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Abstract. In this supplementary material, we first explain the extrac-
tion of multiple RoIs in detail and present experiment for different extrac-
tion strategies. We also provide details of the RoI-Aware Fusion (RAF)
network and the projector network for contrastive learning. In addition,
we provide more qualitative results on various datasets.

1 Details of Selecting RoIs

One of our contributions is the multiple RoIs that enable us to utilize the rela-
tions between different RoIs of the same human in an image. In this section, we
illustrate in detail how we perform the extraction of RoIs and comparison for
different extraction strategies.

1.1 Fixed Boundingboxes

The default method is illustrated in Figure 1, where (a) shows a full image
containing a target human and its original boundingbox,

B1 = (cx, cy, b). (1)

The symbols cx and cy denote the distance between the center of the bound-
ingbox and the center of the full image, while the symbol b is the width of the
boundingbox. Based on the original boundingbox, we generate other four bound-
ingboxes in a fixed manner, as shown in Figure 1 (b)-(e). The boundingbox in
Figure 1 (b) is:

B2 = (cx + 0.1b, cy, 1.5b), (2)

i.e., we slightly translate the original boundingbox in the x-y plane by (0.1b, 0),
and enlarge the size of the boundingbox by a factor of 1.5. Similarly, all the
other boundingboxes are generated by:

B3 = (cx − 0.1b, cy, 1.25b),

B4 = (cx, cy + 0.1b, 0.8b),

B5 = (cx, cy − 0.1b, 0.65b)

(3)



2 Y. Nie et al.

Together with the original boundingbox, we obtain M = 5 boundingboxes. After
generating the M boundingboxes, we crop the full image M times using the
boundingboxes as RoIs, and input the M RoIs to the proposed network.

1.2 Random Boundingboxes

By default, our method uses fixed boundingboxes. We have also conducted an
experiment with random boundingboxes. The random boundingboxes is obtained
by:

Bi = (cx + xi, cy + yi, si ∗ b), (4)

where xi ∈ [−0.1b, 0.1b], yi ∈ [−0.1b, 0.1b] and si ∈ [0.65, 1.5] are randomly
generated values in the corresponding range. We use random boundingbox for
RoIs in both training and testing phases.

1.3 Ablation on Extraction Strategies

In this section, we present the ablation study on different extraction strategies
discussed above, i.e., Fixed or Random Boundingboxes. By default, both resizing
and translating are used when extracting multiple RoIs in a Fixed manner as in
Section 1.1. Hence, we additionally conduct experiments to prove the necessity
for both of these two schemes.

Table 1 shows different extraction strategies and the corresponding perfor-
mance of estimated results using different schemes. To start with, “Fixed” w/o
resizing and w/o translating in the first row simply repeats the original bound-
ingbox multiple times. Network trained with repeated boundingboxes obtains
worse performance compared to those with only translating (“Fixed w/o resiz-
ing”) or only resizing (“Fixed w/o translating”) due to lack of abundant pairwise
relation information between different RoIs. Resizing and translating are both
beneficial as they can enrich the visual details around the target person which as-
sist the network to estimate the camera parameters and provide pairwise relation
between different RoIs. Random boundingboxes discussed in Section 1.2 obtains
worst performance among all the strategies since it may increase the difficulty of
network stably learning the pairwise relation. Moreover, it makes the RoIs of test
samples not consistent with training ones as the boundingbox are randomized.
As seen, the default manner (“Fixed w/ resizing and w/ translating”) gives the
best result over all strategies.

2 Network Details

2.1 RoI-Aware Fusion Network (RAF)

As shown in Figure 2, we illustrate the detailed architecture of our RAF network.
Overall, we concatenate {hn}Mn=1 and {γmn}Mn=1 together, and send them to an
MLP block to get relation weights {wmn}Mn=1, where wmn ∈ [0, 1]. Specifically,
let M × df be the size of the concatenated features, we first downsample the
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(a) Original boundingbox

(b) (c)

(d) (e)

Fig. 1: Boundingbox Definition. (a) Original boundingbox B1 = (cx, cy, b), where
(cx, cy) is the distance from the boundingbox center to the image center and b is
the width of the boundingbox. (b) Boundingbox B2 = (cx + 0.1b, cy, 1.5b), which is
obtained by moving B1 along the x-axis by 0.1b and then resizing it by a factor
of 1.5. (c) Similarly, B3 = (cx − 0.1b, cy, 1.25b). (d) B4 = (cx, cy + 0.1b, 0.8b). (e)
B5 = (cx, cy − 0.1b, 0.65b).

last channel of these features to 256 and flatten them to one feature of 256 ·M
channels. Then we use multiple fully-connected layers, each followed by Tanh
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Table 1: Ablation on extraction strategies. “Fixed”: the relative positions of
boundingbox for RoIs with respect to the originally detected one are the same across
different training/testing samples. “Random”: the relative positions are different per
sample.

Boundingbox Resizing Translating MPJPE PA-MPJPE

Fixed

✗ ✗ 83.6 54.4
✓ ✗ 83.4 53.3
✗ ✓ 83.1 52.0
✓ ✓ 80.8 51.9

Random ✓ ✓ 84.4 54.1
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Fig. 2: Detailed architecture of the RAF network.

activation, to gradually reduce the feature size to M . Finally, the M values is
normalized by a Softmax, yielding a vector of weight {wmn}Mn=1.

2.2 Projector Network for Contrastive Learning

In our implementation, the contrastive learning model is mainly borrowed from
SimCLR [1] with a slight modification by adding a weighting module between
the feature extractor E and projector g.

Specifically, a feature vector hm ∈ Rd, m ∈ [1,M ], which is extracted from a
cropped image via E, is sent to a fully-connected layer and a Sigmoid activation
function, obtaining weights Wm ∈ [0, 1]d. We multiply hm with Wm, and then
send the weighted feature to the projector g to obtain feature zm ∈ Rd.

zim = g(Wi
m · hi

m). (5)
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Table 2: Complete ablation on components of our method.

No. Lcont RAF Lcam MPJPE PA-MPJPE

( 1 ) ✗ ✗ ✗ 87.0 55.8
( 2 ) ✓ ✗ ✗ 85.9 55.1
( 3 ) ✗ ✗ ✓ 85.2 54.5
( 4 ) ✗ ✓ ✗ 83.0 53.5
( 5 ) ✗ ✓ ✓ 83.4 53.3
( 6 ) ✓ ✗ ✓ 83.8 54.8
( 7 ) ✓ ✓ ✗ 83.1 52.0
( 8 ) ✓ ✓ ✓ 80.8 51.9

As for the feature projector g, we follow the architecture from [1]. It is composed
of 2 blocks with a ReLU activation in between and each block contains a fully-
connected layer and a normalization layer. Eventually, we get {zm}Mm=1.

3 Ablation on Removing One, Two or Three Design
Components

In this section, we demonstrate the complete ablation experiments on our three
key components, including RAF, Lcam (camera consistency loss) and Lcont (con-
trastive loss), as shown in Table 2. In the main paper, we only show experiments
of removing one or three components. Here, we additionally show results after
removing two components. In the following, we use Row (1)&(2) to represent the
comparison between Row (1) and Row (2) in convenience. All of these models
are trained on the COCO [5] training dataset and evaluated on 3DPW testing
dataset.

Row (1) is the multi-RoI model without all the three components we propose
and just uses the averaged {hm}Mm=1 instead of {um}Mm=1 to regress the mesh,
which can be viewed as a Multi-RoI baseline network. From Row (1)&(4) and
Row (6)&(8), we observe that adding RAF network for fusion brings a significant
drop of both PA-MPJPE and MPJPE, which indicates the effectiveness of our
RAF network. From Row (1)&(3) and Row (7)&(8), we observe that camera
consistency contributes more to the drop in MPJPE, as with Lcam we can obtain
more accurate global rotation. From Row (3)&(6), we observe that contrastive
learning scheme helps the network regress more accurate poses regardless of root
rotations and translations, which consequently reduces the PA-MPJPE after
alignment. The experiments in Table 2 validate the effectiveness of each of the
proposed design components in our method.

4 More Qualitative Results

In Figure 3, we display more qualitative examples on test/validation sets of
COCO-EFT [3], 3DPW and Human 3.6M with ground-truth 3D meshes in green.
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The cases are challenging because of unusual poses, truncation or body-part
occlusion, where our method shows its robustness and produces more reasonable
estimation results.

Input FastMETRO [2] CLIFF [4] ReFit [6] Ours

Fig. 3: More examples of qualitative comparison with SOTA approaches.
These cases are challenging because of unusual poses, truncation or body-part occlu-
sion.
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