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1. OVERVIEW

In this supplemental material, we first provide additional two
sets of experiments to prove the effectiveness of our proposed
MCB and MCIBs, i.e., using MCB for other low-level com-
puter vision task and analyzing effectiveness with different
numbers of MCIBs. Then, more visual comparisons to the
current state-of-the-art light-weighted methods with < 6M
parameters are provided in Figure 3-11. Note that all the test-
ing images are from Set5 [1], Set14 [2], BSDS100 [3], and
Urban100 [4]. As we can observe, all the visualization results
are consistent with our claims in the main paper.

2. ADDITIONAL EXPERIMENTS

2.1. Effectiveness of MCB on Other Vision Task

In order to further verify the validity of our proposed MCB
structure, we use our network at stage 1 to other low-level
computer vision tasks. We provide the results of image de-
noising in Figure 1. Apparently, our proposed MCERN pro-
duces a good result on image denoising because our MCB
structure is able to extract abundant hierarchical and contex-
tual features for image reconstruction. More qualitative re-
sults of color image denoising are shown in Figure 2.

The above experiment further demonstrates that our pro-
posed MCB is an effective structure which can distill features
with different contextual characteristics by two branches and
extract features in different receptive fields by two cascaded
convolution layers of each branch. And multiple MCBs are
combined into an MCIB that is able to integrate contextual
features of different adaptively from MCBs.

2.2. Effectiveness with Different Number of MCIBs

We set different numbers of MCIBs in our proposed MCERN
and evaluate the performances on three datasets. As shown
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Fig. 1. Qualitative comparisons of color image denoising.
The second column shows the noisy images with noise level
25. MCERN recovers fine local details, which is mainly con-
tributed by the abundant hierarchical and contextual features
extracted by our proposed MCB. Best viewed in zoom in.

in Table 1, the values of both PSNR and SSIM for our net-
work get better as the number of MCIBs increases. Such an
observation is consistent with what we expect, since the gen-
eralization ability will also increase when the number of pa-
rameters of our network will go up when we grow the number
of MCIBs. As a trade-off between the performance and the
complexity of the network, we determine to use three MCIBs,
which provides strong reconstruction ability and requires only
a few parameters and Multi-Adds.

Table 1. MCIBs number analysis. By varying the number
of MCIBs in MCERN, we can produce a slightly different
overall network and explore their performance.

number of
MCIBs

Set14 [2] BSDS100 [3] Urban100 [4]
PSNR SSIM PSNR SSIM PSNR SSIM

2 33.68 0.9179 32.23 0.9005 32.34 0.9305
3 33.83 0.9196 32.27 0.9014 32.67 0.9336
4 33.92 0.9214 32.35 0.9021 32.77 0.9341



3. ADDITIONAL QUALITATIVE RESULTS

In Figure 3-11(Figure 3, 4 and 5 with scale factor ×2; Fig-
ure 6, 7, and 8 with scale factor ×3; and Figure 9, 10
and 11 with scale factor ×4), we provide additional results on
different datasets and different upsampling scales to clearly
show the effectiveness of our proposed network. The com-
parisons focus to compare between seven current state-of-the-
art lightweight networks which are SRCNN [5], VDSR [6],
LapSRN [7], CARN [8], SRMDNF [9], NLRN [10], and
MSRN [11]. The complete results on all datasets will be pub-
lished in our website.
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Fig. 2. Qualitative comparisons of color image denoising. The second column shows the noisy images with noise level 25.
MCERN recovers fine local details, which is mainly contributed by the abundant hierarchical and contextual features extracted
by our proposed MCB.



BIC[12] SRCNN[5] VDSR[6] LapSRN[7] CARN[8]
(26.81/0.9466) (30.54/0.9765) (32.82/0.9871) (32.82/0.9884) (34.01/0.9878)

Ground Truth SRMDNF[9] NLRN[10] MSRN[11] MCERN GT
(34.23/0.9910) (34.67/0.9919) (35.12/0.9920) (35.40/0.9925) (PSNR/SSIM)

Fig. 3. Visual comparison between different algorithms on ppt3 from Set14 [2] with scale factor ×2.

BIC[12] SRCNN[5] VDSR[6] LapSRN[7] CARN[8]
(20.96/0.8873) (22.87/0.9343) (24.11/0.9536) (23.80/0.9517) (24.56/0.9600)

Ground Truth SRMDNF[9] NLRN[10] MSRN[11] MCERN GT
(25.02/0.9622) (25.46/0.9643) (24.49/0.9766) (28.82/0.9802) (PSNR/SSIM)

Fig. 4. Visual comparison between different algorithms on img067 from Urban100 [4] with scale factor ×2.

BIC[12] SRCNN[5] VDSR[6] LapSRN[7] CARN[8]
(23.45/0.8528) (25.48/0.9121) (27.12/0.9442) (26.69/0.9396) (27.83/0.9538)

Ground Truth SRMDNF[9] NLRN[10] MSRN[11] MCERN GT
(27.95/0.9550) (29.15/0.9622) (29.84/0.9681) (30.55/0.9705) (PSNR/SSIM)

Fig. 5. Visual comparison between different algorithms on img062 from Urban100 [4] with scale factor ×2.



BIC[12] SRCNN[5] VDSR[6] LapSRN[7] CARN[8]
(25.65/0.7223) (26.79/0.7709) (27.46/0.8037) (27.60/0.8041) (28.01/0.8125)

Ground Truth SRMDNF[9] NLRN[10] MSRN[11] MCERN GT
(27.94/0.8135) (28.06/0.8174) (28.25/0.8242) (28.72/0.8321) (PSNR/SSIM)

Fig. 6. Visual comparison between different algorithms on 78004 from BSDS100 [3] with scale factor ×3.

BIC[12] SRCNN[5] VDSR[6] LapSRN[7] CARN[8]
(22.54/0.7074) (23.45/0.7573) (23.87/0.7727) (24.01/0.7758) (24.19/0.7797)

Ground Truth SRMDNF[9] NLRN[10] MSRN[11] MCERN GT
(24.07/0.7792) (24.25/0.7793) (24.66/0.7880) (24.69/0.7893) (PSNR/SSIM)

Fig. 7. Visual comparison between different algorithms on 253027 from BSDS100 [3] with scale factor ×3.

BIC[12] SRCNN[5] VDSR[6] LapSRN[7] CARN[8]
(26.21/0.7344) (27.55/0.7783) (28.35/0.7998) (28.32/0.7983) (28.46/0.8040)

Ground Truth SRMDNF[9] NLRN[10] MSRN[11] MCERN GT
(28.56/0.8069) (28.64/0.8064) (28.65/0.8098) (28.74/0.8124) (PSNR/SSIM)

Fig. 8. Visual comparison between different algorithms on 21077 from BSDS100 [3] with scale factor ×3.



BIC[12] SRCNN[5] VDSR[6] LapSRN[7] CARN[8]
(26.98/0.8798) (29.17/0.9097) (31.64/0.9436) (31.59/0.9448) (32.32/0.9500)

Ground Truth SRMDNF[9] NLRN[10] MSRN[11] MCERN GT
(32.17/0.9488) (32.30/0.9491) (32.84/0.9533) (33.07/0.9540) (PSNR/SSIM)

Fig. 9. Visual comparison between different algorithms on 42049 from BSDS100 [3] with scale factor ×4.

BIC[12] SRCNN[5] VDSR[6] LapSRN[7] CARN[8]
(29.84/0.8142) (31.21/0.8392) (31.89/0.8539) (31.98/0.8563) (32.24/0.8599)

Ground Truth SRMDNF[9] NLRN[10] MSRN[11] MCERN GT
(32.37/0.8618) (32.28/0.8600) (32.35/0.8636) (32.56/0.8661) (PSNR/SSIM)

Fig. 10. Visual comparison between different algorithms on lenna from Set14 [2] with scale factor ×4.

BIC[12] SRCNN[5] VDSR[6] LapSRN[7] CARN[8]
(24.18/0.6783) (25.06/0.7298) (25.99/0.7906) (25.99/0.7928) (26.34/0.8044)

Ground Truth SRMDNF[9] NLRN[10] MSRN[11] MCERN GT
(26.43/0.8085) (26.67/0.8165) (26.93/0.8259) (27.09/0.8320) (PSNR/SSIM)

Fig. 11. Visual comparison between different algorithms on img002 from Urban100 [4] with scale factor ×4.


