainty than804

the mean location or middle point. The higher uncertainty suffers805

from difficult destination modeling, leading to poor performance806

even for FDE. In addition, the mean location can reflect the global807

motion tendency, while the destination/middle point can only focus808

on the local one.809

Impact of the Number K of Modes. The components of the810

GMM are considered as the multimodal behaviors in our method.811

We conduct an experiment to analyze the impact of the number812

K of GMM components on prediction performance. Specifically,813

we set K to 1, 2, 4, 5, 10, 20, respectively. As shown in the third814

block of Table 1, K = 1 (single mode) performs worst both on815

ADE and FDE, while K = 10 achieves the best performance. All816

variants sample 20 mean locations from each GMM component817

and report the minimum ADE and FDE to make a fair comparison.818

The results indicate that it needs to balance the number of GMM819

components and the number of sampled mean locations.820

Empirically Argumentation about the Mean Location. We821

present the theoretical support of the mean location in Theorem 1,822

which is leveraged to guide the distribution estimation of a specific823

mode. Here, we provide an empirical argumentation to indicate824

the significance of the mean location for pedestrian trajectory825

prediction. Concretely, we conduct an experiment MEAN to predict826

the future trajectory conditioned on the real mean location, by827

providing the mean location of the full trajectory in advance.828

We employ two simple encoders (MLP) to encode the observed829

trajectory and real mean location. Then, we combine the encoded830

two features and employ a decoder (MLP) to obtain the future831

trajectory prediction. Note that this prediction is determinate832

because we generate a single future trajectory to measure the833

ADE and FDE instead of selecting the best trajectory from 20834

predicted trajectories. The results in the fourth block of Table 1835

show that MEAN achieves a stunning performance, indicating that836

the mean location is crucial for pedestrian trajectory prediction.837

Ablation Study on nuScenes and Argoverse. Moreover, we838

evaluate our major contribution (mean location) in covering the pos-839

sible future motion behaviors of vehicles on nuScenes/Argoverse840

validation set. The map information is removed to match the841

setting of pedestrian trajectory prediction in a flexible scene. We842

employ a special case of sparse graph learning, i.e., assuming a 843

pedestrian does not interact with anyone, to accelerate the training 844

process. All the inputs, including observed trajectory, mean location 845

or its variants, are encoded by a two-layer MLP. As shown in 846

Table 2, the experimental results validate the effectiveness of mean 847

location. Specifically, the first block evaluates the effectiveness 848

of mean location compared with the latent-based method, where 849

LV1 embeds the mean location into a latent space (i.e., a high- 850

dimensional Gaussian space), while LV2 embeds the destination 851

into a latent space. Both of LV1 and LV2 are implemented based 852

on the framework of PECNet [10]. The second block evaluates 853

the effectiveness of mean location compared with the two variants, 854

where SR1 and SR2 denote the last point (destination) and the 855

middle point of the future trajectory, respectively. The third block 856

shows the impact of the number K of modes. 857

TABLE 2
Ablation study about mean location on Argoverse and nuScenes

validation set in ADE/FDE metrics. The lower the better.

Method
nuScenes Argoverse

ADE FDE ADE FDE

LV1 0.98 2.23 3.04 5.10
LV2 0.97 2.00 2.98 4.65
Ours 0.50 1.02 1.27 1.86

SR1 0.57 1.17 1.29 1.89
SR2 0.54 1.10 1.28 1.87
Ours 0.50 1.02 1.27 1.86

K = 1 0.55 1.17 1.42 2.15
K = 2 0.50 1.02 1.27 1.86
K = 4 0.53 1.10 1.32 1.95
K = 5 0.53 1.09 1.34 2.00
K = 10 0.59 1.23 1.55 2.37
K = 20 0.69 1.47 1.79 2.80

4.2.2 Snippet-level Embedding 858

Our snippet-level embedding divides the observed trajectory with 859

length T into multiple non-overlapped snippets with length l and 860

obtains the trajectory embedding on each snippet. In this way, it 861

reduces the computation complexity of Transformer from O(T 2) 862

to O(T 2/l2), as indicated in capturing snippet-level temporal 863

dependence. We conduct an experiment to evaluate its effectiveness 864

in reducing computation complexity while maintaining or even 865

improving the performance. We set the snippet length l to 1, 2, 4, 866

and 8, respectively. l = 1 indicates that previous methods extract 867

spatio-temporal features on each time step. On the contrary, l = 8 868

denotes that the observed trajectory is divided into one snippet 869

with the length as same as the observed trajectory and directly uses 870

MLP to capture temporal dependence. 871

As given in Table 3, snippet-level embedding with l = 1 872

is inferior to the ones with lengths l = 2, 4, or 8. It indicates 873

that it is beneficial to introduce temporal dependence into spatial 874

interaction for trajectory prediction, where spatial interaction 875

becomes continuous. To balance the prediction accuracy and time 876

complexity, we choose l = 4 in our implementation. 877

4.2.3 Sparse Learning Module 878

Our sparse learning module is mainly to reduce the superfluous 879

interactions by learning a sparse attention matrix. To evaluate its 880
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TABLE 3
Ablation study about snippet-level embedding on ETH-UCY in ADE/FDE metrics. The lower the better.

Method ETH HOTEL UNIV ZARA1 ZARA2 Average

l = 1 0.30/0.50 0.13/0.20 0.30/0.53 0.20/0.36 0.15/0.27 0.21/0.37
l = 2 0.30/0.48 0.13/0.19 0.30/0.53 0.19/0.34 0.15/0.28 0.21/0.36
l = 8 0.29/0.48 0.11/0.17 0.30/0.53 0.21/0.37 0.16/0.29 0.21/0.36

Ours (l = 4) 0.29/0.47 0.12/0.18 0.29/0.51 0.20/0.35 0.15/0.27 0.21/0.35

TABLE 4
Ablation study about sparse learning module on ETH-UCY in ADE/FDE metrics. The lower the better.

Method ETH HOTEL UNIV ZARA1 ZARA2 Average

Category Interaction 0.31/0.51 0.13/0.18 0.28/0.51 0.20/0.35 0.16/0.28 0.21/0.36
Full Interaction 0.30/0.51 0.13/0.21 0.30/0.52 0.21/0.38 0.17/0.30 0.22/0.38

Distance Interaction 0.32/0.54 0.14/0.21 0.29/0.51 0.20/0.35 0.16/0.28 0.22/0.37
Ours 0.29/0.47 0.12/0.18 0.29/0.51 0.20/0.35 0.15/0.27 0.21/0.35

TABLE 5
Multimodal trajectory prediction comparison with state-of-the-art methods on ETH-UCY in ADE/FDE metrics. The lower the better.

Model Venue/Year ETH HOTEL UNIV ZARA1 ZARA2 Average

SGAN [7] CVPR2018 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21
Sophie [32] CVPR2019 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.51/1.15
PITF [31] CVPR2019 0.73/1.65 0.30/0.59 0.60/1.27 0.38/0.81 0.31/0.68 0.46/1.00
GAT [8] NeurIPS2019 0.68/1.29 0.68/1.40 0.57/1.29 0.29/0.60 0.37/0.75 0.52/1.07

Social-BIGAT [8] NeurIPS2019 0.69/1.29 0.49/1.01 0.55/1.32 0.30/0.62 0.36/0.75 0.48/1.00
STGAT [54] ICCV2019 0.65/1.12 0.35/0.66 0.52/1.10 0.34/0.69 0.29/0.60 0.43/0.83

Social-STGCNN [12] CVPR2020 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75
SGCN [18] CVPR2021 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65

PECNet [10] ECCV2020 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48
STAR [11] ECCV2020 0.36/0.65 0.17/0.36 0.31/0.62 0.26/0.55 0.22/0.46 0.26/0.53

PCCSNet [45] ICCV2021 0.28/0.54 0.11/0.19 0.29/0.60 0.21/0.44 0.15/0.34 0.21/0.42
IMP (Ours) - 0.29//0.47 0.12/0.18 0.29/0.51 0.20/0.35 0.15/0.27 0.21/0.35

TABLE 6
Multimodal trajectory prediction comparison with state-of-the-art

methods on SDD in ADE/FDE metrics. The lower the better.

Model Venue/Year ADE FDE

Sophie [32] CVPR2019 16.27 29.38
SGAN [7] CVPR2018 27.23 41.44
Desire [30] CVRP2018 19.25 34.05

CF-VAE [32] CVPR2019 12.60 22.30
SimAug [55] ECCV2020 10.27 19.71
PECNet [10] ECCV2020 9.96 15.88

PCCSNet [45] ICCV2021 8.62 16.16
IMP (Ours) - 8.98 15.54

effectiveness, we employ the full interaction implemented by a881

standard self-attention [57], distance-based interaction implemented882

by a distance-weighted graph, and category interaction [27]883

implemented by a classification task to replace our space learning884

module while keeping others fixed. As demonstrated in Table 4,885

our method achieves the best performance on average. The reason886

could be that our method removes some superfluous interactions887

TABLE 7
Comparison of multimodal trajectory prediction between our method and
two reproduced methods on nuScenes and Argoverse validation set in

ADE/FDE metrics. The lower the better.

Method
nuScenes Argoverse

ADE FDE ADE FDE

STAR-V [11] 1.19 2.89 2.62 4.33
PECNet-V [10] 0.97 2.00 2.98 4.65
HOME-V [56] 0.57 1.17 1.29 1.89

DenseTNT-V [37] 0.81 1.77 2.09 3.32

Ours 0.50 1.02 1.27 1.86

that disturb the model’s prediction. For the same performance in 888

ADE with Category Interaction, we speculate that the dynamic 889

graph enforces the interaction into numerable categories, which 890

is also a way to reduce the interaction, similar to removing 891

superfluous interaction. In contrast, our sparse learning module 892

not only judges whether two pedestrians interact with each other 893

but also quantifies the interaction, not disturbing the number of 894

categories of interaction. 895
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In addition, we evaluate the effectiveness of max-pooling896

used to build a consistent sparse attention matrix in reducing897

superfluous interactions. As discussed above, the interaction could898

be inconsistent in various subspaces. Therefore, we generate899

the mask matrix R with a single head and use a max-pooling900

mechanism on global attention A to build consistent sparse901

attention. To verify the contribution of this operation, we generate902

R with various heads as the same as A. Then, an element-wise903

multiplication between A and R generates a sparse attention904

matrix with multiple heads. As the results in Table 4 show, it905

leads to performance degradation in ADE/FDE from 0.21/0.35906

to 0.22/0.38 on average. This indicates the effectiveness of max-907

pooling in building consistent interaction.908

4.3 Comparison with State-of-the-Art Methods909

This section will compare our method with state-of-the-art mul-910

timodal trajectory prediction methods on ETH [13], UCY [14],911

SDD [15], nuScenes [16], and Argoverse [17].912

ETH-UCY. Table 5 presents the comparison results of our913

method with state-of-the-art methods in ADE and FDE metrics.914

Our method significantly outperforms all the competing methods.915

Specifically, our method improves the performance of the previous916

best method PCCSNet [45] from 0.42 to 0.35 on FDE while917

obtaining the same ADE. PCCSNet [45] saves the hidden state of918

the full trajectory in memory and then selects the top ranked hidden919

states to represent multimodal behaviors. Note that the memory920

space can be regarded as a high-dimensional latent space.921

Moreover, our method improves the average ADE/FDE scores922

of the latent variable-based methods STAR [11] and PECNet [10]923

from 0.26/0.53 and 0.29/0.48 to 0.21/0.35. They are the924

previous second and third best methods, respectively. All previous925

methods embed the multimodal behaviors into a latent space926

forcibly and thus the representation of a specific mode is not927

interpretable.928

In contrast, our method employs the simple yet interpretable929

intention representation to represent multimodal behaviors. It can930

reduce the “stress” of converting the full trajectory into a latent931

space. Besides, modeling the mean location can avoid the model932

fitting the trivial detail of trajectory and enable a better convergence933

supported by the central-limit theorem.934

Note that our method employs sparse interaction to reduce935

superfluous interactions; STAR [11] and PECNet [10] leverage936

global interaction that is suffered by superfluous interactions, while937

PCCSNet [45] gives up interaction. The results also reveal that938

our proposed sparse interaction outperforms global interaction939

and the case without any interaction. This proves that it is940

beneficial to preserve effective interaction and meanwhile remove941

the superfluous interactions to facilitate trajectory prediction.942

SDD. We further evaluate our method on the commonly used943

large-scale dataset SDD. As the results in Table 6 show, our944

method improves the previous best latent variable-based method945

PECNet [10] from 9.96/15.88 to 8.93/15.46 in ADE/FDE. It946

indicates the effectiveness of our proposed IMP against latent947

variable-based methods.948

Compared with PCCSNet [45], our method improves the949

FDE from 16.16 to 15.46 and achieves a comparable ADE. The950

underlying reason for the minor decline in ADE is that PCCSNet951

prioritizes ADE to calculate the prediction performance, while952

our method balances the ADE and FDE to achieve an overall953

performance. Nevertheless, the results still validate the effectiveness954

of our method.955

nuScenes and Argoverse. We reproduce and compare related 956

methods, i.e., latent-based methods (PECNet [10] and STAR [11]) 957

and sampled-based methods (HOME [56] and DenseTNT [37]), 958

with our method on nuScenes [16] and Argoverse [17]. PECNet 959

embeds the destination into a latent space to model the multimodal- 960

ity, while STAR directly samples latent variables in a standard 961

latent space to generate diverse trajectories. HOME and DenseTNT 962

sample multiple goals and then score and select goals to model 963

the multimodality. As this paper focuses on pedestrian trajectory 964

prediction in a flexible motion scene (i.e., without the HD map), 965

we remove the physical information about the HD map to make 966

a fair comparison. The future trajectory is predicted only from 967

the trajectory information. We reproduce four variants, STAR-V, 968

PECNet-V, HOME-V, and DenseTNT-V, referring to the pipeline 969

of STAR, PECNet, HOME, and DenseTNT, to evaluate their 970

prediction in a flexible scene. 971

For HOME-V, we use a Gaussian Mixture Model (GMM) to 972

model the heatmap of the goal and then sample multiple goals from 973

each component of GMM to predict multimodal future trajectories. 974

For DenseTNT-V, we employ a GMM to model the distribution of 975

goals and then sample multiple goals from the GMM as the sparse 976

goals. After that, we score the sampled sparse goals and select the 977

top-K goals. Subsequently, we generate dense goals referring to 978

the midpoint of the region squared by the maximum and minimum 979

of the X and Y coordinates of the top-K sparse goals. Finally, the 980

final trajectories are predicted by those dense goals. All features 981

of the reproduced method are obtained by a two-layer MLP. We 982

employ a special case of sparse graph learning, i.e., assuming a 983

pedestrian does not interact with anyone, to accelerate the training 984

process. Similar to the experiments on ETH-UCY and SDD, 20 985

future trajectories are predicted to represent the multi-modality of 986

future motion state, and the minimum ADE and FDE are reported 987

to fairly compare our method with the reproduced methods. 988

As the experimental results in Table 7 shown, our method 989

outperforms all reproduced methods, indicating the effectiveness of 990

the mean location in a flexible scene. Furthermore, we find HOME- 991

V is superior to DenseTNT-V, indicating the dense goal cannot 992

provide effective information in a flexible scene, i.e., without the 993

map information. 994

4.4 Visualization Results 995

We conduct qualitative analyses of our method on interpretable in- 996

tention representation, sparse spatial interaction, and best-predicted 997

trajectory. 998

Interpretable Intention Representation. Our method predicts 999

the multimodal behaviors based on our proposed simple yet 1000

interpretable intention representation, i.e., the mean location. Each 1001

mean location corresponds to a predicted future trajectory. Since 1002

the mean location is a 2D vector, it can be easily visualized on 1003

the image. As shown in the first row of Figure 8, the predicted 1004

trajectories exhibit obvious multimodality, and their distribution 1005

presents a “tree” structure. The results meet the typical motion 1006

patterns of the pedestrian, such as turning left/right and going 1007

straight. For the mean location marked by the yellow star, the 1008

distribution of the mean location is consistent with the diverse 1009

predicted trajectories. Namely, it indicates that the mean location 1010

is beneficial to improving the interpretability of prediction by 1011

providing the rationale behind it, which is very crucial for safety- 1012

critical applications such as autonomous driving. 1013

Moreover, we find the mean location could achieve an in- 1014

teresting controllable prediction. As shown in the second row 1015
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Interpretable Prediction

Controllable Prediction

Observed Trajectory Ground Truth Predicted Trajectory
Mean Location

Fig. 8. Visualization on the proposed interpratable intention representation. The first row presents the diverse predicted future trajectories and their
corresponding mean locations. The second row presents the controllable predicted future trajectory conditioned on the customized mean location.

Sparse Interaction Matrices
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Fig. 9. Visualization on spatial sparse interaction. To highlight the interactive neighbors, we neglect the self-interaction, i.e., zeroing the diagonal
elements of sparse interaction matrices. The first row presents the interactive scenes, where the trajectory with the minimum FDE is selected from
multimodal behaviors as the predicted trajectory. The second row presents the corresponding interactive matrices, where the white color masks the
non-interactive neighbors. The color bar shows the weights of interaction. Some pedestrians are unmarked because there is no record in the dataset.

of Figure 8, we customize the mean location and then predict1016

the future trajectory. The mean location (yellow star) is sampled1017

randomly around the pedestrian. We can see that the predicted1018

trajectory always follows the direction of the yellow star. In this1019

case, the autopilot can set the mean location at the desired location1020

to understand how a pedestrian walks to the tagged location, which1021

is crucial to avoiding a collision. In addition, the autopilot can only1022

take care of the interesting mode that affects driving by setting1023

the mean location at an interesting region while neglecting other 1024

modes to reduce the computation consumption. 1025

Sparse Spatial Interaction. We randomly select some interac- 1026

tive scenes from each subset of ETH-UCY to visualize the sparse 1027

spatial interaction. As illustrated in Figure 9, the first row represents 1028

the interactive scenes, where the trajectory with the minimum FDE 1029

is chosen from multimodal behaviors as the predicted trajectory. 1030

The second row represents the corresponding interaction matrices. 1031
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ETH

Observed Trajectory Ground Truth Ours SGAN STGCNN

HOTEL UNIV ZARA

Fig. 10. Visualization of the best-predicted trajectory. The predicted trajectory with minimum FDE is selected as the best-predicted trajectory. Some
pedestrians are unmarked because there is no record in the dataset.

Each matrix column represents interaction between a pedestrian1032

to its neighbors, and the non-interactive neighbors are masked1033

by white color. The results show that our sparse learning module1034

can capture some interpretable interactive neighbors in different1035

interactive scenes.1036

Specifically, in scene A, both pedestrians 2 and 4 interact with1037

pedestrian 3, while there is no interaction between pedestrians1038

2 and 4. It makes sense because pedestrian 3 lies in the middle1039

of pedestrians 2 and 4, and thus leads to pedestrians 2 and 4 do1040

not influence each other. Scene B shows a common interactive1041

scene where pedestrians 2 and 3 meet face to face, but only one1042

of them takes a detour to avoid a collision. It reflects on the1043

corresponding interaction matrix, where pedestrian 3 interacts with1044

pedestrian 2 representing the behavior to avoid a collision, while1045

pedestrian 2 does not interact with pedestrian 3 indicating going1046

straight. Scene C shows the global interaction, where all pedestrians1047

participate in future trajectory prediction. Scene D illustrates the1048

dense interactions, where many pedestrians do not interact with all1049

their neighbors despite the interaction density. 1050

Best-predicted Trajectory. We visualize the best-predicted 1051

trajectory and compare it with two state-of-the-art methods Social- 1052

STGCNN [12] and SGAN [7]. The trajectory with the minimum 1053

FDE is chosen as the best-predicted trajectory. The visualized 1054

scenes in Figure 10 include various motion patterns such as going 1055

straight, turning left/right, avoiding collision, and walking with the 1056

dense crowd. The results show that our method has a better tendency 1057

along with the ground truth. The reason is that our estimated mean 1058

locations are adequate to cover multimodal behaviors, and our 1059

proposed sparse interaction is beneficial to refining the distribution 1060

of mean locations by reducing superfluous interactions. 1061

5 CONCLUSION 1062

This paper presents a simple yet effective pedestrian trajectory 1063

prediction method, benefiting from our newly proposed Inter- 1064

pretable Multimodality Predictor (IMP). It jointly models an 1065

interpretable intention representation to represent multimodal 1066
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behaviors and a social interaction representation to extract the1067

spatio-temporal features between pedestrians. The experimental1068

results on two benchmark datasets demonstrated the effectiveness1069

of the proposed IMP in improving prediction performance and1070

interpretable prediction by providing the rationale behind the1071

trajectory prediction. What’s more, the mean location achieves1072

a controllable prediction by customizing the mean location in an1073

interesting region. Moreover, sparse interaction can further improve1074

prediction performance by reducing superfluous interactions.1075

We believe the explicit interpretable intention representation,1076

i.e., mean location, has the potential to integrate multiple tasks, such1077

as trajectory prediction and object tracking. For example, trajectory1078

prediction can provide possible future locations by the proposed1079

representation and thus speed up object tracking by searching in1080

a local region instead of a global one. Moreover, although the1081

mean location is not necessarily a waypoint an agent (such as a1082

vehicle) can traverse, it is possible to employ the mean location1083

in traffic scenes constrained by map information. We will explore1084

these potential directions in our future work.1085

ACKNOWLEDGMENTS1086

This work was supported in part by National Key R&D Program1087

of China under Grant 2021YFB1714700, NSFC under Grants1088

62088102 and 62106192, Natural Science Foundation of Shaanxi1089

Province under Grants 2022JC-41 and 2021JQ-054, China Post-1090

doctoral Science Foundation under Grant 2020M683490, and1091

Fundamental Research Funds for the Central Universities under1092

Grants XTR042021005 and XTR072022001.1093

REFERENCES1094

[1] X. Huang, P. Wang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, “The1095

apolloscape open dataset for autonomous driving and its application,”1096

IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 10, pp. 2702–2719,1097

2020.1098

[2] Y. Luo, P. Cai, A. Bera, D. Hsu, W. S. Lee, and D. Manocha, “PORCA:1099

Modeling and planning for autonomous driving among many pedestrians,”1100

IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 3418–3425, 2018.1101

[3] J. Wang and Y. He, “Motion prediction in visual object tracking,” in Proc.1102

IEEE/RSJ Int. Conf. Intell. Rob. Syst., 2020, pp. 10 374–10 379.1103

[4] D. Stadler and J. Beyerer, “Improving multiple pedestrian tracking by1104

track management and occlusion handling,” in Proc. IEEE/CVF Conf.1105

Comput. Vis. Pattern Recognit., 2021, pp. 10 953–10 962.1106

[5] X. Shu, L. Zhang, G.-J. Qi, W. Liu, and J. Tang, “Spatiotemporal co-1107

attention recurrent neural networks for human-skeleton motion prediction,”1108

IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 6, pp. 3300–3315,1109

2022.1110

[6] H. Akolkar, S.-H. Ieng, and R. Benosman, “Real-time high speed motion1111

prediction using fast aperture-robust event-driven visual flow,” IEEE Trans.1112

Pattern Anal. Mach. Intell., vol. 44, no. 1, pp. 361–372, 2022.1113

[7] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social GAN:1114

Socially acceptable trajectories with generative adversarial networks,” in1115

Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 2255–1116

2264.1117

[8] V. Kosaraju, A. Sadeghian, R. Martı́n-Martı́n, I. Reid, H. Rezatofighi,1118

and S. Savarese, “Social-BiGAT: Multimodal trajectory forecasting using1119

bicycle-gan and graph attention networks,” in Proc. Adv. Neural Inf.1120

Process. Syst., 2019, pp. 137–146.1121

[9] B. Ivanovic and M. Pavone, “The trajectron: Probabilistic multi-agent1122

trajectory modeling with dynamic spatiotemporal graphs,” in Proc.1123

IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 2375–2384.1124

[10] K. Mangalam, H. Girase, S. Agarwal, K.-H. Lee, E. Adeli, J. Malik, and1125

A. Gaidon, “It is not the journey but the destination: Endpoint conditioned1126

trajectory prediction,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 759–776.1127

[11] C. Yu, X. Ma, J. Ren, H. Zhao, and S. Yi, “Spatio-temporal graph1128

transformer networks for pedestrian trajectory prediction,” in Proc. Eur.1129

Conf. Comput. Vis., 2020, pp. 507–523.1130

[12] A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel, “Social-STGCNN: 1131

A social spatio-temporal graph convolutional neural network for human 1132

trajectory prediction,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern 1133

Recognit., 2020, pp. 14 424–14 432. 1134

[13] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool, “You’ll never 1135

walk alone: Modeling social behavior for multi-target tracking,” in Proc. 1136

IEEE/CVF Int. Conf. Comput. Vis., 2009, pp. 261–268. 1137

[14] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,” in 1138

Comput. Graphics Forum, 2007, pp. 655–664. 1139

[15] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, “Learning social 1140

etiquette: Human trajectory understanding in crowded scenes,” in Proc. 1141

Eur. Conf. Comput. Vis., 2016, pp. 549–565. 1142

[16] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, 1143

A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuScenes: A multimodal 1144

dataset for autonomous driving,” in Proc. IEEE/CVF Conf. Comput. Vis. 1145

Pattern Recognit., 2020, pp. 11 621–11 631. 1146

[17] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, 1147

D. Wang, P. Carr, S. Lucey, D. Ramanan et al., “Argoverse: 3D tracking 1148

and forecasting with rich maps,” in Proc. IEEE/CVF Conf. Comput. Vis. 1149

Pattern Recognit., 2019, pp. 8748–8757. 1150

[18] L. Shi, L. Wang, C. Long, S. Zhou, M. Zhou, Z. Niu, and G. Hua, “SGCN: 1151

Sparse graph convolution network for pedestrian trajectory prediction,” in 1152

Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 8994– 1153

9003. 1154

[19] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and 1155

S. Savarese, “Social LSTM: Human trajectory prediction in crowded 1156

spaces,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 1157

961–971. 1158

[20] Y. Ma, X. Zhu, S. Zhang, R. Yang, W. Wang, and D. Manocha, 1159

“TrafficPredict: Trajectory prediction for heterogeneous traffic-agents,” 1160

in Proc. AAAI. Conf. Artif. Intell., 2019, pp. 6120–6127. 1161

[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural 1162

Comp., vol. 9, no. 8, pp. 1735–1780, 1997. 1163

[22] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration of 1164

recurrent network architectures,” in Proc. Int. Conf. Mach. Learn., 2015, 1165

pp. 2342–2350. 1166

[23] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Gated feedback recurrent 1167

neural networks,” in Proc. Int. Conf. Mach. Learn., 2015, pp. 2067–2075. 1168

[24] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic 1169

convolutional and recurrent networks for sequence modeling,” arXiv 1170

preprint arXiv:1803.01271, 2018. 1171

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, 1172

Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Adv. 1173

Neural Inf. Process. Syst., 2017, pp. 5998–6008. 1174
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