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Abstract. Standard sliding window based object detection requires
dense classifier evaluation on densely sampled locations in scale space
in order to achieve an accurate localization. To avoid such dense evalu-
ation, selective search based algorithms only evaluate the classifier on a
small subset of object proposals. Notwithstanding the demonstrated suc-
cess, object proposals do not guarantee perfect overlap with the object,
leading to a suboptimal detection accuracy. To address this issue, we
propose to first relax the dense sampling of the scale space with coarse
object proposals generated from bottom-up segmentations. Based on
detection results on these proposals, we then conduct a top-down search
to more precisely localize the object using supervised descent. This two-
stage detection strategy, dubbed location relaxation, is able to localize
the object in the continuous parameter space. Furthermore, there is a
conflict between accurate object detection and robust object detection.
That is because the achievement of the later requires the accommoda-
tion of inaccurate and perturbed object locations in the training phase.
To address this conflict, we leverage the rich spatial information learned
from the Regionlets detection framework to determine where the object
is precisely localized. Our proposed approaches are extensively validated
on the PASCAL VOC 2007 dataset and a self-collected large scale car
dataset. Our method boosts the mean average precision of the current
state-of-the-art (41.7 %) to 44.1 % on PASCAL VOC 2007 dataset. To
our best knowledge, it is the best performance reported without using
outside data (Convolutional neural network based approaches are com-
monly pre-trained on a large scale outside dataset and fine-tuned on the
VOC dataset.).

1 Introduction

An object may appear in any locations and scales in an image defined by the
continuous parameter space spanned by (x, y, s, a), where (x, y) is the object
center point, and s and a are the scale and aspect ratio of the object. In partic-
ular, different aspect ratios generally correspond to different viewpoints, leaving
a difficult open question for robust object detection.
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Fig. 1. Sample detection results applying our detection framework to the PASCAL
VOC 2007 dataset. First row: bus and boat detection. Second row: bottle, aeroplane
and bird detection. Third row: bicycle detection.

In order to accurately localize the object in the image, sliding window based
detector [1–5] requires densely sampling a fixed size candidate object window
(i.e., a base window) from the continuous parameter space at each scale of a scale-
space image pyramid. Then, a binary decision is made for each specific window
to predict whether it contains the object or not. To deal with different viewpoints
of the object, one often discretizes the space of aspect ratio to define different
base windows, and one classifier needs to be trained for each base window to
detect the same object with different viewpoints.

Obviously, sliding window based approaches could be computationally pro-
hibitive to obtain precise localization of the object, as it may potentially involve
evaluating the classifier on millions or even billions of candidate windows. To
reduce the computational cost, as suggested by the seminal Viola-Jones detec-
tor [6], a cascade classifier allows to early reject obvious non-object window, and
hence achieves real-time performance. This strategy has been widely adopted
in the literature. However, unless the weak classifier in the cascade can be effi-
ciently evaluated, e.g., by leveraging Haar features with integral images, the
computational cost even with early rejection may still be very high.

Beyond cascade classifiers, the computational cost could be further reduced
either from top-down or bottom-up approaches. Top-down methods, such as
branch-and-bound [7], divide and conquer [8], and crosstalk [9] etc., take advan-
tage of observations from already evaluated windows to prune the windows which
are not likely to have the object. While bottom-up methods guide their search by
firstly identifying category independent candidate object locations before apply-
ing category specific detectors. This can be achieved either through low-level
segmentations [10,11] or through some “objectness” [12] measurement of a can-
didate window. Since the number of classifier evaluation is drastically pruned in
such bottom-up methods, even computational intensive spatial pyramid match-
ing [13], which is very successful in image classification, can be adopted for object
detection.
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Notwithstanding the great success of these methods for reducing the compu-
tational cost for object detection, none of these methods searched for the object
in the full continuous parameter space, i.e., the center point, scale, and aspect
ratio of the object. In other words, for top-down approaches, the detection accu-
racy is still bounded by the level of quantization these algorithms operating on.
For bottom-up approaches, the recall of the detector is bounded by the recall of
the category independent object proposal.

Moreover, most of the above approaches still rely on classification models to
localize the object. While a classifier could be robust due to large scale training,
it is not necessarily optimized for accurate object localization. What worsens
the situation is that many detectors such as DPM [4] are not trained on the
exact ground truth positive samples. These detectors allow samples with suffi-
cient overlap with the ground truth being positive training samples, for either
data augmentation purpose or a more comprehensive modeling of visual appear-
ance among different positive samples. Thus in contrast to aiming at precise
localization as much as possible, the visual classification models are learned to
accommodate inaccurate localizations.

These observations motivate us to develop a detection framework which is
capable of precisely searching for the object in a full parameter space with favor-
able efficiency. To achieve this goal, we first relax dense sampling of the object
location and scale, dubbed the name location relaxation, and only evaluate the
detector at a much coarser set of locations and scales. For coarse detection win-
dows which have relatively high response, we apply supervised descent search [14]
to find potential object hypothesis by simultaneously optimizing their center
point, scale, and aspect ratio. The resulting detections are much more improved
with supervised descent search but still not sufficient in terms of accurate local-
ization. Thus we introduce Regionlets Re-localization, which is naturally built
based on the quantized Regionlets features, to directly predict the true object
location based on results from supervised descent search.

Figure 2 takes person detection as an example to illustrate our object detec-
tion framework. By applying an object detector to bottom-up object propos-
als, we obtain coarse detections, i.e., the bounding boxes shown in Fig. 2(b).
Among them, the red box is relatively confident detection compared to others.
Through the supervised descent search starting from the red bounding box, a bet-
ter detection is obtained as the dash box in Fig. 2(c). Finally we apply Regionlets
Re-localization to determine the object location as shown in Fig. 2(d). We show
some sample detection results on the PASCAL VOC 2007 dataset in Fig. 1.

The contribution of this paper lies on three aspects. Firstly, it proposed
coarse detection plus supervised descent search in a fully parameterized location
space for generic object detection which shows promising performance. Secondly,
it proposed a novel Regionlets Re-localization method which complements the
suboptimal object localization performance given by object detectors. Finally,
our detection framework achieves the best performance on the PASCAL VOC
2007 dataset without using any outside data. It also demonstrates superior per-
formance on our self-collected car dataset.
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Fig. 2. Illustration of the proposed object detection framework. (a) A testing image on
which we want to detect all persons. (b) Coarse detection results obtained from object
detectors applied to bottom-up proposals. The red bounding box indicates a relatively
confident detection. (c) More confident detections obtained through supervised descent
search. (d) The Regionlets Re-localization is employed to produce better localization.
A non-max suppression procedure is followed to generate the final detection result
(Color figure online).

2 Our Approach

Our object detection framework is composed of three key components: bottom-
up object hypotheses generation, top-down object search with supervised descent
and object re-localization with a localization model.

There are several alternatives to obtain object hypotheses. For example,
through the objectness measurement [12], the saliency analysis or their com-
binations [15], or using segmentation cues [10]. Because our top-down search
algorithm is applied locally, we expect the bottom-up object hypotheses to split
the object location space evenly, to avoid the search algorithm converging to the
same local minimum. To this end, we employ low-level segmentation to propose
the object hypotheses. The superpixel segmentation merges similar pixels locally
into disjoint sets which perfectly matches our need. However, over-segments
only provide small object candidates. To obtain object hypotheses for large
objects, the over segmented superpixels are gradually merged to produce larger
candidates.

The detection with location relaxation takes coarse detection results from a
detector applied on the bottom up object proposals. Then it searches the object
location guided by discriminatively learned descent model inspired by Xiong and
De la Torre [14]. The learned supervised descent model is used to predict the
next more accurate object location to explore based on observations from the
current location. Although our method is applicable with any black box object
detector, we use the Regionlets detector [16] due to its outstanding performance
and flexibility to detect objects in any viewpoints.

All the detection results, including the original coarse detections as well as
detections generated by supervised descent search, are fed to our Regionlets
Re-localization process to more accurately locate the target objects.

2.1 Bottom-Up Object Proposal

To complement our top-down searching strategy, we employ a segmentation based
bottom-up scheme to generate our initial set of candidate searching locations.
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Similar to [10], we start with over-segments (i.e., superpixels) of an image and
then hierarchically group these small regions to generate object hypotheses. We
use [17] to generate superpixel segments. A segmented region ri is described by
several characteristics, i.e., the size of the region (total number of pixels), color
histograms, and the texture information (gradient orientation histograms). Four
neighbor region similarities are defined based on these characteristics as shown in
the following equations:

Sc(ri, rj) =
n∑

k=1

min(cki , c
k
j ), (1)

Ss(ri, rj) = 1 − sz(ri) + sz(rj)
sz(im)

, (2)

St(ri, rj) =
n∑

k=1

min(tki , t
k
j ), (3)

Sf (ri, rj) = 1 − sz(bbij) − sz(ri) − sz(rj)
sz(im)

. (4)

where cki is the kth dimension of the color histogram, sz(ri) is the number of
pixels in image region ri, im stands for the whole image, tki is the kth dimension
of the texture histogram, bbij is the rectangular region which tightly bound
region ri and rj . Sc, Ss and St are the color similarity, size similarity, texture
similarities, respectively. Sf measures how the combined two regions will occupy
the rectangular bounding box which tightly bounds them. The similarity of two
adjacent regions can be determined by any combination of the four similarities.

The two regions with the highest similarity w.r.t the similarity measurement
are merged first and this greedy process is repeated following an agglomera-
tive style clustering scheme. Each merging step produces a bounding box which
bounds the merged two regions. In principle, we want regions from the same
object to be merged together. Each low level cue contributes from its aspect.
For example, the color similarity measures the color intensity correlation between
neighbor regions which encourage regions similar in color to be merged together.
The size similarity encourages small regions to merge first. The fill similarity
encourages the bounding box to tightly bound the merged region. The texture
similarity measures the similarity of appearance in gradient, which is comple-
mentary to color similarity. The usage of similarity measures and segmentation
parameters are detailed in the experiment section.

2.2 Top-Down Supervised Object Search

Once the coarse object hypotheses are obtained, we apply an object detector
to determine relatively confident detections. The top-down supervised descent
search is only applied to these confident detections.

Supervised descent is a general approach to optimize an objective func-
tion which is neither analytically differentiable nor practical to be numerically
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approximated. It is very suitable for vision problems when visual feature is
involved in optimizing the objective function, because most visual features such
as SIFT, HOG, and LBP histogram are not differentiable with respect to loca-
tions. Instead of computing the descent direction from the gradient, supervised
descent uses a large number of examples to train a regression model to predict
the descent direction. The training process requires features, which serves as
the regressor, to be a fixed length vector, while bottom up segmentations natu-
rally produces arbitrary size proposals. To deal with this issue, we normalize the
bounding boxes to a fixed size. In the following, we explain how the supervised
descent is adopted to find objects in a full parameter space.

Given an initial object hypothesis location o0 = [x0, y0, s0, a0]T , which may
not accurately bound the object, our objective is to use supervised descent to
greedily adjust the bounding box by a local movement Δo = [Δx,Δy,Δs,Δa]T ,
leading to a more accurate localization of the object. The goal of the supervised
descent training process is hence to learn a sequence of K models to predict
the optimal descent direction of the bounding box for each step of the super-
vised descent, where the needed supervised descent step K is also automatically
identified from the training process.

More specifically, denote Φ(ok−1) to be the n dimensional feature vector
extracted from the bounding box defined by ok−1 in the k − 1 step of the
supervised descent process, we learn an n × 4 linear projection matrix Rk−1 =
[rxk−1, r

y
k−1, r

s
k−1, r

a
k−1]

T and a four dimensional bias vector bk−1 = [bxk−1,

byk−1, b
s
k−1, b

a
k−1]

T so that the bounding box movement can be predicted as
Δok = RT

k−1Φ(ok−1) + bk−1 based on the location from the k − 1 step. Φ(·)
indicates the feature extracted which is HOG and LBP histogram in our exper-
iments.

We first explain the training process for the first supervised descent model,
followed by details to train models sequentially after. Given a set of labeled ground
truth object locations {oi

∗ = (xi
∗, y

i
∗, s

i
∗, a

i
∗)}, we construct the starting locations

{oi
0 = (xi

0, y
i
0, s

i
0, a

i
0)} of the object by applying a random perturbation from the

ground truth but assure that they are overlapped. The training of the projection
matrix R0 and the bias b0 is to solve the following optimization problem:

arg min
R0,b0

∑

i

||Δoi
0∗ − Δoi

0||2, (5)

where Δoi
0∗ = oi

∗ − oi
0 is the true movement and Δoi

0 = RT
0 Φ(oi

0) + b0 is
the predicted displacements of the state vector. The optimal R0 and b0 are
computed in a closed-form by a linear least square method.

The subsequent Rk and bk for k = 1, 2, . . ., can be learned iteratively. At
each iteration, we update the new locations determined by the previous model
Rk−1 and bk−1,

oi
k = oi

k−1 + RT
k−1Φ(oi

k−1) + bk−1. (6)

By updating Δoi
k∗ = oi

∗ − oi
k and Δoi

k = RT
k Φ(oi

k−1) + bk−1 the optimal Rk

and bk can be learned from a new linear regression problem by minimizing

arg min
Rk,bk

∑

i

||Δoi
k∗ − Δoi

k||2. (7)
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The error empirically decreases as more iterations are added [14]. In our experi-
ments, this training of supervised descent models often converged in 20–30 steps.

Given a testing image, we firstly apply the cascade regionlets detector [16]
to the coarse bottom-up object candidates. Object hypotheses which produces
high detection scores are fed to the iterative supervised descent search process to
perform local search. New locations output by supervised descent search are re-
evaluated by the object detector to obtain the detection score. By ranking all the
detection scores from searched locations, we keep the most confident detections.

2.3 Regionlets Object Re-localization

The supervised descent search introduced in the previous subsection significantly
improve the detection rate by scanning more predicted object candidates. In this
section, we assume the object has already been detected, but with non-perfect
localization. To further improve the object detection system, we train a model
specific for object localization taking advantage of features extracted from the
Regionlets detection model.

The Regionlets detector [16] is composed of thousands of weak classifiers
learned with RealBoost. These weak classifiers are formed as several cascades
for early rejection, yielding fast object detection. The cascade structure is not
related to our re-localization approach and would not be included in the following
presentation without any misunderstanding. The input of each weak classifier in
the Regionlets model is a 1-D feature extracted from a rectangular region in
the detection window. In the training process, these 1-D features are greedily
chosen to minimize the logistic loss over all training samples, which is based on
classification errors. More details about the Regionlets learning and testing are
beyond the scope of this paper and can be found from [16].

Not only does the Regionlets training process greedily select discriminative
visual appearances, but also it determines the spatial regions to extract the 1-D
feature. Thus the resulting weak features extracted from regionlets implicitly
encode thousands of spatial locations, which could be used to further predict
the precise location of an object. It is worth noting that the detector learning
only targets on minimizing the classification error which does not necessarily
guarantee that the localization error is also minimized at the same time.

To leverage the rich spatial information encoded in the Regionlets model, we
let each Regionlet vote the object’s position. Given the object location (l, t, r, b)
detected by the object detector ((l, t, r, b) represents the object’s left, top, right
and bottom coordinates, respectively), the problem is equivalent to predict the
localization error (Δln,Δlt,Δlr,Δlb) of the current detection so that the true
object location is computed as:

l∗ = l + wΔln, t∗ = t + hΔtn,

r∗ = r + wΔrn, b∗ = b + hΔbn. (8)

Here (l∗, t∗, r∗, b∗) is the ground truth object location. (l, t, r, b) is the bounding
box detected with the Regionlets model. w = r − l + 1, h = b − t + 1 are
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the detected bounding box width and height respectively. (Δln,Δtn,Δrn,Δbn)
are the relative localization error between the ground truth and the current
detection. It is normalized by the width and height of the detected objects1.
Detections from Regionlets model have various sizes, we observe that normalizing
displacement errors is critical to stabilize the training and prediction.

Training the localization model is to learn a vector V , so that we can predict
the localization error :ΔL = V TR, where ΔL is either Δln, Δtn, Δrn, or Δbn, R
is the feature extracted for from regionlets. We minimize the squared localization
error in the model training phase. More specifically, we solve a support vector
regression problem for each of the four coordinates respectively:

min
V

{
‖V ‖
2

+ C
M∑

m=1

max(0, |ΔLm − V TRm| − ε)2
}

, (9)

where V is the coefficient vector to be learned, ΔLm is the normalized local-
ization error of training sample m, Rm is the feature extracted from all the
Regionlets in the object detection model for the mth sample as explained in
the following, M is the total number of training examples. The first term in the
Eq. (9) is the regularization term, while C is a trade-off factor between the reg-
ularization and the sum of squared error, ε is the tolerance factor. The problem
can be effectively solved using the publicly available liblinear package [18].

The feature R is extracted from the discriminatively learned Regionlets detec-
tion model. However, directly applying Regionlets features produces poor per-
formance. Based on the weak classifier learned on each Regionlets feature, we
transfer the 1-D Regionlet feature into a sparse binary vector. Each Regionlets
weak classifier is a piece-wise linear function implemented using a lookup table:

hi =
8∑

j=1

wi,jδ(Q(fi) − j), (10)

where fi is the 1-D feature extracted from a group of regionlets, Q(fi) quantize
the feature fi into an integer from 1 to 8. δ(x) = 1 when x = 0 otherwise 0.
{wi,j}8j=1 is the classifier weights learned in the boosting training process. We
transfer Q(fi) into an 8-dimensional binary vector r, where the jth dimension is
computed as r(j) = 1(Q(fi) = j), and 1(·) is the indicator function. Apparently,
there is one and only one nonzero dimension in r. Note that the Regionlets object
detector is a combination of N weak classifiers:

H =
N∑

i=1

hi. (11)

Thus by concatenating these binary vectors from all weak classifiers, the detec-
tion model naturally produces 8N dimensional sparse vectors, denoted as
1 We empirically found that using the four coordinates for our localization model

produces better performance than using (x, y, s, a). Thus we choose (l, t, r, b) in our
Regionlets Re-localization approach.
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R = (rT1 , rT2 , . . . , rTN )T . It serves as the feature vector Rm in Eq. (9). Intuitively,
each Regionlets feature fi has 8 options to vote for the actual object location
depending on the binarized feature vector ri. Learning the weight vector V in
Eq. (9) is to jointly determine the votes (regression coefficients) in 8 different
scenarios for all Regionlets features.

The sparse binary features extracted from regionlets are very high dimen-
sional. We observed significant over-fitting problem if there are not enough
training samples. To avoid over-fitting during training, we randomly sample 80k
bounding boxes around ground truth objects to train the localization model.

Discussion. The supervised descent search is designed to search more object
candidates in a principled way to increase the detection rate, and a following
discriminative visual model (Regionlets detector) is mandatory to determine
the detection scores of new locations. Regionlets Re-localization is only used
to predict the accurate object location. There is no detector followed to evalu-
ate the new location as in the supervised search. Thus it adjusts the detection
to a more precise location without changing the detection score. In contrast,
using the object detector to re-evaluate the detection score decreases the per-
formance. Because the newly predicted location usually gives lower detection
score which causes the predicted location being eliminated in the post non-max
suppression process. To summarize, the role of supervised descent search is to
find objects based on detections with coarse locations. Regionlets Re-localization
is conducted on fine detections from supervised descent search. It aims at fur-
ther improvement in accurate localization based on reasonable good localizations
from supervised descent search. Leaving out any of these two schemes would sig-
nificantly hurt the detection performance according to our observation.

3 Experiments

We evaluate the proposed detection framework with the Regionlets detector [16]
on the PASCAL VOC2007 dataset and a self-collected car dataset. Our collected
car dataset contains 5559 images (17501 cars) for training and 3893 images
(12546 cars) for testing. We use the average precision (AP) and mean aver-
age precision (mAP) as performance measurement. We first analyze the perfor-
mance of location relaxation search detection, followed with quantitative results
of Regionlets Re-localization.

3.1 Location Relaxation Search

In the training phase of supervised descent, our starting points include the one
from the Regionlets [16] confident detection and a set of random perturbations
from the ground-truth. We found adding such starting points with perturbation
samples to be necessary for a stable training. In testing phase, it always starts
from Regionlets coarse detections. In this subsection, Regionlets [16] is used as a
baseline for performance comparison to better understand the location relaxation
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Table 1. Cues used to generate object hypotheses. The last column shows average
number of object hypotheses generated per image based on these cues.

#cues Color space Segmentation Similarity #object hypotheses

1 RGB F-g (k=50) (Sc, St, Ss, Sf ) 955

2 RGB F-g (k=50) (Sc, St, Ss, Sf ), (St, Ss, Sf ) 1454

4 RGB F-g (k=50, k=100) (Sc, St, Ss, Sf ), (St, Ss, Sf ) 2045

8 RGB, Lab F-g (k=50, k=100) (Sc, St, Ss, Sf ), (St, Ss, Sf ) 3367

search. We first study the performance of the location relaxation search with
different bottom-up object proposals. Then we choose the best bottom-up setting
for a thorough performance evaluation.

Effects of Bottom-Up Object Proposal. The top-down search strategy is
evaluated on bottom-up object hypotheses using several different settings based
on (1) the color space used for over-segmentation. (2) the algorithm parameter
used for over-segmentation, (3) the similarity functions (defined in Sect. 2.1) used
for generating object proposals.

We use the graph-based image segmentation proposed by Felzenszwalb
et al. [17] (denoted as F-g) with the scale parameter k = 50 or k=100 to capture
both small and large regions. Two color space are investigated in our experi-
ments, i.e., the RGB color space and the Lab color space. Following Sect. 2.1,
the four different similarity measures used are color similarity Sc, size similarity
Ss, texture similarity St, and fill similarity Sf . There are two levels of combina-
tion of these four similarity measurements. (1) Similarity level: combining these
similarities as the final similarity measurement for merging neighbor regions.
For example, (St, Sf ) means the final similarity is the weighted summation of
texture similarity and fill similarity. (2) Object hypotheses level: object propos-
als generated using different similarity combinations are collected together for
coarse detection. The first combination does not increase the number of object
proposals but it affects the neighbor merging activity. The second combination
increases the total number of object proposals.

We call one bottom-up object hypotheses generation setup as one cue. The
number of object hypotheses is increased by applying different cues indepen-
dently and collecting all the resulting object hypotheses. Obviously, employing
more cues increases the chance of covering the target object. Figure 3 shows the
detection performance of our top-down supervised search. We evaluated four
detection settings which gradually increase the number of cues to get object
hypotheses. The configurations are summarized in Table 1. Figure 3 presents
the result including the performance of the original coarse Regiolets detection,
the performance of our top-down search without optimizing object aspect ratio
(a setup close to branch-and-bound, cross-talk, divide and conquer search) and
the performance of our top-down search with optimizing the object aspect ratio.
Although achieving promising improvement by searching only for the correct
object center and scale, ignoring the aspect ratio during supervised descent
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Fig. 3. The detection mean average precision vs number of cues used on the PASCAL
VOC 2007 dataset. Regionlets: the performance of regionlets without local search.
LRS w/o aspect ratio: Location relaxation search without searching optimal object
aspect ratio. LRS w/ aspect ratio: Location relaxation search with aspect ratio
optimization.

search substantially suppresses the best detection accuracy we can obtain. Aug-
mented with aspect ratio search, our top-down supervised search consistently
improve the detection performance with a large margin. The more cues we used,
the better performance we have. That is because our supervised descent search
is targeted to find a local maximum which cannot save missing objects which
are far away from the coarse detection.

Overall Performance. Table 2 shows the detailed performance for each object
category using 8 cues for coarse detection. Without aspect ratio search, our
method only improves the detection mean average precision by 1 %. Adding
aspect ratio to the supervised descent procedure significantly boost the perfor-
mance by 3 %. Note that the detection results of the Regionlets [16] detector
reported here is the average precision without conducting the exhaustive local

Table 2. Performance comparison with the baselines on the PASCAL VOC 2007
dataset (average precision %). LRS w/o aspect ratio: location relaxation search without
optimizing aspect ratio. LRS w/ aspect ratio: location relaxation search with optimiz-
ing aspect ratio. mAP is the mean average precision over all the 20 categories.

AP % aero bike bird boat bottle bus car cat chair cow table

Regionlets [16] 53.1 49.5 16.7 25.9 16.3 49.8 64.2 37.9 16.7 39.3 44.7

LRS w/o aspect ratio 53.3 49.1 17.0 25.9 17.9 50.6 64.5 41.5 17.2 40.1 46.8

LRS w/ aspect ratio 54.2 52.4 18.0 27.3 22.5 53.8 68.6 43.1 20.6 42.8 45.6

dog horse mbike person plant sheep sofa train tv mAP

Regionlets [16] 23.2 50.4 52.7 35.6 11.7 29.5 31.3 56.1 50.0 37.7

LRS w/o aspect ratio 25.0 51.6 53.3 36.6 13.0 29.6 34.4 55.6 50.5 38.7

LRS w/ aspect ratio 26.2 56.2 57.2 42.7 16.0 37.0 38.7 57.1 51.7 41.6
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Fig. 4. The trace of the searched
bounding box center in supervised
descent.

Fig. 5. The distance between the
searched bounding box center and
the true object center in super-
vised descent.

grid search (i.e., only a coarse detection is applied in order to validate the effec-
tiveness of our supervised descent search). If such exhaustive local grid search is
conducted, it bumps the mAP to be 41.7 % as reported in [16]. Table 2 suggests
that our principled supervised descent search achieves comparable results with
exhaustive dense local search.

Understanding Supervised Descent. As aforementioned, training the super-
vised descent models in our experiments takes about 20 to 30 iterations to con-
verge. Hence in testing, the supervised descent would run up to 20 to 30 steps.
To better understand the supervised descent steps, we use an example to visual-
ize how the bounding box would be evolving with the progress of the supervised
descent, as illustrated in Figs. 4 and 5. In Fig. 4, it shows the trace of the object
center (the pink curve) when supervised descent is gradually applied. The blue
box is the initial coarse detection based on the bottom-up segmentation and the
red box is where the search converged. We plot the distance between the searched
bounding box center and the ground truth object center in Fig. 5. The distance is
gradually reduced in the search process. Note that this is just an illustration for
understanding the process. In practice, the algorithm does not necessarily always
converge to a true detection. An initialization with a false detection which is far
away from any ground truth objects may result in a higher false positive during
the local search. We rely on the object detector to eliminate false positives.

3.2 Regionlets Re-localization

Table 3 shows the performance of our Regionlets Re-localization approach built
upon the location relaxation search on the PASCAL VOC 2007 dataset. Our local-
ization model improves 19 out of 20 object categories. For the person category
which usually has many articulated poses, our approach dramatically boosts the
average precision by 6.3 %. It suggests that even a dense search with the classifica-
tion model does not solve the precise localization problem. This can be explained
by the fact that the classification model is targeted for robust detection which
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Table 3. Effectiveness of Regionlets Re-localization. LRS: Regionlets with location
relaxation search with aspect ratio search. LRS-RR: Location relaxation search and
Regionlets Re-localization

AP % aero bike bird boat bottle bus car cat chair cow table

LRS 54.2 52.4 18.0 27.3 22.5 53.8 68.6 43.1 20.6 42.8 45.6

LRS-RR 55.8 53.5 22.1 28.8 25.1 54.1 71.5 45.9 22.3 45.7 50.6

dog horse mbike person plant sheep sofa train tv mAP

LRS 26.2 56.2 57.2 42.7 16.0 37.0 38.7 57.1 51.7 41.6

LRS-RR 29.6 58.4 55.6 49.0 17.6 41.1 42.4 59.5 54.2 44.1

Table 4. Performance comparison between our Regionlets Re-localization and the
bounding box prediction used in deformable part base model. DPM base: base DPM
performance in [19]; DPM with BB: DPM with bounding box prediction in [19]. LRS
base: our base location relaxation search with aspect ratio search. LRS with RR: LRS
with Regionlets Re-localization.

DPM base DPM with BB Improvement

26.3 % 26.8 % 0.5 %

LRS base LRS with RR Improvement

41.6 % 44.1 % 2.5 %

Table 5. Comparison with state of the arts using mAP over 20 classes. “WC” means
the method utilizes context cues. We do not use any context information in our method.

VOC 2007 Results year

DPM(WC) [4] 35.4 2008

UCI 2009 [20] 27.1 2009

INRIA 2009 [21] 28.9 2009

MIT 2010 [2] 29.6 2010

Song et al. (WC) [22] 37.7 2011

Li et al. (WC) [23] 35.2 2011

SS SPM [10] 33.8 2011

Cinbis et al. (WC) [24] 35.0 2012

Regionlets [16] 41.7 2013

Ours(LRS + RR) 44.1 2014

accommodates inaccurate object locations, while a localization model largely com-
plements the effort for accurate object localization.

Table 4 shows the comparison between our Regionlets Re-localization and the
location prediction approach used in DPM (DPM-BB). In contrast to DPM-BB
for which the improvements are within 0.5 % for most of the object categories, our



Accurate Object Detection with Location Relaxation 273

Table 6. Performance of Regionlets Re-localization on the car dataset. 0.5 ov: A true
detection must have more than 50% overlap with the ground truth. 0.7 ov: A true
detection much have more than 70% overlap with ground the truth.

0.5 ov 0.7 ov

LRS 62.7 % 34.8 %

LRS-RR 65.3 % 43.9 %

Improvement 2.6 % 9.1 %

method yields a larger improvement, in average 2.5 %. Combined with location
relaxation search, our detection approach produces 44.1 % mean average preci-
sion on the PASCAL VOC 2007 dataset, which to our best knowledge, is the
best performance reported on this dataset without using outside data. Table 5
presents the performance comparison of our detector with recent state-of-the-art
detection systems.

The detection performance of Regionlets Re-localization on the car dataset
is evaluated with two different criteria. The first criterion treats a detection as
true detection if it has more than 50 % overlap (intersection/union) with the
ground truth. The second criterion set the threshold to be 70 %, which requires
much better localization. As shown in Table 6, with the 0.5 overlap criterion,
our Regionlets Re-localization improves the performance by 2.6 %. With the
0.7 overlap criterion, it largely improves the average precision by 9.1 %. This
experiment strongly demonstrates that the detections are much more accurate
after Regionlets Re-localization.

3.3 Run-Time Speed

Our detection system runs at 4 frames per second if the over-segments are ready.
The over segmentation took 1 seconds per image. However, recent approaches [25]
show it is possible to obtain real-time over segmentation.

4 Conclusions

In this paper, we proposed an object detection strategy which is a combination
of bottom-up object hypotheses generation and top-down local object search
for generic object detection. Our framework optimizes the object location in
a full parameter space which can also search the aspect ratio of the object.
The Regionlets Re-localization model complement existing classification models
and can produce more precise localization, pushing even more accurate object
detection.
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