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ABSTRACT
Most existing single image super-resolution (SISR) methods
continually increase the depth or width of networks, with-
out adequately exploring contextual features which are es-
sential for reconstruction. Moreover, such existing methods
pay little attention to the final high-resolution(HR) image re-
construction step and therefore hinder the desired SR perfor-
mance. In this paper, we propose a multi-context and en-
hanced reconstruction network (MCERN) for SISR. Specif-
ically, a novel model named Multi-Context Block (MCB)
which extracts more image contextual features with multi-
branch dilated convolution. Applying multiple MCBs with
residual and dense connections, we can effectively extract
contextual and hierarchical features for obtaining the coarse
super-resolution result. Then an enhanced reconstruction
block (ERB) is followed to extract essential spatial features
on the high-resolution image to refine the coarse result to a
better result. Extensive benchmark evaluations demonstrate
the efficacy of our proposed MCERN in terms of metric ac-
curacy and visual effects.

Index Terms— single image super-resolution, deep
learning, multi-context block, enhanced reconstruction block.

1. INTRODUCTION

Single-image super-resolution (SISR) is a computer vision
task that reconstructs a high-resolution (HR) image from a
low-resolution (LR) image. It could be used in a variety of ap-
plications such as medical imaging, security, and surveillance
imaging. The quality of the reconstructed HR image depends
on how to extract and use the information from LR image.
Since there are multiple HR images that can be downsampled
to the same LR image and this is a one-to-many mapping re-
lation to recover HR images from a LR image, SISR is an
ill-posed and still challenging problem in the community.

Recently, convolutional neural networks (CNNs) [1, 2,
3, 4, 5, 6, 7] have been widely used to handle SISR ow-
ing to the powerful learning ability. In spite of remarkable
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progress achieved in SISR, we observe that existing methods
are still faced with two main limitations, first, for feature ex-
traction, most methods blindly increase the depth or width of
the network in order to enhance the ability of feature extrac-
tion of the network but ignore taking full use of the contextual
features from LR image. The contextual feature information
gradually disappears with the increase of the network depth;
Second, for the HR image reconstruction process, most mod-
els only use LR spatial information and directly use an up-
sampling layer at the end of the network to reconstruct the
HR image. These methods only focus on LR spatial informa-
tion and make the network failed to explore useful cues in HR
space for reconstructing visually pleasant SR image.

Such observations inspire us to make full use of contex-
tual features and simultaneously distill features in LR and HR
space for SISR. We propose a multi-context and enhanced re-
construction network (MCERN) to fully explore the contex-
tual features in LR space for upsampling and further explore
a reconstruction process after upsampling in a coarse-to-fine
fashion with two stages for SISR. As illustrated in Figure 1,
we design a multi-context block (MCB) and multiple multi-
context integration blocks (MCIBs) with a skip connection for
upsampling to obtain a coarse HR result at stage 1, and then
an enhanced reconstruction block (ERB) is proposed to effec-
tively extract essential features in HR space for reconstruction
more details to refine the coarse HR result at stage 2.

Different from the existing methods, our MCB employs
multi-branch dilated convolution to increase the receptive
field for extracting more abundant contextual features, with-
out introducing additional parameters. Combining multiple
MCBs with a residual connection and dense connections,
each MCIB is good at integrating rich contextual features
from MCBs, and multiple MCIBs are stacked with residual
connection to combine hierarchical fusion features for the
recovery of missing local details with a convolution layer.
Therefore, the combination of an MCB and multiple MCIBs
can guarantee rich contextual features extracted in LR space
for upsampling to achieve a good initial coarse HR result. Un-
like MCB and MCIBs extracting LR features, we propose a
simple but effective ERB which can explore local details in
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Fig. 1. The overview of our proposed MCERN network. First, a convolutional layer followed by the ReLU activation function
is used to extract shallow features from the input RGB image. Second, the shallow features pass through MCB and multiple
MCIBs and the output of each MCIB are concatenated to generate multi-level context-aware residual features. Third, the sub-
pixel convolutional layer [8] followed by a convolutional layer is used to upsample the LR features to HR space and reconstruct
a coarse SR image. Finally, the coarse SR image is fed to the ERB to obtain the final refined SR image.

HR space for reconstructing fine-detailed HR image. The in-
tuition behind the ERB is that the information in LR space is
limited and we believe features extracted in HR space could
benefit a better recovery of local details. Such a coarse-to-fine
network can robustly harvest abundant hierarchical and con-
textual features in both LR and HR spaces. Also, the well-
designed structure and the use of dilation convolution enable
our proposed MCERN to be a light-weight network.

To sum up, the main contributions of this paper are: (1)
our proposed two-stage MCERN network is able to robustly
extract rich hierarchy and contextual features in both LR and
HR spaces for recovering a visually pleasing HR image in
a coarse-to-fine fashion; (2) an ERB with multiple convo-
lution layers and ReLU activations is proposed to produce
a residual map to further refine the initial SR result in HR
space, which has not been sufficiently explored before; and
(3) the well-designed MCB with multi-branch dilation con-
volutions and the simple yet effective ERB can guarantee our
MCERN as a light-weighted network. We evaluate the pro-
posed MCERN network on four benchmark datasets and the
experiments demonstrate the effectiveness of our proposed
MCERN in terms of metric accuracy and visual effects.

2. RELATED WORK

In this section, we briefly review recent deep learning meth-
ods based on pre-upsampling, post-upsampling, and sam-
pling, which are developed to solve the SR problems.

Pre-upsampling based methods use bicubic interpolation
to upsample LR image before the network extracts features,
including SRCNN [1], VDSR [2], DRCN [3], DRFN [9] and
MemNet [10]. As these methods learn the mapping in HR
space, the raw features cannot be extracted from original LR
images and the computation complexity of the network grows
dramatically with the increase of the specific size of HR im-
ages. Moreover, these methods often produce visible recon-
struction artifacts due to a lack of information from the LR
space.

Post-upsampling based methods like ESPCN [8],
EDSR [4], MSRN [11], RCAN [6], RDN [5], and
CARN [12], directly extract features from input LR im-

ages and then use the features extracted in LR space to
obtain HR images by a transposed/sub-pixel convolution
layer. Compared with pre-upsampling based methods, the
computational complexity of these methods is insensitive to
the SR magnification scale. However, most of these methods,
such as EDSR [4] and RDN [5], blindly increase the depth
or width of the network to enhance the ability of feature
extraction of the network and ignore taking full use of the
contextual features from LR image. Moreover, these methods
only focus on extracting information from LR space and
pay no attention to utilizing HR space information for the
reconstruction process.

Regarding sampling based methods [13, 14, 15], they
adopt sampling methods with some strategies. For example,
DBPN [14] exploits iterative up- and down- sampling layers,
and provides an error feedback mechanism for projection er-
rors at each stage.

It worths mentioning that our proposed two-stage
MCERN network belongs to a post-upsampling method be-
cause we use MCB and multiple MCIBs to extract abundant
contextual features on the input LR image at the first stage.
Note that our ERB is also very similar to a pre-upsampling
method because we further feed the coarse HR image to the
ERB to recover more local details in the second stage.

3. PROPOSED METHOD

3.1. Network Architecture

As shown in Figure 1, our proposed MCERN consists of two
stages to solve the SISR problem in a coarse-to-fine fashion.
We design a multi-context block (MCB) and multiple multi-
context integration blocks (MCIBs) to reconstruct a coarse
SR result at stage 1. And at stage 2, we propose an enhance
reconstruction block (ERB) in order to extract essential fea-
ture in HR space.

At stage 1, given an input low-resolution image ILR, we
first extract shallow features H0 by

H0 = fMCB(Hraw), Hraw = δ(C64
1×1(I

LR)), (1)
where Cc

k×k represents convolution operation where kernel
size is k×k and the number of output channels is c; δ denotes
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the rectified linear unit (ReLU) activation function; Hraw is
the raw features directly extracted from input LR image; and
fMCB denotes the further feature extraction function by a
MCB. Then, H0 is fed to the contextual features extraction
and fusion component for further feature extraction,

Hd = fd(Hd−1) = fd(fd−1(· · · f1(H0) · · · ), (2)

where fd denotes the d-th multi-context integration function
and Hd and Hd−1 are the output and input of the d-th MCIB,
respectively. We set d = 3, that is, only three MCIBs are used
in our actual network. Later, all Hi, i ∈ [1, d], will be fused
by applying convolution layers upon the concatenation of all
the previous outputs of each MCIB, i.e.,

Hfusion = C64
1×1([H1, H2, · · · , Hd]), (3)

where [·] denotes the concatenation operation. With the fused
featureHfusion which has incorporated hierarchical informa-
tion, we can get the coarse super-resolution result by apply-
ing a convolution on contacting the upsampling uponHfusion

and the skip connection from the raw features Hraw, i.e.,

ISR
coarse = C3

1×1(fup(Hfusion +Hraw)), (4)

where fup denotes the transposed convolution operation.
At stage 2, we design an ERB (denoted as frefine)

to model image details (residuals) to get a better super-
resolution result:

ISR
refined = frefine(I

SR
coarse), (5)

Finally, the overall loss function Loverall is defined as:

Loverall = wcL(I
SR
coarse, I

HR) + wrL(I
SR
refined, I

HR), (6)

where IHR is the ground truth image, L is the mean absolute
error (MAE) loss, wc and wr are the balancing parameters.

3.2. Multi-Context Block

In order to make sure our method can leverage more con-
text to predict image details and simultaneously extract fea-
tures with different contextual characteristics for reconstruct-
ing visually pleasing HR image, we propose a novel structure
named Multi-Context Block (MCB).

A common operation to increase the receptive field is to
cascade several convolution layers, as shown in Figure 2(a).
In the cascading structure, as the depth of the network in-
creases, the receptive field gradually increases. The output of
every layer is concatenated to utilize multiple scales of recep-
tive fields. As shown in Figure 2(b), a variety of contextual
features can be obtained with parallel structure. In this par-
allel structure, to sample the input with different contextual
information, multiple layers accept the same input and their
outputs are fused.

As shown in Figure 2(c), we push the boundaries of cas-
cading and parallel strategies to a novel compact structure to
simultaneously distill features with different receptive fields
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Fig. 2. Comparison of feature extraction structures for SR:
(a) cascading structure, (b) parallel structure, and (c) our pro-
posed compact structure. “C” and “D” denote traditional and
dilated convolution (both with a ReLU activation function).
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Fig. 3. The structure of MCIB.

and contextual characteristics. Our proposed MCB contains
two branches, which are used to extract different contextual
features. Each branch consists of two cascaded convolutions,
which are used to extract features with different receptive
fields. We adopt the dilated convolution for widening the re-
ceptive field without additive parameters, which maintains the
lightweight structure. Finally, we concatenate all features of
different branches and depths and fuse them via a 1× 1 con-
volution layer.

3.3. Multi-Context Integration Block

As MCB can effectively extract multiple contextual informa-
tion from input features, inspired by [5], we further use a
multi-context integration block (MCIB) based on MCB to
harvest rich contextual features of different levels. Specifi-
cally, we stack multiple MCBs in a dense connection manner
as shown in Figure 3. By doing so, each MCB in MCIB has
access to all the previous MCB’s output and thus could fully
utilize them to further distill higher level contextual features.
We then concatenate the outputs of each MCB and feed them
into a 1× 1 convolution to distill information that needs to be
preserved, from contextual features of different levels. Here,
we adopt the residual learning strategy to ease the difficulty
of training. MCIB can be expressed as follows,

Hd = C64
1×1([Hd−1, Hd,1, · · · , Hd,e]) +Hd−1, (7)

where Hd,e denotes the output of e-th MCB in d-th MCIB.
Each MCIB contains six MCBs, i.e., e = 6, and the dilation
rates of these MCBs are set to 1, 2, 3, 3, 2, and 1, respectively.

As shown in Figure 1, we used three MCIBs and com-
bined the outputs of each MCIB to obtain hierarchical con-
textual features used for reconstructing the initial HR image.
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Fig. 4. The structure of our proposed ERB.

3.4. Enhance Reconstruction Block

We propose an enhance reconstruction block (ERB) to recon-
struct a refined SR result from a coarse SR result. As shown in
Figure 4, our proposed ERB contains six convolution layers
with ReLU activation functions and then applies a 1× 1 con-
volution layer to reduce the number of dimensions to three.
We use the residual connection to merge the recovered details
with the coarse SR result to recover a better SR result. Our
network can fully extract image features information in both
the LR space and the HR space with this coarse-to-fine fash-
ion.

3.5. Implementation Details

We implement our approach in Pytorch and run experiments
with a NVIDIA Titan V GPU. For training, we use 48×48
patches cropped from LR image as input and its correspond-
ing HR patches as ground truth. Following [11, 12, 16, 17],
we pre-process all the images by subtracting the mean RGB
value of the DIV2K dataset [18] and augment the training
data with random horizontal flips and 90◦ rotations. We train
our model with ADAM optimizer [19] by setting β1 = 0.9,
β2 = 0.999. The mini-batch size is set to 16. The learning
rate is initialized as 0.0001 and decreases to half every 200
epoch. The number of total epochs is 1000. The balancing
parameters wc and wr in Equation 6 are set to 1.

4. EXPERIMENT

4.1. Experimental Settings

For a fair comparison, we evaluate all methods with two com-
monly used metrics, i.e., peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) [23] on Y channel of trans-
formed YCbCr space. Following [11, 12, 16, 17], we use the

Table 1. MCB architecture analysis. “Cascading” and “Par-
allel” denote the cascading and parallel architecture shown in
Figure 2(a) and Figure 2(b), respectively; And MCB is our
proposed multi-branch architecture shown in Figure 2(c).

Archi–
tecture

Set14 [20] BSDS100 [21] Urban100 [22]
PSNR SSIM PSNR SSIM PSNR SSIM

Cascading 33.67 0.9184 32.18 0.8987 32.37 0.9305
Parallel 33.68 0.9184 32.20 0.8993 32.32 0.9304

MCB(s=1) 33.77 0.9194 32.25 0.9006 32.47 0.9312
MCB(s=x) 33.83 0.9196 32.27 0.9014 32.67 0.9336

Table 2. The effectiveness of ERB.For a fair comparison, we
move the ERB to the front of the upsampling to ensure that
the depth of MCERN w/o and w/ ERB are the same.

MCERN
Set5 [24] Set14 [20] Urban100 [22]

PSNR SSIM PSNR SSIM PSNR SSIM

w/o ERB 38.10 0.9608 33.74 0.9191 32.33 0.9304
w/ ERB 38.20 0.9612 33.83 0.9196 32.67 0.9336

(a) w/o ERB (b) w/ ERB (c) GT

Fig. 5. Qualitative comparisons of the effectiveness of ERB.

DIV2K [18] dataset for training and four datasets - Set5 [24],
Set14 [20], BSDS100 [21], and Urban100 [22] for evaluation.

4.2. Effectiveness of MCB

In order to verify the effectiveness of our proposed MCB
structure, first, we replace our MCB structure with the cas-
cading structure (see Figure 2 (a)) or the parallel structure
(see Figure 2 (b)). As shown in Table 1, we set d = 3, e = 6,
and s = 1, the results suggest the multiple branches struc-
ture in the MCB is more efficient than cascading the structure
and parallel structure structures under the same parameters.
Then, to demonstrate the effectiveness of the dilated convo-
lution with the dilation rate described in Section 3.3 (i.e., the
dilation rates of these six MCBs are set to 1, 2, 3, 3, 2, and 1,
respectively), we compare dilation rate s are various (s = x)
and all are 1 (s = 1). Similarly, we set d = 3 and e = 6. The
results are summarized in Table 1.

The above two experiments show that MCB is an effec-
tive structure, which can extract different contextual features
through two branches, and extract features in different recep-
tive fields through two cascaded convolutional layers in each
branch. And combining multiple MCBs into one MCIB, the
MCIB can adaptively integrate different contextual features
from the MCB.

4.3. Effectiveness of ERB

To prove that the HR space information can improve the re-
construction results and the effectiveness of ERB, we move
the ERB to the front of the upsampling to ensure that the
depth of MCERN w/o and w/ ERB are the same. The re-
sults are summarized in Table 2, from which we can clearly
observe that the performance with EBR works better than that
without ERB. This observation suggests that our ERB is able
to refine a coarse SR result to a more detailed one since it can
continue to extract useful features from HR space. We also
show the visual comparison in Figure 5. As we can, our ERB
is able to correct the direction for black lines.
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Table 3. Performance comparison to seven current state-of-the-art proposed methods with light-weighted model (< 6M param-
eters) in terms of PSNR and SSIM on four benchmarks with scale factors of ×2,×3,×4. We denote the best performance and
the second-best performance in red and blue, respectively.

Datasets Scale bicubic VDSR [2] LapSRN [13] CARN [12] SRMDNF [16] NLRN [25] MSRN [11] FRSR [17] Ours
interpolation (CVPR’16) (CVPR’17) (CVPR’18) (CVPR’18) (NIPS’18) (ECCV’18) (CVPR’19) MCERN

Set5 [24]
×2 36.66/0.9542 37.53/0.9583 37.52/0.9591 37.76/0.9590 37.79/0.9601 38.00/0.9603 38.08/0.9605 37.95/0.9594 38.20/0.9612
×3 30.39/0.8682 33.68/0.9201 33.82/0.9227 34.29/0.9255 34.12/0.9254 34.27/0.9266 34.38/0.9262 34.38/0.9262 34.52/0.9282
×4 28.42/0.8104 31.36/0.8796 31.54/0.8850 31.92/0.8903 31.96/0.8925 31.92/0.8916 32.07/0.8903 32.22/0.8950 32.24/0.8965

Set14 [20]
×2 30.24/0.8688 33.05/0.9107 33.08/0.9130 33.52/0.9166 33.32/0.9159 33.46/0.9195 33.74/0.9170 33.45/0.9195 33.83/0.9196
×3 27.55/0.7742 29.86/0.8312 29.87/0.8320 30.29/0.8407 30.04/0.8382 30.16/0.8374 30.34/0.8395 30.27/0.8411 30.42/0.8441
×4 26.00/0.7027 28.11/0.7624 28.19/0.7720 28.42/0.7762 28.35/0.7787 28.36/0.7745 28.60/0.7751 28.64/0.7830 28.68/0.7844

BSDS100 [21]
×2 29.56/0.8431 31.92/0.8965 31.80/0.8950 32.09/0.8978 32.05/0.8985 32.19/0.8992 32.23/0.9013 32.17/0.8991 32.27/0.9014
×3 27.21/0.7385 28.83/0.7966 28.82/0.7980 29.06/0.8034 28.97/0.8025 29.06/0.8026 29.08/0.8041 29.11/0.8050 29.17/0.8071
×4 25.96/0.6675 27.29/0.7167 27.32/0.7270 27.44/0.7304 27.49/0.7337 27.48/0.7306 27.52/0.7273 27.60/0.7370 27.64/0.7382

Urban100 [22]
×2 26.88/0.8403 30.79/0.9157 30.41/0.9101 31.51/0.9312 31.33/0.9204 31.82/0.9249 32.22/0.9326 32.23/0.9290 32.67/0.9336
×3 24.46/0.7349 27.15/0.8315 27.07/0.8280 27.38/0.8404 27.57/0.8398 27.93/0.8453 28.08/0.8554 28.33/0.8556 28.46/0.8589
×4 23.14/0.6577 25.18/0.7543 25.21/0.7560 25.63/0.7688 25.68/0.7731 25.79/0.7729 26.04/0.7896 26.21/0.7910 26.32/0.7934

VDSR[2] LapSRN[13] CARN[12] SRMDNF[16] NLRN[25] MSRN[11] FRSR[17] MCERN GT
(25.35/0.9396) (24.92/0.9398) (26.12/0.9485) (26.37/0.9493) (26.91/0.9487) (26.38/0.9521) (27.08/0.9535) (27.72/0.9552) (PSNR/SSIM)

VDSR[2] LapSRN[13] CARN[12] SRMDNF[16] NLRN[25] MSRN[11] FRSR[17] MCERN GT
(24.98/0.8834) (24.80/0.8815) (24.92/0.8895) (25.33/0.8953) (25.91/0.9055) (25.97/0.9086) (25.71/0.9051) (26.56/0.9166) (PSNR/SSIM)

Fig. 6. Visual comparison between different algorithms on different datasets with different scale factors ×2 and ×3.

Table 4. Comparison with deep CNN-based state-of-the-
arts.1M = 106, and 1G = 109.

Methods
Param Multi-Adds Set5 [24]

M (ratio) G(ratio) PSNR/SSIM
EDSR [4](CVPRW’17) 40.7(10.7) 93.8(9.3) 38.11/0.9602
RDN [5](CVPR’18) 22.1(2.8) 51.0(5.1) 38.24/0.9614
RCAN [6](ECCV’18) 15.4(4.1) 35.3(3.5) 38.27/0.9614
SAN [26](CVPR’19) 15.7(4.1) 36.0(3.6) 38.31/0.9620
DBPN [14](CVPR’18) 10.0(2.6) 34.7(3.4) 38.09/0.9600
RNAN [27](ICLR’19) 8.3(2.2) 16.6(1.6) 38.17/0.9611
MCERN 3.8(1.0) 10.1(1.0) 38.20/0.9612

4.4. Comparisons with State-of-the-art Methods

To confirm the ability of the proposed network, we compare
our proposed MCERN model with 7 current state-of-the-art
light-weighted methods (with < 6M parameters): VDSR [2],
LapSRN [13], CARN [12], SRMDNF [16], NLRN [25],
MSRN [11], and FRSR [17].

We show the quantitative results in Table 3. Our pro-
posed MCERN model outperforms the existing methods by
a large margin on different datasets and upsampling scales.
We also visualize two examples with different scales in Fig-
ure 6. Qualitatively, MCERN is able to generate a more visu-
ally pleasant image with clean details and sharp edges, while
the SR images generated by other methods exhibit visible ar-
tifacts. It shows that our coarse-to-fine framework can fully
extract rich contextual features in both LR and HR space,

We further compare our method with six state-of-the-art

methods with large parameters or heavy complicated calcula-
tions in Table 4. It can be seen that our proposed MCERN
achieves comparable performance more efficiently (e.g. ≥
3 times faster than EDSR [4] and RDN [5]) with a much
lighter network. For example, the number of parameters and
Multi-Adds of EDSR [4] are 10.7 and 9.3 times than ours,
but MCERN obtains 38.20 dB which is 0.09 dB better than
EDSR [4]. The results show that our network can effectively
extract contextual information, even though it is lightweight.

5. CONCLUSION

In this paper, we propose a novel and light-weighted MCERN
network for SISR in a coarse-to-fine fashion to utilize the con-
textual information and focus on the reconstruction process
after upsampling. Our well-designed MCB is good at increas-
ing the receptive field and extracting rich contextual features.
We combine multiple MCBs with residual connections and
dense connections to form MCIBs for further extracting hier-
archical and contextual features before upsampling to obtain
the coarse result. Also, an ERB is proposed to focus on ex-
tracting essential HR space features after upsampling to re-
fine the coarse result. Extensive evaluations on the bench-
mark datasets have demonstrated the efficacy of our proposed
MCERN in terms of metric accuracy and visual effects. Our
future work includes extending it for video SR, and applying
it to solve multiple vision applications [28, 29].
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