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Abstract
It is very challenging to reconstruct a high dynamic range (HDR) from a low dynamic range (LDR) image as an ill-posed
problem. This paper proposes a luminance attentive network named LANet for HDR reconstruction from a single LDR image.
Our method is based on two fundamental observations: (1) HDR images stored in relative luminance are scale-invariant, which
means the HDR images will hold the same information when multiplied by any positive real number. Based on this observation,
we propose a novel normalization method called " HDR calibration " for HDR images stored in relative luminance, calibrating
HDR images into a similar luminance scale according to the LDR images. (2) The main difference between HDR images and
LDR images is in under-/over-exposed areas, especially those highlighted. Following this observation, we propose a luminance
attention module with a two-stream structure for LANet to pay more attention to the under-/over-exposed areas. In addition, we
propose an extended network called panoLANet for HDR panorama reconstruction from an LDR panorama and build a dual-
net structure for panoLANet to solve the distortion problem caused by the equirectangular panorama. Extensive experiments
show that our proposed approach LANet can reconstruct visually convincing HDR images and demonstrate its superiority over
state-of-the-art approaches in terms of all metrics in inverse tone mapping. The image-based lighting application with our
proposed panoLANet also demonstrates that our method can simulate natural scene lighting using only LDR panorama. Our
source code is available at https://github.com/LWT3437/LANet.

CCS Concepts
• Computing methodologies → Computer graphics; Artificial intelligence;

1. Introduction

With a limited dynamic range, a low dynamic range (LDR) image
captured by a standard digital camera can not represent the real lu-
minance of the scene and suffers under-/over-exposure problems.
High dynamic range (HDR) images solve this problem by record-
ing HDR information of the scene. As HDR images can provide
larger luminance variance and contain richer details than LDR im-
ages, people can benefit significantly from HDR images in visual
perception. HDR images have also been widely used in image-
based lighting (IBL) technology to provide more realistic render-
ing results. A common way to construct an HDR image is by merg-
ing a stack of bracketed exposure LDR images. However, dynamic
scenes require significant efforts to produce equal-quality results
like static scenes, as the moving parts require special treatments.

† This work was co-supervised by Chengjiang Long and Chunxia Xiao.
∗ Hanning Yu and Wentao Liu are joint first authors.
‡ Chunxia Xiao is the corresponding author.

Therefore, generating an HDR image from a single LDR image
is getting more attention. However, reconstructing a high-quality
HDR image from a single LDR image is also very challenging.

Most previous methods leverage inverse tone-mapping to
solve the problem through traditional image processing technol-
ogy [AFR∗07, KO14, MAF∗09, MSG17, RTS∗07]. These meth-
ods exploit individual heuristics or manual intervention to en-
hance LDR images, which cannot sufficiently compensate for
lost data caused by color quantization and under-/over-exposure.
Recently, deep learning-based approaches [EKD∗17, EKM17,
KTC12, MBRHD18, LHAK18, WZW19] are proposed to automat-
ically infer a statistically plausible HDR image from a single input
LDR image. Although these deep learning-based approaches can
bring more appealing results, they still have room to be improved.
More importantly, most existing HDR datasets are in the relative
luminance domain instead of the absolute one, bringing scale am-
biguity to the training process. Previous methods used the general
maximum normalization method to process HDR images, but this
did not solve the scale ambiguity of luminance. This motivates us
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Figure 1: Example results of our proposed method. The left is the
reconstruction result of our proposed LANet on a single image. The
right results are rendered by original LDR panorama and recon-
structed HDR panorama using our panoLANet, respectively. Note
that the images of subfigure (a) are mapped using LuminanceHDR
software in the same dynamic range and we reduced the exposure
of original result for visualizing.

to investigate how to remove the uncertainty caused by the different
luminance scales and achieve better reconstruction results.

We observe that two different HDR images may store the same
scene, as they are saved in different luminance scales. That is to
say, the difference between two HDR images is scale-invariant in
the relative luminance domain, which means multiplying an HDR
image by any positive real number will not change the informa-
tion it represents. In such cases, to deal with the scale ambiguity
problem, we propose an HDR normalizing approach to calibrate
all HDR images into a similar luminance scale and introduce the
scale-invariant loss [EPF14] into the HDR learning task.

We also observe that the main error between LDR images and
HDR images occurs in the under-/over-exposed areas, especially
in over-exposed areas. This requires the network to reconstruct the
high dynamic range based on the image’s brightness. Here we intro-
duce the attention mechanism with two different network structures
to achieve local spatial attention for general images and panoramas
respectively, enabling the networks to focus more on over-exposed
areas while avoiding errors to other areas as much as possible.

In this paper, based on the above two observations, we propose
Luminance Attentive Network (LANet) to construct an HDR im-
age from a single LDR image, as shown in Fig. 2. The LANet is
designed as a multi-task network with two streams, named lumi-
nance attention stream and HDR reconstruction stream. The lumi-
nance attention stream is designed for network to learn to obtain
a spatial weighted attention map about the luminance distribution.
This design exploits estimated luminance segmentation as an auxil-
iary task to supervise the attention weights, and a novel luminance
attention module is proposed to guide the reconstruction process
paying more attention to those under-/over-exposed areas.

To validate the potential of our proposed LANet, we further pro-
pose its extension network called panoLANet (see Fig. 5) to recon-
struct HDR panoramas for IBL rendering. The panoLANet con-
sists of a ceiling luminance branch and a panorama reconstruction
branch, in which the ceiling luminance branch is used to recon-
struct the highlighted area in the upper half of the scene. We rotate

and apply a perspective transformation on the panorama to produce
a ceiling-view image to solve the distortion problem of the equirect-
angular panorama and use skip-connection with gated attention to
sharing the information between the two branches.

It is worth mentioning here that although the usage of HDR
panoramas is different from general HDR images, we still design
these two networks, LANet and panoLANet, with similar struc-
tures and design principles. Both of these two networks can use the
same data processing and training methods. LANet, as a general
inverse tone mapping method, can achieve the HDR reconstruction
task from the most common images. Meanwhile, as an extension
of LANet, panoLANet can be applied to IBL rendering technology.
As two examples, Fig. 1 (a) shows our proposed LANet can well
handle the areas under-/over-exposed areas, and Fig. 1 (b) shows
that our proposed panoLANet can generate high-quality results for
applications on image-based lighting.

To sum up, the main contributions of this paper are three-fold:

• We propose an end-to-end trainable luminance attentive network
called LANet with two streams for HDR reconstruction and per-
forms better quantitatively and qualitatively than prior work.
• We propose a novel HDR calibration method, calibrating HDR

images into a similar luminance scale according to the LDR im-
ages.
• We extend LANet to the panoLANet for HDR reconstruction

from an LDR panorama.

We conduct experiments on public datasets [NKHE15, Hdr12]
with both real LDR inputs and ground truth HDR references. Ex-
tensive experimental results have powerfully demonstrated the su-
periority of our proposed approaches LANet and panoLANet over
state-of-the-art approaches.

2. Related Work

The related work can be divided into three categories, i.e., custom-
made hardware, inverse Tone-Mapping Operators (iTMO), and
Deep learning-based approaches.

Custom-made hardware is one way to generate high-quality
HDR images from a single shot through specially designed hard-
ware (e.g., coded aperture and beam-splitter) [TKTS11, MMP∗07,
Pul14, HKU15]. However, custom-made hardware is more expen-
sive and high-profile, making it hard to use widely.

Inverse tone-mapping refers to reconstructing HDR from a
single LDR image. The earlier approaches [BLDC06, MAF∗09,
AFR∗07, MAF∗09] tried to achieve this goal by applying an ex-
pand function to the LDR image. Filter based methods were also
proposed to deal with both images and videos [RTS∗07, KO14].
However, these approaches are not user-friendly since they requires
to adjust various parameters, which is troublesome for non-expert
users to achieve desired results.

Deep learning-based approaches have made remarkable
achievements in many visual applications like visual recogni-
tion [LH15, LH17, HLYG18, HLX21b, HLX21a], object detec-
tion [LWH∗14, ILBH20], super resolution [ZLW∗21, ZLW∗20],
image captioning [DLXX21], shadow detection and re-
moval [DLZX19, WLZX19, ZLZX20, ZLY∗20, CLZX21], shadow
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Figure 2: The overview of our LANet network. The convolution block consists of two convolutional layers with stride 2 and two up-conv
layers. The skip-connection block first upsamples the previous layer’s output and through two 3× 3 convolution layers to keep the number
of channels consistent with the jump layer. Meanwhile, a 3× 3 convolution layer is applied to the output of the skip layer. Finally, the two
convolutional results are concatenated and through an 1×1 convolution layer to obtain the output result.

generation [ZLW19, LLZ∗20], action localization [ILR21],
trajectory prediction [SWL∗21] and so on. Deep learning also
provides another way to generate a high-quality HDR image
from a single LDR image. Instead of directly producing HDR
images by a DCNN model, Endo et al. [EKM17] developed a
DCNN model to generate a stack of bracketed exposure images
from a single LDR image. The same idea was adopted by Lee et
al. [LAK18, LHAK18], where they used a chaining structure and
GAN network to obtain the required bracketed exposure images.
However, the HDR images generated by these methods still have a
limited dynamic range.

Recently, directly generating HDR images from a DCNN model
is getting more attention. Eilertsen et al. [EKD∗17] developed a
virtual camera to generate LDR from HDR datasets, providing
enough LDR-HDR pairs to train a model for directly generating
HDR image. However, they only predicted the overexposure areas,
and the virtual camera was created based on an out-of-date cameras
database. Marnerides et al. [MBRHD18] achieved the same goal
with a novel network structure by splitting the LDR encoder into
local, dilation, and global branches. Kim et al. [KOK19] learned
super-resolution and inverse tone-mapping for UHD HDR applica-
tions, but they focus on the final tone-mapped images for display
technology and are not concerned with the images in HDR format.
Zhang and Aydın [ZA21] decomposed an input LDR image into a
base and detail layer and Liu et al. [LLC∗20] achieved single im-
age HDR reconstruction by learning to reverse the camera pipeline.
However, the step-by-step strategy leads to the accumulation of er-
rors among the subnetworks. Zhang et al. [ZL17] focused on sun-
light outdoor lighting estimation on panoramas, but they need to ro-
tate the panorama in advance so that the sun is in the middle of the
image. Unlike the existing deep learning methods, we start from the
essential properties of HDR images to pre-process the data by cali-
brating HDR images into a similar scale and introduce the attention
mechanism with scale invariance to build our networks. In this way,
we propose corresponding HDR reconstruction approaches for both

(a) Original (b) With our method

Figure 3: An example of HDR training batch with and without our
calibration method. These two batched images are mapped using
the LumaninceHDR software in a certain exposure and dynamic
range for visualizing.

images and panoramas, which can be applied to both HDR display
and IBL applications.

3. Luminance Attentive Network

As illustrated in Fig. 2, we propose a novel luminance attentive
network named LANet, designed with two streams and fully lever-
ages the auxiliary luminance segmentation for better recovering an
HDR image. It has three essential components, i.e., HDR calibra-
tion with luminance scale invariance, luminance attention module,
and luminance scale-invariant loss. We are going to discuss each
component as well as the luminance segmentation learning in the
following subsections.

3.1. HDR Calibration with Luminance Scale Invariance

The main problem of storing HDR images in relative luminance
is that the luminance scales may differ. If we use them as ground
truth for training a DCNN model, the scale ambiguity will confuse
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the training process. Therefore, to remove the ambiguity, we pro-
pose a novel HDR calibration approach to provide ground truth for
training our LANet (see Section 3.3). The key to our calibration is
luminance scale invariance. In the relative luminance domain, we
call two HDR images H1 and H2 luminance scale-invariant if and
only if they are only differed by a positive scale factor κ ∈ R+

such that H1 = κH2. Our goal is to make all HDR images at the
same luminance level as much as possible. Since all LDR images
are already in the same luminance units and fewer errors in the non-
overexposed areas between LDR and HDR images, it is reasonable
to choose the LDR version as the standard level to calibrate all of
the HDR images. To find the most effective scale factor, for each
HDR image H, we scale it to the same dynamic range with the
corresponding normalized LDR image I (i.e., I(x,y) ∈ [0,1]). The
calibrated HDR image Ĥ can be obtained as:

Ĥ =
S(M� I)
S(M�H)

·H (1a)

S(P) = ∑
c,y,x

P(x,y,c), (1b)

M(x,y) =

1, if 1
3 ∑

c
I(x,y,c)< τ

0, otherwise
(1c)

where � denotes element-wise multiplication; P(x,y,c) is a pixel
value at position of (x,y) on channel c of an image P; τ ∈ [0,1] is a
threshold used to determine non-overexposed areas, we set τ= 0.83
for our experiments which can achieve the best performance in our
test. Note that I is in the linear RGB space.

As we can see, after applying Eq. 1a, the HDR image will con-
tain a similar value with the corresponding LDR image in non-
overexposed areas, and only the highlight pixels will have a sig-
nificant difference. As shown in Fig. 3, we can see that images af-
ter alignment look more regular at the same specific, while original
data have an extensive bias on the luminance scale. What is more,
we can apply thresholding segmentation on the calibrated HDR im-
ages to obtain pixel-level luminance segmentation labels automati-
cally without requiring any extra manual annotation efforts.

3.2. Network Architecture and Luminance Attention Module

The proposed LANet is designed as a multi-task learning frame-
work with two output streams, i.e., luminance attention stream and
HDR reconstruction stream. For each LDR image, the LANet pre-
dicts the corresponding HDR image and luminance segmentation
mask. We adopt U-Net [RFB15] as our backbone structure. Specif-
ically, the encoder follows ResNet50 [HZRS16, HZR16], and each
of the five residual blocks connects to the decoder by a skip connec-
tion. On the decoder side, the following changes have been made.

• Since a standard deconvolution layer gives checkerboard arti-
facts [ODO16], we use a nearest-neighbor upsampling and two
convolution layers for each up-sample block.
• To better keep the distribution of each HDR image, instance nor-

malization [UVL16] is used in our decoder instead of batch nor-
malization [IS15].
• luminance attention stream branches out from the middle layer

of the decoder and follows by four convolution layers and three
upsampling to construct a luminance segmentation mask.

• We design a novel luminance attention module (LAM) and incor-
porate it into the decoder, which brings the luminance attention
information from the luminance attention stream to the HDR re-
construction stream.

As shown in Fig. 2, LAM is added before the last skip-
connection. It takes the last layer of the luminance attention stream
and feature maps generated from the second last skip-connection
block as input to construct luminance attention feature maps as
input to the last skip-connection. With this treatment, the feature
maps from the luminance attention stream are transferred into a
two-channel attention map through two convolutional and one sig-
moid activation layer. The feature maps from the HDR stream also
need to go through one convolutional layer. Then, an element-wise
multiplication is applied to each channel of the attention map and
the generated feature maps from the HDR stream. The outputs are
concatenated in channel dimension as an input to another three con-
volutional layers. The thoughts behind this design are that the at-
tention scheme should give more guidance for both the training and
inferring process.

3.3. Loss Functions

The overall loss function for LANet is formulated with a luminance
scale-invariant loss and a luminance segmentation loss, i.e.,

L= LSI +αLSEG, (2)

where α is a weight hyperparameter to control the trade-off be-
tween two losses. Note that α = 0.05 is used in our experiments.
Inspired by Eilertsen et al. [EKD∗17], the proposed LANet predicts
HDR H̄ in the logarithmic scale, which is better matching how the
human visual system reacts to luminance. However, due to H̄ is
still in the relative luminance domain, dealing with the aforemen-
tioned scale ambiguity is required. Therefore, we take advantage
of luminance scale invariance and define LSI as a scale-invariant
MSE [GJAF09] in logarithmic scale as:

LSI
(
H̄, Ĥ

)
= min

κ∈R+

1
n

∥∥ log(κH̄)− log(Ĥ)
∥∥2

= min
κ∈R+

1
n ∑

x,y,c

[
log(H̄(x,y,c)+ ε)

− log(Ĥ(x,y,c)+ ε)+ logκ

]2
,

(3)

where ε is a small constant to avoid log0 when calculating loga-
rithms. As we can see, Eq. (3) has a closed-form solution, i.e.,

logκ =
1
n ∑

x,y,c
(log(Ĥ(x,y,c)+ ε)− log(H̄(x,y,c)+ ε)).

Therefore, with definition d(x,y,c) = log H̄(x,y,c)− log Ĥ(x,y,c),
Eq. (3) can be expressed as:

LSI
(
H̄, Ĥ

)
=

1
n ∑

x,y,c
d(x,y,c)2− 1

n2

(
∑

x,y,c
d(x,y,c)

)2
. (4)

The first component in Eq. (4) indicates the average of square dis-
tances, and the second component refers to the square of the mean
distance, ensuring the scale-invariance of the loss function. As we
can see, the loss value will not change when the outputs plus a sin-
gle constant in the logarithmic domain. This means that the network
treats HDR images in relative luminance.
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The segmentation loss LSEG is a cross entropy loss, i.e.,

LSEG
(
m, m̂

)
=− ∑

x,y,c

[
m̂(x,y,c) logm(x,y,c)

+(1− m̂(x,y,c)) log(1−m(x,y,c))
]
,

(5)

where m is a predicted luminance mask; m̂ is the ground truth lu-
minance mask, which has the same shape as a reconstructed Ĥ and
initialized with 0 for all pixel. Then, we set value as follows:

m̂(x,y,cidx) =


1 and cidx = 0, if Ĥ′(x,y)≤ tl
1 and cidx = 1, if tl < Ĥ′(x,y)< th
1 and cidx = 2, if Ĥ′(x,y)≥ th,

(6)

Ĥ′(x,y) is the channel-wise pixel average value at location (x,y) of
Ĥ; tl and th are the threshold values to define dimmer and brigher
area respectively, which are set to e−5.5 and e0.1 in our experiments.

4. Extension of Luminance Attentive Network for HDR
Reconstruction on Panorama

Regarding HDR images for display and rendering, although both
require images with real luminance information, there are two sig-
nificant differences between them. Firstly, the ways to measure the
quality of their application are different. HDR display technology
displays the HDR image directly to the user for observation, and the
effect depends on the perception of the image itself to the human
eye. In contrast, the image-based lighting (IBL) technology uses
the HDR image as the scene’s light source, and the effect depends
on the quality of the rendering results. Secondly, the panorama rep-
resents a spherical surface in three-dimensional space, which is in-
variant to spatial rotation. When it is expanded to equirectangular
form, a significant distortion will occur in the upper and lower re-
gions of the image.

Given these two differences, we extend our proposed LANet and
present a novel two-branch network called panoLANet to improve
the HDR reconstruction on panoramas for better rendering results.
As illustrated in Fig. 5, our panoLANet consists of a ceiling lumi-
nance branch and a panorama reconstruction branch.

Unlike the panorama reconstruction branch, which is used to

𝑂

𝑝

𝑐

𝑟

𝑧

Figure 4: The illustration of the perspective conversion method
used in our proposed panoLANet. The entire sphere represents the
panorama. The plane at the center of the sphere perpendicular to
the z-axis is the ceiling-view image. Position r is the camera center
of the perspective projection. For any point p on the upper hemi-
spherical surface of the panorama, the intersection point c of pr
and the plane is the corresponding projection point.

roughly predict the entire scene’s information, the ceiling lumi-
nance branch is designed to accurately reconstruct the highlighted
area in the upper half of the scene. We use a differentiable per-
spective transformation method to convert the panoramas and per-
spective ceiling-view images (P2C and C2P, respectively). Fi-
nally, merge them using the mask to obtain the final reconstructed
HDR panorama. In the following subsections, we first describe the
method of perspective transformation and then explain the detail of
the two-branch network and the loss function.

4.1. P2C and C2P Conversion

The original panorama represents a two-dimensional spherical sur-
face in three-dimensional space, describing the scene around the
shooting center. P2C aims to convert most of the information of the
upper hemisphere of this two-dimensional sphere into a plane im-
age through perspective projection. Some previous works directly
use the center of the sphere as the center of the projection camera
to perform the perspective conversion. However, we want to retain
the information in the upper half of the space as much as possible.
As shown in Fig. 4, we chose to place the center of the projection
camera below the center of the sphere.

Given the field of view of the perspective transformation with the
resolution of the panorama and ceiling-view image, we can calcu-
late the position of all pixels of the ceiling-view image on panorama
or vice versa, shown as the Fig. 4. Using bilinear interpolation to
calculate the final value of each pixel, we get the result of P2C and
C2P conversion. Fig. 6 shows an example of the conversion of two
types of images. It can be seen that the ceiling-view image obtained
from P2C can save most of the information of the upper half of the
space with less distortion. In addition, by thresholding the ceiling-
view image to get the mask of the over-exposed area, we can merge
the predicted results of the two branches shown in Fig. 5 to get the
final HDR panorama.

4.2. Network and Loss Function

Looking at Fig. 5 with Fig. 2, we can see that panoLANet reuses
much of the structure from LANet, which allows us to reduce the
training cost through transfer learning. Specifically, the panorama
reconstruction branch in panoLANet applies the basic U-Net struc-
ture in LANet. The encoder of the ceiling luminance branch also
uses the same ResNet50 as the panorama reconstruction branch.
We first use the single image data set with an enormous amount of
data to train the panorama branch and then use the pretrained model
to initialize the panorama reconstruction branch and the encoder of
the ceiling luminance branch. Finally, we use the panorama data set
to fine-tune the entire panoLANet to get the final training model.

The ceiling luminance branch aims to reconstruct better the HDR
of the light source above the space. When we use IBL technology to
render, only the upper half of the light affects the rendered object,
and the light source is usually above the space rather than below.
On the other hand, the light source is the most critical area of the
image-based lighting, so the results rendered from LDR panoramas
often look unrealistic. We convert the panorama to a ceiling-view
image and then build an encoder-decoder network to focus on re-
constructing the light source. Specifically, to avoid the loss of in-
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Figure 5: The overview of our panoLANet network, which consists of a ceiling luminance branch and panorama reconstruction branch.

Figure 6: An example result of P2C and C2P conversion: (left)
equirectangular panorama, (right) ceiling-view image converted
through P2C. Note that when using C2P to convert back to the
panorama, the information of the masked area will lose, and there-
fore we set these uncertain pixels to 0 in our paper.

formation caused by the downsampling operation, we use a skip
connection to share the features from the panorama reconstruction
branch to the ceiling luminance branch. Based on the feature from
skip connection, we use the gated convolution [YLY∗19] to achieve
local attention, which is called gate convolution block on Fig. 5, so
that the network can focus more on the over-exposed areas.

Our goal is to recover HDR information from the LDR panorama
for image-based lighting. In order to get the final HDR reconstruc-
tion result, we need to merge the prediction results of the two
branches. Given the prediction of the ceiling luminance branch HC
and prediction of the panorama branch HP, the merged final output
HDR panorama H̄ could be written as

H̄ = mp�Fc2p (HC)+(1−mp)�HP, (7)

where Fc2p is the C2P conversion and � denotes element-wise
multiplication. The mp is the mask generated by ceiling-view in-
put IC as

mp =
max(0,avgc(Fc2p(IC))− τ)

1− τ
, (8)

where avgc means average on the image channels and τ = 0.13 is a
threshold to generate the mask. Note that IC is in linear RGB space.

The loss function in panoLANet is no longer a scale-invariant

loss, because the scale-invariant loss described in Eq. 4 requires
that each pixel of the image contributes equally to the loss. Here we
use two loss functions Lhigh and Llow to describe the loss of over-
exposed areas and non-overexposed areas, respectively. We define
d = log H̄− log Ĥ, then the final loss function for panoLANet is

L
(
H̄, Ĥ

)
= β1Lhigh

(
H̄, Ĥ

)
+β2Llow

(
H̄, Ĥ

)
= β1

∣∣mp�d
∣∣2 +β2

∣∣(1−mp)�d
∣∣2, (9)

where β1,β2 is weight hyperparameters to control the trade-off be-
tween two losses. We set β1 = 0.2,β2 = 0.01 in our experiments.

5. Experiments

To validate our proposed method, we collect several public HDR
datasets shown in Table 1 and conduct various experiments on
these datasets. For single image HDR reconstruction of our LANet,
we pick out the HDR-Eye dataset [NKHE15] from the collected
dataset and use the remaining HDR data to generate training and
test data. Since the HDR-Eye dataset has both real LDR and HDR
data, we use this dataset as an additional comparison dataset with
the previous work to show the applicability of our method. For
panorama HDR reconstruction, we use the sIBL [Hdr12] dataset
with both LDR and HDR panorama data as our test data.

Table 1: The list of HDR datasets

Type Dataset Name Number

Pano

Laval Indoor HDR Dataset [GSY∗17] 2233
Laval Outdoor HDR Dataset [HGAL19] 205
HDRI Haven [Zaa19] 322
sIBL [Hdr12] 79

Img

HDR Photographic Survey [Fai17] 105
Funt et al. HDR Dataset [FS00] 105
Stanford HDR Data [XDCW02] 88
Ward [War19] 33
HDR-Eye [NKHE15] 42

Video LiU HDRv [KGBU13, KGB∗14, DLMM16] 10
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5.1. Implementation Detail

We calibrate all HDR images using Eq. 1a and resize the training
pairs to the size of 256× 256 for general images data and 512×
256 for panoramas data. We implement our proposed LANet and
panoLANet in TensorFlow and adopt ADAM optimizer [KB15] to
train the model with one NVIDIA RTX 2080Ti GPU. The training
takes 100K iterations in total with a batch size of 16 for LANet and
takes 100K iterations for pretraining with a batch size of 16 and
35k iterations for fine-tuning with a batch size of 4 for panoLANet.
Regarding the learning rate, we set the initial learning rate as 4e−5
and update it with a step decay schedule. Specifically, the learning
rate is dropped 0.8 times for every 5000 iterations.

5.2. Datasets and Metrics

The entire HDR raw data we collect contains 2,839 HDR panora-
mas, 373 single HDR images and 10 HDR videos. For each
panorama, we crop images to cover six equidistant azimuths in
the horizontal viewing angle and three equidistant azimuths in the
45-degree elevation angle (except outdoor scenes). Each cropped
image has an aspect ratio of 4 : 3. We crop images in the center
with two aspect ratios for every single HDR image, either 4 : 3 or
3 : 4. For each HDR video, we select the suitable frames to be in-
cluded in our training data. In this way, we get 25,308 HDR images
in total for experiments. Note that most HDR datasets have only
HDR images. We need to generate the synthetic LDR images from
HDR data. To simulate the modern cameras, we complete our vir-
tual camera by following steps:

1. We randomly set a dynamic range for the virtual camera from
9.6EV to 14.8EV based on the popular Digital Single Lens Re-
flex (DSLR) cameras [DXO19].

2. According to the dynamic range, we use a mean-value auto-
exposure algorithm to find an exposure that makes the mean
value of the mapped LDR image approximately to middle gray.
After that, we obtain the mapped linear LDR image in which all
pixels are in the range [0,1].

3. We apply approximate Camera Response Function (CRF)
curves to the linear images, which are in the same form as Eil-
ertsen et al. [EKD∗17],

f
(
Hl,c
)
= (1+σ)

Hn
l,c

Hn
l,c +σ

, (10)

while we here set the σ in range [0.3,0.5] and n in range[0.8,1.0]
to fit a modern CRF database. [CMY19]). The modern CRF and
our approximate curves are shown in Fig. 7.

The final mapped LDR images are scaled to 0− 255 in integer
to fit the available 8-bits LDR images. For each HDR image, we
generate one LDR image using the above virtual camera and the
other one with Display Adaptive TMO [MDK08] to fit the images
that may be post-processed. We finally got a total of 50616 image
pairs in our experiment.

For experiments on general images, we randomly select 90%
image pairs for training. For the remaining 10% image pairs, we
discard all pairs obtained from Laval HDR Dataset [GSY∗17,
HGAL19] to avoid testing cases over-concentrated in a majority

(a) Modern CRF curves [CMY19] (b) With our method

Figure 7: The modern CRF curves collected by Chen et al. and
our random curves. We simulate the CRF curves through a sigmoid
function that parameters are set from a certain range.

Table 2: Quantitative Results of Ablation Study on LANet. N in-
dicates that the data has been normalized while C indicates cali-
brated.

Method PU-PSNR↑ PU-SSIM↑ QH↑ siMSE↓
U-Net+L2(N) 33.09 0.922 38.31 7.93
U-Net+L2(C) 35.04 0.963 41.63 6.70
U-Net+ LSI 35.37 0.966 42.58 6.95
w/o LSI(N) 34.31 0.952 37.33 6.34
w/o LSI(C) 35.24 0.969 40.31 6.30
w/o LAM 35.27 0.965 42.38 7.12
w/o Seg 35.65 0.972 42.59 5.99
w/ LDR-Seg 35.70 0.971 42.33 6.22
w/ HDR-Seg 35.79 0.973 42.53 5.62

dataset and use the rest 802 pairs for evaluation. We also evalu-
ate comparison performance on the HDR-Eye dataset [NKHE15]
which contains 46 pairs of ground truth HDR images and LDR im-
ages captured from several different cameras. Note that we only
have 42 pairs for evaluation because the LDR images have large
black regions in the first four pairs.

We remove the data generated from the sIBL dataset for exper-
iments on panoramas and randomly select 90% image pairs for
pretraining. Then we use the corresponding panoramas of the pre-
trained data to fine-tune the panoLANet model. We evaluate our
panoLANet on the sIBL dataset [Hdr12] which contains 79 pairs of
ground truth HDR panoramas and corresponding LDR panoramas.
Note that we conduct the evaluation on rendering results rather than
panorama itself, which will be described in detail in Sec. 5.5.

Regarding the metrics, we use the Q score of HDR-
VDP-2 [NMDSLC15] as QH score, scale-invariant MSE
(siMSE) [EPF14], perceptual uniformity encoded PSNR (PU-
PSNR) and SSIM (PU-SSIM) [AMS08], to evaluate the quality
of output HDR images in HDR domain. Since the HDR-VDP-2,
PU-PSNR and PU-SSIM metrics are display-referred metrics
applicable for absolute luminance in cd/m2, we need to adjust
the luminance level to a certain absolute luminance. We first scale
the predicted HDR images to the ground truth HDR images, and
then we adjust their luminance level approximately to where the
maximum value of the corresponding LDR image is 255cd/m2.
For siMSE metric, we need not change results when comparing
this metric because it is completely scale-invariant. As the default
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Figure 8: An example of the ablation models. We show the same images in different reduced exposure. For each image, we use the same
dynamic range and a manually adjusted exposure with LuminanceHDR software on the original image for the best visual comparison.

configuration for HDR-VDP-2 metric, color encoding is set as
“rgb-bt.709" for HDR evaluation, 24-inch display, 1920× 1080
resolution and viewing distance of 1 meter.

5.3. Ablation Study on LANet

To evaluate some components of our proposed LANet, we design a
series of variants as follows:

• U-Net + L2: remove attention stream and LAM and use L2 loss
for training.
• U-Net + LSI : remove attention stream and LAM and use LSI loss

for training.
• w/o LSI : use L2 loss rather than LSI , and without using supervised

information for luminance segmentation.
• w/o LAM: remove LAM to make luminance segmentation and

HDR reconstruction separately.
• w/o Seg: Full LANet model, but without using supervised infor-

mation for luminance segmentation.
• w/ LDR-Seg: use the lumninance segmentation supervised in-

formation calculated based on the input LDR images rather than
calibrated HDR images.
• w/ HDR-Seg: use the lumninance segmentation supervised in-

formation calculated based on the calibrated HDR images.

Meanwhile, we evaluate the general maximum normalization
method and our calibration method on “U-Net + L2" and “LANet
+ L2" which can take HDR data with different luminance scales as
ground-truth for training. Note that there is no difference for these
two processing when using LSI .

We train the above mentioned variants with our proposed LANet
on the same training data and evaluate their results on our self-
collected 802 pairs of LDR-HDR images. The results are summa-
rized in Table 2, we use the QH score as the value of HDR-VDP-2
metric and the results of siMSE metric are in 10−2 units. From

the results, we can observe: (1) for both U-Net+L2 and LANet+L2,
the performance with calibrated HDR as ground-truth for training
is better than taking general normalized HDR as ground-truth; (2)
with LSI loss, the performances of U-Net and LANet are better than
with L2 loss, which verifies the effectiveness of scale invariance in
HDR; (3) with LSI loss, all of the LANet model performs better
than U-Net, which suggests that LAM works with or without using
luminance segmentation labels for supervision; (4) LANet shows
superiority when compared with LANet w/o LAM, which demon-
strates the efficacy of LAM with luminance attention stream; (5)
with LDR-Seg to replace HDR-Seg, LANet w/ LDR-Seg achieves
lower performance than LANet, which indirectly demonstrate the
effectiveness of luminance segmentation labels obtained from cal-
ibrated HDR rather than input LDR images; and (6) LANet w/
HDR-Seg achieves the best performance in all the metrics except
QH score, which shows that using luminance segmentation super-
vision can improve the performance. Because adding the segmen-
tation supervision does not require additional calculations, we use
the LANet w/ HDR-Seg as the final model of LANet.

We also provide the visual comparison results in Fig. 8, from
which we can see that our proposed LANet recovers the best de-
tails and the generated HDR image looks more realistic and more
convincing especially viewing under low exposure. To better ver-
ify our luminance attention stream and the well-designed LAM, we
visualize the attention maps with and without the luminance atten-
tion stream as well as the corresponding reconstructed HDR images
in Fig. 9. Obviously, with the auxiliary luminance attention stream
and LAM, our proposed LANet can recovery better HDR images.

5.4. Comparing LANet with State-of-the-Art

We compare our LANet with one traditional method
KOEO [KO14], and five deep learning-based methods, i.e., HDR-
CNN [EKD∗17], DrTMO [EKM17], Expand-Net [MBRHD18],
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Table 3: Quantitative Results on HDR Domain

Method
802 testing pairs HDR-Eye dataset

PU-PSNR↑ PU-SSIM↑ QH↑ siMSE↓ PU-PSNR↑ PU-SSIM↑ QH↑ siMSE↓
KOEO [KO14] 26.54 0.870 36.34 2.76 18.91 0.502 29.26 8.95
HDR-CNN [EKD∗17] 28.89 0.906 39.97 1.97 20.39 0.572 32.29 6.74
DrTMO [EKM17] 32.12 0.935 39.39 1.55 24.90 0.781 32.34 2.94
Expand-Net [MBRHD18] 27.30 0.862 37.38 2.63 22.29 0.675 30.81 5.02
Santos et al. [SRK20] 27.88 0.886 39.99 2.22 20.35 0.568 31.70 0.652
Liu et al. [LLC∗20] 31.21 0.928 39.97 1.43 25.57 0.812 34.62 3.01
LANet 35.79 0.973 42.53 0.56 26.08 0.816 35.63 2.46

Input LDR Attmap w/o Seg. Attmap w/ Seg.

Ground truthOutput w/ Seg.Output w/o Seg.

Figure 9: An example of attention map generated with and with-
out segmentation learning. Two attention maps are applied a same
color boost for visualizing.

Santos et al. [SRK20] and Liu et al. [LLC∗20] on both our
self-collected 802 pairs of testing data and the HDR-Eye HDR
dataset [NKHE15] for quantitative evaluation. The results are
summarized in Table 3, where QH is the Q score of HDR-VDP-2
metric, and the results of siMSE metric are in 10−1 units. From
the table, we can observe that our proposed LANet outperforms
the competing methods in terms of QH , PU-PSNR, PU-SSIM, and
siMSE. To further explain the outperformance of our proposed
LANet, we provide some visualization results in Fig. 10. The
figure shows that our method can reconstruct a more realistic
dynamic range in over-exposed areas and recover the detail of
luminance change at non-overexposed areas.

5.5. Application on Image-based Lighting

This section evaluates our panoLANet by applying the recon-
structed HDR panoramas to IBL with physically-based rendering.
Unlike general images used for display, HDR panoramas mainly
provide real environment lighting for physically-based rendering
(PBR). Therefore, it is inaccurate to directly evaluate the quality of
the panorama by calculating the metrics on images, while we need
to evaluate the rendering results rendered by panoramas.

However, for common HDR panoramas, an important issue is
that they are not on the same luminance unit. This makes us render

the virtual objects by manually adjusting the light intensity of the
panorama. When we perform a quantitative evaluation of a large
amount of data, such a manual adjustment will take a long time.
What is more, manually adjusting the light intensity is subjective,
which will cause the final evaluation results can not be trusted.

Here we can directly use the proposed HDR calibration method
to avoid this problem. We calibrate them for each HDR panorama
(predicted and ground truth) based on the corresponding LDR
panorama in the sIBL dataset. Then we use the calibrated HDR
panorama to render a virtual scene under the same rendering con-
figuration. Finally, we make a quantitative comparison of the ren-
dered images to complete the evaluation of our proposed method.
Specifically, we use the Blender software with the Cycle rendering
engine as the rendering tool for our experiments. The virtual scene
we rendered for evaluation consists of four balls with different ma-
terials above a diffuse plane, which can be seen in Fig. 11.

Table 4: Comparison of Rendering Results

Method PSNR↑ SSIM↑ VDP↑ MSE↓
KOEO [KO14] 24.10 0.847 38.55 3.69
HDR-CNN [EKD∗17] 23.00 0.831 36.14 4.22
Santos et al. [SRK20] 22.91 0.827 35.26 4.73
Liu et al. [LLC∗20] 23.81 0.861 37.77 3.05
U-Net w/ Norm 25.13 0.847 38.48 1.81
U-Net w/ Cal 25.22 0.892 40.43 2.04
U-Net w/ LSI 26.07 0.910 40.68 1.81
panoLANet w/o Att 24.26 0.863 37.84 3.91
LANet 26.20 0.901 41.31 1.71
panoLANet 26.79 0.926 41.66 1.35

Since DrTMO [EKM17] and Expand-Net [MBRHD18] aimed
to reconstruct HDR for display, we compare our panoLANet with
KOEO [KO14], HDR-CNN [EKD∗17], Santos et al. [SRK20] and
Liu et al. [LLC∗20] only. In addition, to evaluate the components
of our panoLANet, we design a series of variants as follows:

• U-Net w/ Norm: use basic U-Net with the general maximum nor-
malization method.
• U-Net w/ Cal: use basic U-Net with our calibration method.
• U-Net w/ LSI : use basic U-Net with scale-invariant loss.
• LANet: use the same structure as LANet, but applying fine-tune

on the panoramas dataset.
• panoLANet w/o Att: use the full panoLANet without skip con-

nection and gated convolution layer.
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Original LDR Ground truthLANetOriginal LDR HDR-CNNDrTMOKOEO Expand-Net

reduced exposure

Santos et al. Liu et al.

Original LDR Ground truthLANetHDR-CNNDrTMOKOEO Expand-NetOriginal LDR

increased exposure

Santos et al. Liu et al.

Figure 10: Qualitative results and comparison under different mapping approaches. The comparison on predicted HDR is under the same
dynamic range and an approximate exposure for best visual comparison.
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Figure 11: Comparisons on rendering results of predicted panora-
mas in different scenes. The materials of the four balls from left to
right are: glass, glossy, diffuse and mixed diffuse with glossy.

We train the above mentioned variants with panoLANet on
the same training data and evaluate their results on the sIBL
dataset [Hdr12]. The results are summarized in Table 4 and the re-
sults of siMSE metric are in 10−3 units. From the results, we can

see that our panoLANet gets the best results in all the metrics, espe-
cially the result of SSIM is as high as 0.926. In addition, the HDR
calibration algorithm is also superior to the general maximum nor-
malization method in the HDR reconstruction of panorama, which
again indicates the advantages of our calibration method.

In order to demonstrate the advantages of panoLANet more
clearly, we show the comparison results of our method with the
previous methods in three different scenes: night scene, indoor and
outdoor scenes. As can be seen from the qualitative comparison
results in Fig. 11, our method estimates the position and bright-
ness of the light source more accurately, which is reflected in the
more realistic highlight position and brightness of the render re-
sults. In addition, the LSI is adopted to promote a more accurate
ratio relationship between the intensity of the light source and the
background, which can be observed from the results in the second
column of Fig. 11.

5.6. Discussion

Although our method can reconstruct the high dynamic range well
in many scenes, it still fails in some cases, especially in extremely
over-exposure scenes. As shown in Fig. 12, when there is a large
over-exposure region in the image, our method cannot restore tex-
ture information and luminance information correctly.

Regarding runtime, note that our training stage is carried out off-
line, and here we only offer the runtime for the testing stage un-
der our experimental environment. For per LDR image of the size
1920× 1080 and the panorama of the size 1024× 512, it requires
about 3 seconds and 1 second respectively to complete the testing
throughout the trained model.
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Input LDR Ground truthLANet

Figure 12: Failure cases. The top three images are with highly
over-exposed areas that the textual detail cannot be recovered well.
The bottom three images are without color information around the
overexposed area, which leads to color information missing in the
input LDR image for inferring HDR image.

6. Conclusion

In this paper, we propose an end-to-end and trainable luminance
attentive network for HDR image reconstruction from single LDR
images, as well as its extended network for HDR panorama recon-
struction for image-based lighting usage. Rather than using the gen-
eral maximum normalization method on HDR data, we calibrate
original HDR images to the similar luminance scale corresponding
to LDR images. This treatment gives us many benefits on HDR re-
construction tasks, such as obtaining a set of HDR images with a
similar luminance scale and getting pixel-level luminance segmen-
tation labels automatically without requiring any extra manual an-
notation. Also, the designed luminance attention module can well
explore the estimated luminance semantic segmentation to pay at-
tention to over-exposure and under-exposure areas for better recon-
structing the HDR images. The extended panoLANet also achieves
a better performance on HDR panorama reconstruction for IBL us-
age. Our future work includes combining deep learning-based HDR
reconstruction with image inpainting to perform image restoration
in the HDR domain and solve the texture loss of LDR images in
over-exposed areas with no light source.
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