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Abstract. In the character animation field, modern supervised keyframe
interpolation models have demonstrated exceptional performance in con-
structing natural human motions from sparse pose definitions. As su-
pervised models, large motion datasets are necessary to facilitate the
learning process; however, since motion is represented with fixed hierar-
chical skeletons, such datasets are incompatible for skeletons outside the
datasets’ native configurations. Consequently, the expected availability
of a motion dataset for desired skeletons severely hinders the feasibility
of learned interpolation in practice. To combat this limitation, we pro-
pose Point Cloud-based Motion Representation Learning (PC-MRL), an
unsupervised approach to enabling cross-compatibility between skeletons
for motion interpolation learning. PC-MRL consists of a skeleton obfus-
cation strategy using temporal point cloud sampling, and an unsupervised
skeleton reconstruction method from point clouds. We devise a temporal
point-wise K-nearest neighbors loss for unsupervised learning. Moreover,
we propose First-frame Offset Quaternion (FOQ) and Rest Pose Aug-
mentation (RPA) strategies to overcome necessary limitations of our un-
supervised point cloud-to-skeletal motion process. Comprehensive exper-
iments demonstrate the effectiveness of PC-MRL in motion interpolation
for desired skeletons without supervision from native datasets.

Keywords: 3D point clouds · Human body motion · Dataset creation

1 Introduction

3D character animation workflows largely rely on the concepts of keyframing
with interpolation, often referred to as the pose-to-pose principle [13]. By defin-
ing key poses at correct timings, algorithms can be employed to generate inter-
mediate poses, and thereby eliminating the need for defining each frame individ-
ually [5, 40]. Although this keyframe-based workflow is less costly than frame-
by-frame production, human motion is often complex, and natural depictions
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(a) Linear interpolation (b) PC-MRL (Our method) (c) Ground truth

Fig. 1: Motion interpolation of walking keyframes conducted by our approach.

(a) Hierarchical skeleton (b) Skeletal motion (c) Point cloud representation

Fig. 2: Our method leverages point cloud representations (c) to obfuscate the hierar-
chical dependencies of skeletal motion. Joint colours correspond to ordinal indices in
original motion data representation. Point clouds are coloured by temporal index.

demand a significant number of keyframes, especially for realistic motions that
adhere to physical properties and constraints. Although motion capture (Mo-
Cap) is frequently employed as an alternative for achieving realistic human mo-
tions, MoCap often nonetheless necessitates subsequent keyframing to correct
unwanted motion elements and address other imperfections.

In recent years, the interpolation process has been widely studied, particu-
larly with the advent of machine learning methods for sequential data. Compared
to conventional methods such as linear interpolation (LERP), machine learning
methods have demonstrated the capability to derive visually natural motions
from sparser keyframe sets [12, 18, 33, 35, 38], which we can observe in Fig. 1.
Data-driven interpolation approaches require large motion capture datasets to
learn the necessary motion features for effective synthesis of transitions between
keyframes. In the field of 3D motions, this aspect significantly restricts the fea-
sibility of learned interpolation methods in animation practice, as motion/pose
data are tied to specific skeletal configurations and are not cross-compatible.
That is, the dataset’s native skeleton, i.e. source skeleton, is structurally differ-
ent and incompatible with the desired skeleton, i.e. target skeleton.

Therefore, we propose a novel point cloud-based motion representation learn-
ing (PC-MRL) approach, in which skeletal hierarchies are obfuscated by sam-
pling into the point cloud medium, and reconstructed into skeletal motion data
using an unsupervised neural network. Unlike raw pose and motion data, the
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point cloud format is a non-hierarchic representation, and effectively obscures
any skeletal configuration as displayed in Fig. 2. PC-MRL samples a set of points
around the rest position of skeletons using a combination of uniform and normal
distributions, and geometrically parents each point to an associated bone in or-
der to effectively represent the associated skeletons’ motion data in a temporally
consistent manner. Subsequently, for the reconstruction of motion data into a
given desired skeleton, we propose an unsupervised learning scheme, featuring
a K-nearest neighbors (KNN) loss between cross-skeleton point clouds to opti-
mize a transformer neural network. The network processes the point cloud-based
motion representations and generates the corresponding target skeletal motion
representations. By obscuring both source and predicted target motion data into
the point cloud space, our strategy allows for a direct comparison, utilizing KNN
to minimize the visual difference between the two point clouds.

The unsupervised nature of our target skeleton reconstruction scheme cre-
ates two main disparities between the expected and predicted motion features.
Firstly, the exact roll rotation axis of bones cannot be represented in the point
cloud format. To this end, we introduce First-frame Offset Quaternion (FOQ)
representations to incorporate relative roll values, which are obtainable from
temporally consistent point clouds. This approach is agnostic to absolute roll
rotations, providing a standardisation mechanism for the resulting motion data
within the context of motion interpolation learning. Second, KNN-based objec-
tives learn skeletal representations in a geometrically optimal manner, which
does not always reflect the desired skeletal behaviour. This disparity is com-
monly observed with smaller skeletal features, such as shoulder and hip bones.
As such, we augment training motions using Rest Pose Augmentation (RPA)
to increase the range of skeletal behaviours that our interpolation model learns.
Extensive experiments demonstrate the effectiveness of our proposed method,
achieving performance targets near the level of direct dataset supervision.

In summary, this paper presents the following key contributions:

1. We propose a novel method for achieving unsupervised human motion re-
construction from point cloud data, enabling skeleton-agnostic motion inter-
polation learning for the first time.

2. To train motion interpolation models, we formulate first-frame offset quater-
nions to represent bone rotations with relative roll data, as well as a rest
position augmentation strategy to address skeletal configuration variability.

3. We perform comprehensive experiments to demonstrate our method’s ef-
fectiveness towards learning motion interpolation, despite the absence of
directly compatible datasets in the training process.

2 Related works

We explore existing research on motion interpolation approaches, and motion
data modelling methods in general. In addition, our proposed approach bears
resemblance to unsupervised approaches for the motion re-targeting research
problem, and as such, we will also analyse existing methods in this field.
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2.1 Data-Driven Motion Modelling Methods

Contemporary research in motion data modelling predominantly explore learned
data-driven methods, using neural networks to capture, model, and establish
correlations between the motion features of various skeletal configurations [39,
49, 53]. Motion features alone have demonstrated considerable efficacy in cross-
skeleton imitation using a variety of strategies, including task-driven objectives
[19,43], diffusion-based generation [25,47,50], and latent feature consistency [1–3,
7,44]. Latent consistency in particular learns inter-skeleton correlations without
the need for paired datasets, which reduces its barrier of entry in practice.

Likewise, motion interpolation strategies have evolved through the use of
learning based approaches. The inherent numerical precision of motion data has
traditionally posed a challenge for the adoption of the learning approaches, due to
their approximate nature [21,27]. This challenge is further amplified by the tem-
porally sparse distribution of keyframes. Recently, a number of recurrent neural
network based methods [17,18,41,51] and transformer-based networks [12,33,35]
have demonstrated encouraging interpolation performance for the transition be-
tween keyframes. Additionally, various other motion modelling methods are ca-
pable for keyframe based interpolation, albeit with limited intermediate frame
representation capabilities [19,25,43].

A major constraint inherent in all data-driven motion modelling methods
is their dependency on datasets featuring specific skeletal configurations. To
address this, skeleton-free training strategies have been explored for elemen-
tary tasks involving 3D characters. These include vertex-based pose transfer
[7,8,30,45], and point cloud-based human shape reconstruction [23,46]. Notably,
in these methods, 3D mesh and point cloud coordinates serve as general 3D
data representations. Concurrently, other research has significantly minimized
the required volume of training data, bringing it down to single example se-
quences. This reduction has been achieved through the use of patch matching
techniques [28] and imitation learning within physics-based simulations [29,37].
Reinforcement learning has facilitated the generation of goal-driven motion with-
out pre-existing datasets [31, 36, 48]. However, these simulation-based methods
have typically been either exceedingly complex to implement in practice, or yield
results that are too inflexible and/or prone to errors for animation workflows.

2.2 Motion Re-Targeting without Supervision

Conventional approaches in motion re-targeting have been a cornerstone of 3D
animation for decades, primarily dedicated to converting motion capture data
into 3D skeletal motions [4, 15]. Typically, raw motion capture data is opti-
cally recorded, yielding primarily spatial information. In contrast, motion data
is largely rotational in nature [5], often represented in SO(3) space. Therefore, a
principal objective of motion re-targeting solutions has been to effectively bridge
these two distinct types of representations. In [14], extensive manually adjustable
constraints were introduced for flexible re-targeting between skeletons of iden-
tical topology (i.e., same hierarchy, different bone lengths and rest poses). Key
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Fig. 3: Illustration of point cloud-based motion representation learning (PC-MRL)
pipeline for keyframe interpolation to any human skeleton. Our unsupervised point
cloud-to-pose decoding approach (I) first adapts motion features from existing datasets
to new skeletons. We then employ the adapted motion data to supervise motion inter-
polation models (II), using FOQ and rest pose augmentations to address remaining
discrepancies between the adapted and expected target skeleton motion patterns.

practices in this approach, including end-effector matching, joint contacts, and
inter-skeleton point correlations, are still relevant to current animation pipelines.
Point correlations using Inverse Kinematics (IK) have also been proposed as an
intermediate representation to facilitate the adaptation between topologically
distinct skeletons [9, 34], albeit with hierarchical pairing limitations.

In response, morphologically-independent motion control systems were pro-
posed using IK joint chains and joint-wise constraints [20,26]. Such systems often
expect highly standardised motion skeleton features, and are generally impracti-
cal for re-targeting motions produced for different control schemes. Additionally,
the reliance on Euler angles for extensive classical re-targeting constraints poses
a variety of issues regarding rotational freedom [11], as well as compatibility with
animation workflows [32], which predominantly use quaternion-based systems.

Despite these advancements, the challenge of arbitrary skeleton re-targeting
from motion datasets still remains largely unresolved, limiting any widespread
application of data-driven pipelines. Our paper aims to effectively address this
pervasive limitation.

3 Methodology

As illustrated in Fig. 3, our proposed method consists of two main components:
point cloud-to-motion reconstruction and motion keyframe interpolation.

3.1 Quaternion-based Motion Representations

We first declare a set of notations for representing skeletons. A skeleton S is
defined by a tree of bones B. A bone vn ∈ B is defined by its bone parent
vm ∈ B, and a head position Hn ∈ R3 which denotes the bone’s base offset from
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its parent head Hm. In addition, a tail position Tn ∈ R3 helps to define the end
point of the bone’s line segment representation, starting from its head position,
of vn. The root bone v0 has no parent, and thus no head position H0. The set
of Hn and Tn for each bone vn ∈ B make up the rest position of the skeleton.

Next, we define the properties of motion data. At any given frame t, a skele-
ton’s pose position can be represented as global 3D positions pn,t ∈ R3 and
global quaternion rotations qn,t ∈ R4 for each bone vn ∈ B. For a given motion
sequence M , only the root bone is given a 3D position in pose position, i.e. p0,t,
as all other pose positions are derived using Forwards Kinematics (FK [11,24]):

pn,t = pm,t +QR(Hn,qm,t), (1)

where QR is the quaternion rotation function, and vm is the parent joint. In
summary, a motion sequence M of |M | frames is defined by:

M = {p0,t ∪ {qn,t | vn ∈ B} | 0 ≤ t < |M |} (2)

3.2 Point Cloud Obfuscation and Skeleton Reconstruction

Our approach is based on the hypothesis that 3D motion sequences can be
visually represented by a more universal format: 3D point cloud sequences. By
geometrically sampling the volume around a skeleton, point cloud data becomes
a non-hierarchical representation of its pose(s), obfuscating the original skeletal
configuration. Due to this decoupling between the skeleton configuration and
motion representation, a successful motion data reconstruction from point cloud
data would be the first step to enabling learnable cross-skeleton motion features.
Formally, for a given source skeleton SA with an associated motion sequence
MA, and any humanoid skeletal configuration SB , the point cloud obfuscation
and reconstruction module is to learn a function that can adequately perform
FSA→SB

(MA) = M̂B , where M̂B is a visually similar motion adaptation of MA

on skeleton SB , which is an estimation of MB .

Motion Data Obfuscation with Point Clouds To sample the point cloud
X , we first generate a set of points u ∈ X along the line segments defined by
the global head and tail positions for each bone vn. In the bone-local space to
vn, this would mean sampling u by a uniformly distributed factor α ∼ U[0,1].
Specifically, α = 0 aligns with the head position of the bone, and α = 1 indicates
the tail position. By further sampling u via a normal distribution, our sampling
strategy can capture the surrounding volume around the skeleton. Formally, to
sample u from its associated bone vn within a standard deviation of σ, we have:

Hx ∼ N (αTn, σ),

pu,t = pn,t +QR(Hx,qn,t)
(3)

Notably, this sampling process as in Eq. 3 is associated with the skeletal con-
figuration only, by which the sampled points are temporally consistent for fur-
ther processing with the motion sequence. Specifically, each point maintains a
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constant position from its associated bone in the bone-local space. The lateral
distance of each point from their parent bone segment allows point clouds to
react to the bone’s rotational roll axis.

In a pure point cloud representation, it is possible to remove the relationships
between bones. However, to clearly distinguish symmetrical body features in
different skeletons, we introduce and embed body group associations for the
points during our reconstruction process. Specifically, every bone is categorised
by one of these body groups: [spine, left arm, right arm, left leg, right leg]. Each
sampled point is assigned q group attribute in line with the associated bone.
The attribute is represented by a one-hot feature vector gu. To this end, we
characterize u = {pu,t,gu} ∈ X .

Skeleton Reconstruction Given a sampled point cloud representation XA

from SA and MA as input, we aim to train a motion adaptation function FSA→SB
,

which is tasked with producing a visually similar skeletal motion M̂B for SB ,
using a temporal and set-based neural network. As shown in Fig. 3, to construct
FSA→SB

, we employ a Point Transformer [52] to learn embeddings for the un-
ordered point cloud sets frame-wisely, and a standard temporal transformer to
process the sequence and decode XA into M̂B .

To optimize FSA→SB
, our objective function maximises the similarity be-

tween the sampled point clouds of both MA and M̂B . XA can be viewed as the
ground truth to XB , which enables an unsupervised strategy for FSA→SB

. In de-
tail, we first sample a point cloud XB from SB based on M̂B derived by FSA→SB

.
Next, a temporally consistent KNN-Loss objective is devised to minimise
the ℓ2 distance between any given point of XB from its K nearest neighbouring
points in XA. The K nearest neighbours are determined based on inter-point
distance throughout the entire motion sequence, instead of a frame-wise setting,
as shown in Fig. 4. The points with differing body groups are excluded from the
neighbour search. Mathematically, we have:

δ(uA, uB) =

{∑
t ||puA,t − puB ,t||2, if guA

= guB
,

inf, otherwise,
(4)

LKNN(XA,XB) =
∑

uA∈XA,uB∈Nk(uA,XB)

δ(uA, uB), (5)

where Nk(uA,XB) is the set containing points that are the k-nearest neighbors
of uA in XB , based on δ(uA, uB) distance.

In addition to the KNN-Loss, we introduce an optional end-effector loss in
the skeleton space for the hand, foot, and head bones, which provides direct
positional guidance for matched end-effector pairs EAB :

Lend =
∑

(vA,vB)∈EAB

1

|MA|
∑
t

||pvA,t − pvB ,t||2. (6)
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Fig. 4: Visualisation of our temporally consistent KNN objective, processed indepen-
dently per body group. For each point from XA (a), the total ℓ2 distance throughout
the sequence is measured between each point (b) from XB . The ℓ2 distances from the
K-nearest points are summed to produce KNN-Loss (c).

3.3 First-Frame Offset Quaternions

Point clouds lack absolute roll axis information for each bone. As such, we in-
troduce a First-frame Offset Quaternion (FOQ) transform to incorporate the
available relative roll data for motion modelling. We formulate all quaternions
of a motion sequence relative to their values from the initial frame. In detail,
for any quaternion sequence Q = {q0,q1,q2, ...}, we can simply obtain its FOQ
transform as {q0 × q−1

0 ,q1 × q−1
0 ,q2 × q−1

0 , ...}, where q−1
0 is the quaternion

conjugate of q0. An FOQ sequence can easily be converted back to a quaternion
sequence as long as any qt ∈ Q is known.

Crucially, FOQ is a roll-invariant rotation representation, that is, FOQ re-
mains identical regardless of a bone’s absolute roll position in the original data.
Trivially, to adjust the rotational roll of a bone vn, we perform the quaternion
multiplication for each frame: qn,t× r, where r is a roll quaternion. As a quater-
nion on the roll axis of vn, r is constrained within r = α+β(xi+yj+zk), where
x,y,z are the 3D XYZ values of Tn, and α, β are scalars that control the roll
magnitude. Note that r is constant throughout the sequence. Therefore, we can
deduce the roll-invariant nature of any constant r:

(qn,t × r)× (q0,t × r)−1 = qn,t × r× r−1 × q−1
0,t

= qn,tq
−1
0,t

3.4 Motion Interpolation Transformer and Rest Pose Augmentation

To leverage our point cloud-based representation learning for cross-skeleton inter-
polation, a transformer model - CITL [33] is adapted, allowing for an efficient in-
terpolation pipeline with existing datasets to alternative skeletons. We introduce
two key modifications to CITL and its training strategy, focusing on enhancing
motion quality. First, quaternion predictions are substituted with FOQ predic-
tions. This is inspired by the RNN-based method TGcomplete [18], which predicts
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Algorithm 1 IK target alignment with maximum real quaternion component
1: Input: pIK = 3D IK target unit vector
2: T = resting tail position of associated bone
3: Output: qmax = output quaternion, to be applied on original bone quaternion
4: η ← T

|T| ▷ 3D unit coordinates [ηx, ηy, ηz]

5: ω ← pIK
|pIK| ▷ 3D unit coordinates [ωx, ωy, ωz]

6: qmin ← 0+(ηx+ωx)i+(ηy+ωy)j+(ηz+ωz)k

2

7: qmax ← qmin × (0 + ηxi+ ηyj+ ηzk)

quaternion offsets from the preceding frame rather than raw quaternions, thereby
achieving greater generalisability and superior quality in interpolation.

For our model’s CITL-based architecture, we substitute the original sinu-
soidal positional encoding scheme with learned relative positions [42]. While the
original implementation relies on the continual nature of sinusoidal functions,
we observe that relative positional embeddings with zero initialisation converges
upon similarly continuous behaviour, and significantly lowers the complexity of
positional attention. The lessened focus on positional relations allows the model
to synthesise deeper behaviours within the pose space, improving overall gener-
alisability. As a side effect, the model also accepts arbitrary length inputs beyond
the training data length.

Notably, the intended rest pose of a skeletal configuration is often geometri-
cally sub-optimal for point cloud matching, and can manifest in multiple forms.
To address this, we devise a rest position augmentation strategy, leveraging
a per-bone Inverse Kinematics (IK) system. RPA broadens the range of intended
rest poses that the learned interpolation model can accommodate. In detail, dur-
ing each phase of the Forward Kinematics (FK) process, we augment the bone
tails with a random additional offset. We re-align the augmented global tail po-
sition as closely as possible to its original location using a quaternion rotation
with the maximum possible real component. Algorithm 1 describes the method
by which this quaternion can be derived. Since the real component describes, in
cosine, the amount of rotation around an axis, this minimizes numerical distur-
bance from RPA while altering the visual representation to the desired extent.

4 Experimental Results

4.1 Datasets

To thoroughly evaluate the effectiveness of the proposed method, we conducted
extensive experiments on the following widely used motion capture datasets:

– LaFAN1 [18] contains long, high quality motions in controllable video game
character styles. The dataset was recorded on a large motion capture stage,
and manually cleaned to production standards. The native skeleton of LaFAN1
contains 6 spinal bones, and 4 bones for each limb.
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– Human3.6M [6, 22] comprises of 3.6 million motion frames. The motions
captured in Human3.6M tend to be less dynamic, as they were recorded on
a relatively compact 4x3m stage. Its native skeleton includes 5 spinal bones,
4 bones for each limb, and an additional finger bone for each hand.

– CMU Mocap [10] is a diverse motion dataset encompassing 113 categories.
It features a mix of static and dynamic motions, captured on a 3x8m stage.
The skeleton is identical to that of Human3.6M, with the exception of the
pelvis, which is divided into two hip bones and a lower back bone.

For PC-MRL, we designated the CMU MoCap skeleton as SB . Its native dataset
is exclusively utilized for testing purposes, while LaFAN1 and Human3.6M are
used simultaneously for training.3

4.2 Implementation Details

In our experiments, point cloud obfuscation adopted a 256-point setting for the
sampling process with σ = 0.05 and each point was characterized by a 64-
element vector. To maintain consistency, we ensure that all bone offsets and
motion positions are defined in metre units. For skeletal reconstruction, 4 Point
Transformer [52] layers was utilized to construct the neural network. Within each
layer, the feature size was doubled, and the size of the point set was downsampled
by a factor of 4 through a farthest-first traversal approach, eventually resulting
in a singular feature vector. In the final step, two linear layers with ReLU ac-
tivations were utilized to transform the resulted feature vector in a frame-wise
manner, producing the output skeletal representation. During training, we set
K = 8 for the KNN loss to optimize the network. Additionally, the use of unit
quaternion values in practice relies on modulus division for constraint, a process
that can potentially lead to exploding gradients. To address this, we introduced
an objective function Lq that measures the ℓ2 norms’ difference between the
raw quaternion output and the expected unit quaternion. All experiments were
trained and evaluated on a single NVIDIA GeForce RTX 3090 GPU.

4.3 Motion Interpolation Comparison against Supervised Methods

To demonstrate the efficacy of our method, we produce and compare our method
against the conventional LERP method, as well as three state-of-the-art interpo-
lation models trained on the original CMU MoCap dataset. Specifically, we mea-
sure the performance of the RNN-based TGcomplete model [18], the BERT-based
motion interpolation adaptation [12], and a transformer-based encoder-decoder
approach [33]. We additionally provide results on a variant of our method trained
without our RPA strategy. The experimental configuration for each state-of-the-
art model is identical to their original implementations. To measure interpolation
accuracy, we employ the standard ℓ2 positional distance (L2P), ℓ2 quaternion
difference (L2Q), and NPSS [16] for visual similarity evaluation [18].
3 The authors Clinton Mo and Zhiyong Wang are signatories of the dataset licenses

and produced all experimental results of the paper. Meta Inc. was not granted access
to the datasets.
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Motion Method L2P↓ L2Q↓ NPSS↓
category 5 15 30 5 15 30 5 15 30

Basketball

LERP 0.0787 0.4009 0.8033 0.1588 0.5834 0.9611 0.1315 0.6120 1.8202
TGcomplete [18] 0.1050 0.4419 0.7104 0.1859 0.6439 0.9303 0.1600 0.6579 1.2136
BERT [12] 0.0889 0.3737 0.6865 0.1585 0.5560 0.8992 0.1689 0.6177 1.4587
CITL [33] 0.0625 0.2973 0.5708 0.1410 0.4932 0.8011 0.1047 0.4098 1.0959
PC-MRL w/o RPA 0.0767 0.3534 0.6715 0.1505 0.5431 0.9049 0.1364 0.5596 1.3471
PC-MRL (Ours) 0.0752 0.3443 0.6662 0.1561 0.5495 0.9088 0.1397 0.5572 1.3015

Golf

LERP 0.0189 0.1229 0.3187 0.0455 0.1870 0.3987 0.0587 0.3979 1.0312
TGcomplete [18] 0.0473 0.2616 0.4546 0.0693 0.3191 0.5297 0.0954 0.5062 1.1534
BERT [12] 0.0276 0.1159 0.2967 0.0612 0.2082 0.4258 0.1099 0.3906 0.9255
CITL [33] 0.0201 0.1043 0.2589 0.0476 0.1766 0.3552 0.0636 0.2581 0.7799
PC-MRL w/out RPA 0.0274 0.1304 0.3622 0.0555 0.2065 0.4923 0.0911 0.3759 1.2083
PC-MRL (Ours) 0.0273 0.1130 0.2706 0.0598 0.2012 0.3844 0.1049 0.3716 0.8150

Swimming

LERP 0.0731 0.3680 0.7374 0.1326 0.5327 0.9476 0.2147 0.9222 1.6972
TGcomplete [18] 0.1292 0.5796 0.9141 0.1845 0.7420 1.1199 0.2660 0.9716 1.7698
BERT [12] 0.1088 0.3896 0.7516 0.1819 0.5518 0.9622 0.2877 0.9074 1.6682
CITL [33] 0.0905 0.3895 0.7475 0.1484 0.5535 0.9533 0.2084 0.8317 1.6122
PC-MRL w/o RPA 0.0722 0.3754 0.7459 0.1345 0.5442 0.9594 0.1944 0.8731 1.6608
PC-MRL (Ours) 0.0734 0.3595 0.7139 0.1355 0.5331 0.9248 0.1956 0.8591 1.6370

Walking &
Running

Locomotion

LERP 0.0455 0.2505 0.5527 0.1120 0.3997 0.6233 0.0655 0.2682 0.9071
TGcomplete [18] 0.0540 0.1786 0.3103 0.1147 0.2866 0.3866 0.0895 0.2616 0.4265
BERT [12] 0.0552 0.1998 0.3544 0.1111 0.3101 0.4762 0.0901 0.2760 0.6458
CITL [33] 0.0328 0.1034 0.2427 0.0942 0.2102 0.3384 0.0526 0.1568 0.4080
PC-MRL w/o RPA 0.0397 0.1657 0.3417 0.1058 0.2879 0.4722 0.0640 0.2288 0.6021
PC-MRL (Ours) 0.0377 0.1392 0.2848 0.1064 0.2778 0.4281 0.0658 0.2129 0.5098

Table 1: Performance comparisons for various motion categories, measured in L2P,
L2Q, and NPSS. All methods except PC-MRL are trained on the original CMU MoCap
dataset. Each motion contains 128 frames with keyframes placed every 5, 15, or 30
frames. The top 2 results for each test are highlighted in purple and blue respectively.

The results listed in Table 1 clearly demonstrate our method’s ability to
approach the accuracy levels exhibited by directly supervised state-of-the-art
methods. PC-MRL consistently outperforms both the LERP standard and RNN-
based TGcomplete model, particularly in longer keyframe interval scenarios where
the quality and depth of learned motion features is most critical and impactful.
Likewise, the inclusion of RPA also tends to improve the long interval perfor-
mance of PC-MRL, particularly when precise movements (i.e. golf) or deeper
motion features (i.e. locomotion) are expected. Given this, we can observe that
RPA definitively improves the overall consistency of the PC-MRL method in
scenarios that may be unseen or less effectively represented by our point cloud-
to-motion system.

Native supervision, i.e. with CITL, unsurprisingly produces the most accu-
rate interpolation model, with a notable exception of swimming motions, where
our PC-MRL supervision produces even stronger results. We believe the abun-
dance of low crawl motions, a similar motion to swimming in LaFAN1, provides
more meaningful supervision over the original CMU dataset, which conversely
has few similar motions once swimming motions are filtered out. On the other
end of the spectrum, i.e. for high data scenarios such as walking and running
locomotion from Fig. 5, all models including our PC-MRL approach observe the
strongest improvements for learned methods over the naive LERP method. Both
cases strongly support our method’s capability to supervise highly intricate mo-
tion patterns, despite the incompleteness of the point cloud representation and
reliance on relative rotations and geometric optimisation assumptions.
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Fig. 5: Walking keyframe interpolation examples produced by methods from Table 1.
Close-up layered comparisons against the original motion are provided on the right.

4.4 Cross-Skeleton Motion Re-Targeting Experiments

We further conduct an experiment on motion re-targeting to directly bench-
mark our method against the sole existing state-of-the-art method for unpaired
motion re-targeting with unrestricted skeletons, i.e. primal skeletons (PS) [1].
For direct motion re-targeting evaluation, we utilized the KNN-Loss and end-
effector loss as metrics, owing to their effective measurement of visual similarity
and non-sensitivity towards absolute roll axis correctness. Though absolute rolls
are generally necessary for a complete motion re-targeting solution, this aspect
is out of scope for our project as our main goal is motion interpolation.

Table 2 indicates the superior performance of our method over the state-
of-the-art PS method in terms of visual similarity. At low σ values, the higher
relative LKNN of the primal skeleton method underscores its geometric deviations

Model LKNN(XA,XB) ↓ Lend ↓σ = 0 σ = 0.01 σ = 0.05 σ = 0.1 σ = 0.2

Original motion 1.0099 2.0234 5.7399 9.6636 16.9223 0
Primal skeleton [1] 8.1109 8.0353 9.4206 12.8291 20.6332 9.6990
PC-MRL (Ours) 3.8714 4.1231 6.7277 10.3078 17.5261 5.6258

Table 2: Average unpaired LaFAN1 to CMU motion re-targeting performance of the
primal skeleton method and our point cloud method. LKNN is measured using 1024-
point clouds at K = 8. Independently sampled point clouds from the original LaFAN1
skeleton are provided as optimal LKNN reference. All values are scaled by ×100.
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Fig. 6: Jumping motion re-targeting examples produced on the CMU skeleton by the
primal skeleton method (middle row) and our method (bottom row). Sampled point
cloud representations of each motion sequence are provided on the right.

from the original motion. In contrast, our method demonstrates significantly
better visual adherence to the original geometry. As σ increases, our method
approaches near-perfect alignment with the original motion. Figure 6 visually
indicates this, showing our method follows the original motion closely, while
the latent consistency-based primal skeleton method struggles to generalise and
decode the skeleton’s internal structures without directly supervised objectives,
such as the end-effector positions provided during training. In addition, Fig 7
demonstrates that, like existing re-targeting approaches, our method is able to
produce adequate results on disproportionate skeletons.

Since our approach is largely focused on enabling non-native motion inter-
polation supervision, we additionally compare our PC-MRL method against a
CITL model supervised by PS in Table 3. Due to the suboptimal re-targeting
performance of PS, such interpolation models exhibit expectedly poor accuracy.

Fig. 7: Re-targeted falling motion from LaFAN1 (top) on the CMU skeleton (middle)
and a short custom skeleton (bottom), performed by our point cloud-to-motion model.
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Method L2P↓ L2Q↓ NPSS↓
5 15 30 5 15 30 5 15 30

CITL - PS 0.2043 0.6332 1.1524 0.2318 0.7428 1.1442 0.1122 0.4276 1.4622
CITL - Native 0.0495 0.2306 0.4898 0.0979 0.3604 0.6609 0.1149 0.4684 1.1591
PC-MRL 0.0494 0.2337 0.4960 0.1030 0.3771 0.6813 0.1370 0.5433 1.1760

Table 3: Average L2P, L2Q, and NPSS performance of CITL trained on native and
PS-generated datasets, compared to our method.

5 Limitations

Due to the inherent limitations of the point cloud representation, certain con-
straints on the applicability of our point cloud-to-motion method are inevitable.
Primarily, the reliance of our point cloud re-targeting method on the relative
nature of First-frame Offset Quaternions (FOQ) for most motion learning tasks
necessitates the presence of at least one known pose. In the absence of a known
pose, relative quaternions are incapable of reconstructing absolute rotational val-
ues, which are essential for motion applications. Secondly, due to our method of
sampling point clouds with a consistent deviation from each bone segment, the
resultant representation inevitably obscures finer details. This includes elements
like fingers and facial controls, to an extent that is beyond rectification.

Our proposed objective function relies entirely on geometric segments, ne-
cessitating that all bones possess a non-zero length. This stipulation is deemed
a reasonable prerequisite for generic human skeletons, as each bone is typically
responsible for manipulating a discernible segment of the human body. Due to
technical considerations, the skeletal configurations in each of our datasets in-
cluded at least one bone of zero length, which we ignored in our experiments in
favour of global quaternion rotations of all bones with non-zero length.

As a result of these limitations, we refrained from claiming state-of-the-art
performance for general motion re-targeting tasks.

6 Conclusion

This paper introduces a novel learning-based motion interpolation method de-
signed to enable cross-skeleton compatibility with existing motion datasets. Our
proposed method PC-MRL employs a process of point cloud obfuscation and
skeleton reconstruction. The point cloud space represents human motions in a
non-hierarchic and skeleton-agnostic manner. It enables a KNN-based objective
to be optimised without dataset supervision, guiding a neural network to gener-
ate high-quality motion features with any target skeleton. We address the rota-
tional information loss of our point cloud format by presenting an offset quater-
nion strategy compatible with concurrent transformer-based models. Through
extensive experiments, we have demonstrated the efficacy of PC-MRL in per-
forming motion interpolation without relying on native motion data. Moreover,
PC-MRL has achieved superior visual similarity metrics in the domain of motion
re-targeting. We concluded our work by discussing the limitations of PC-MRL.
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