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A B S T R A C T

Pig counting is one of the most critical topics in farming management and asset estimation. Due to its com-
plexity, traditional agriculture method relies on manual counting, which is obviously inefficient and a waste of
manpower. The challenging aspects like partial occlusion, overlapping and different perspectives even limit the
usage of traditional computer vision techniques. In recent years, deep learning has become more and more
popular for computer vision applications, because of its superior performance comparing to traditional methods.
In this paper, we propose a deep learning solution to address the pig counting problem. We present a modified
Counting Convolutional Neural Network (Counting CNN) model according to the structure of ResNeXt, and tune
a series of experimental parameters. Our CNN model learns the mapping from the image feature to the density
map, and obtains the total number of pigs in the entire image by integrating the density map. In order to validate
the efficacy of our proposed method, we conduct experiments on a real-world dataset collected from actual
piggery farming with 15 pigs in an image averagely. We achieve 1.67 Mean Absolute Error (MAE) per image and
outperforms the competing algorithms, which strongly demonstrates that our proposed method can accurately
estimate the number of pigs even if they are partially occluded in different perspectives. The detection speed,
42ms per image, meets the requirements of agricultural application. We share our code and the first pig dataset
we collected for pig counting at https://github.com/xixiareone/counting-pigs for livestock husbandry and sci-
ence research community.

1. Introduction

Pig counting is a very important work in current large-scale agri-
cultural production management and asset management in the piggery.
Accurate pig counting can improve management in pigs feeding, pig-
gery construction and etc, which can help farmers with cost reduction
and unnecessary losses, and further make the farms more competitive.

However, it is challenging to count pigs accurately, due to pigs
overlapping, variations in group density, camera perspective, and illu-
mination changes, as illustrated in Fig. 1. Manual counting misses some
pigs or adds extra pigs easily; it is time-consuming and expensive en-
deavor, and false-reporting and underreporting (Zhang et al., 2016a).
These issues are common in large-scale breeding enterprises. Present
computer vision techniques (Kashiha et al., 2013; Thanapongtharm
et al., 2016) cannot solve the problems above effectively. They work
only in a stable environment and after a complicated processing pro-
cedure.

Deep learning has been proven to be the most promising solution for
objects counting in different environments. It is widely deployed in

almost all fields of agriculture, such as object recognition (Zheng et al.,
2018; Sladojevic et al., 2016; Picon et al., 2018), object classification
(Amara et al., 2017; Park et al., 2018; Dyrmann et al., 2016), object
detection (Mohanty et al., 2016; Sa et al., 2016; Shen et al., 2018). In
the identification and counting of crops about fruits and leaves (Chen
et al., 2017; Rahnemoonfar and Sheppard, 2017; Uzal et al., 2018).
According to a recent survey of deep learning in agriculture (Kamilaris
and Prenafeta-Bold, 2018), no research in quick and accurate counting
livestock is mentioned.

In this paper, we propose a modified version of Counting
Convolutional Nerual Network (Counting CNN) (Onoro-Rubio and
Lopez-Sastre, 2016) in a fashion of end-to-end as a homogeneous,
multi-branch architecture for pig counting. As shown in Fig. 2, we
combine both Counting CNN and ResNeXt (Xie et al., 2016) in our deep
learning architecture. Therefore, our proposed CNN model does not
need to depend on foreground segmentation results since our model
only takes appearance information in consideration.

Since there exist on public datasets available for this task, we collect
an image dataset for pig counting from multiple websites and also
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include the real images captured from a real farm. The collected images
contain different levels of crowding and overlapping, different scenes
and perspectives, illumination changes and resolution. All the images
are preprocessed and augmented. We crop multiple patches, with size
72×72 to make it fit model. When training is done, the model with
best performance is picked and image patches are mapped to the cor-
responding density map. The result comes from the integration of the
density map value. Comparing to traditional methods, our solution
provides more robust performance especially when illumination
changes and occlusion.

To the best of our knowledge, our dataset is the first one supporting
pig counting with manual annotation provided for each image. Overall
the contributions of our paper can be summarized in three folds:

• We collect a new herd dataset containing nearly 30,000 pigs to meet
different scenarios and different perspectives for pig counting,
which is available at https://github.com/xixiareone/counting-pigs.

• A modified Counting CNN network is proposed for automated pig
counting, which significantly improves the accuracy and standard
error of the counting. When compared to the original Counting CNN
model (Onoro-Rubio and Lopez-Sastre, 2016), our model further
reduces the mean error, from 3.23 to 2.78 in test data (from in-
ternet) and from 7.15 to 1.67 in test data (from real life).

• The detection speed of our model is 42ms. This fulfils the require-
ments of agricultural application.

The rest of this paper is organized as follows: Section 2 describes the
background and related work. Our proposed CNN model for pig
counting is explained in Section 3. Section 4 provides the experimental
results and discussion in detail. Conclusion with future research direc-
tions are shown in Section 5.

2. Related work

Some researches in agriculture (Hodgson et al., 2016; Sirmacek
et al., 2012; Gemert et al., 2015) proposed drone or other aerial

photography to count animal populations. Counting based on an aerial
view is accurate, however aerial photography is only suitable in large
farms that cover large areas. Since pigs are often concentrated in a small
region that the width of the piggery is usually less than 15 meters, it is
not practical for drones. Using knowledge of region growing (Liang
et al., 2017) with a morphological algorithm (Zhang et al., 2016a), the
objects counting by these traditional methods can count the number of
pigs in a single pig house. However, the disadvantage of this method is
that the image recognition heavily depends on the experience of re-
searchers. The reason is that the objects in the image are morphologi-
cally diverse, and the images might suffer from illumination changes.
These uncontrollable factors increase the inaccuracy when processing
images with relatively dense targets.

Fish counting (Zhang et al., 2013) uses an adaptive thresholding
segmentation method, which relied on the manual feature extraction.
Threshold calculation errors occur when illumination varies so that fish
cannot be counted accurately in complex environments. Our solution
replaces the manual recognition of target individuals with extracting
features. The advantages of deep learning technology in visual tasks is
that there is no need for complex process of image and feature pro-
cessing. It extracts image features automatically, and learns features
automatically.

Compared with the traditional algorithm, deep learning has won big
success in many fields including speech, natural language, visual tasks
(Lecun et al., 2015). Counting with deep learning has recently became a
widely used technology in artificial intelligence. Researches (Liu et al.,
2017; Zhang et al., 2016b) described the use of a detector to identify
multiple objectives and produced counts from the detection frame, but
this method is only suitable for low-density and limited perspective
scenes and does not perform well in situations with a lot of shading and
overlapping objects, and the spatial distribution information provided
is limited. In recent work, artificial neural networks were designed to
estimate density (Zhang et al., 2016b; Zhang et al., 2017; Kumagai
et al., 2017). Local density maps had been used to detect indistinctly or
partially obscure targets (Ma et al., 2015), the detection of small ani-
mals (seagulls, fish, flies, and bees) is better than that of larger ones.

Fig. 1. Pig images are from internet and real life. The challenging aspects for pig counting include (a) occlusion between targets and other obstructions, (b)
overlapping among pigs, (c) illumination changes, (d) multiple perspectives.

Fig. 2. The proposed framework for pig counting in real life. Given an image taken from surveillance camera, we feed it into our deep learning architecture to
produce a density map, from which we are able to estimate the number of pigs appearing in the input image. As illustrated, different from the existing Counting
Convolutional Neural Networks, our proposed deep learning architecture incorporates multiple kernel sizes in ResNeXt architecture, as well as skip connection.
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However, the application of this method is limited to small objects
counting. Plus its complex procedures, this method is not suitable for
pigs counting problems.

To solve this problem, based on Counting CNN model (Lempitsky
and Zisserman, 2010; Onoro-Rubio and Lopez-Sastre, 2016), we design
a modified Counting CNN model for automated pig counting in farms
by incorporating the advantage of both Counting CNN and ResNeXt
architectures, and the pre-trained parameters in some other network
models are taken to fine-tune experimental parameters to guarantee
performance.

3. Our approach

Our solution is to modify a CNN using Counting CNN and ResNeXt
for pig counting, and both network architectures are CNN architectures.
In the following subsections, we are going to review the Counting CNN
and ResNeXt architectures before we discuss our proposed deep
learning architecture.

3.1. Counting CNN and ResNeXt architecture

As shown in Fig. 3, Counting CNN is a regression model. It’s a
network that maps the extracted patches to the corresponding density
map through learning, and a scale-aware model that converts image
patches to object density maps without the need of perspectives.

Some of the existed research works reference the ResNeXt (Hitawala
et al., 2018; Zhang et al., 2018; Han et al., 2018), and result in boosted
accuracy with fixed number of parameters, so we combine Counting
CNN with ResNeXt. As an improved version of ResNet (He et al., 2015),
ResNeXt (Xie et al., 2016) is one of the best models in the public do-
main. It replaces ResNet’s three-layer convolution block with a parallel
stack of blocks with the same topology. Comparing to ResNet, ResNeXt
performs better without adding model complexity in image classifica-
tion, and it does not need to modify many parameters in other datasets
and is more scalable.

3.2. The proposed deep learning architecture

As illustrated in Fig. 4, we proposed a new deep learning archi-
tecture, which combines Counting CNN model with the ResNeXt ar-
chitecture (see Fig. 3) to make it more suitable for pig counting. It
consists of thirteen convolutional layers. The first and second layers use
kernel size ×7 7 with a depth of 32, followed by max-pooling layers
with stride equals 2 and 1 respectively. After that, it combines with an
inception module used in ResNeXt to expand the convolutional layer of
the model. The plus sign represents that the feature maps are summed

up. The ResNeXt retains ResNet’s stacking block and introduces group
convolution. It takes the same convolution parameters, with fewer
hyperparameters, resulting in improved generalizability and precision.

The first pooling layer is followed by ×1 1 Resx1_conv1 layer, the
second pooing layer is followed by ×2 2 Resx1_match_conv layer, and
we merge the two output feature maps from the Resx1_match_conv
layer and Resx1_conv3 layer, and as the input to the next layer. From
the Resx1_conv1 to Resx1_conv3 layer, and from the Resx2_conv1 to
Resx2_conv3 layer, they are grouped convolutions with 32 groups, and
concatenate input and output channels, and we change the output size
of 128, 128, 256 in ResNeXt into 36, 36, 18 in Resx1_conv1∼conv3
layer, and 18, 18, 18 in Resx2_conv1∼conv3 layer. The stride is 2 in the
Resx1_conv3 layer and Resx1_match_conv layer, and all other layers use
stride 1.

The following layer is ×5 5 convolutional layer with a depth of 64.
The last three convolutional layers have ×1 1 filters with a depth of
1000, 400 and 1, respectively. These output feature map sizes are
shown in the table in Fig. 4. Every convolutional layer of the entire
structure is followed by a batch normalization (BN) layer (Kingma and
Ba, 2014) which linearly transforms the input of each layer, keeping the
normalized value distribution constant and achieving parameter reg-
ularization. This method reduces gradient dispersion, making the
training process more robust. All the other layers are followed by rec-
tified linear units (ReLU) except for the last layer introduced by Glorot
et al. (2010). L2 regularization is used to increase the generalization
performance of the model.

3.3. Counting from density map

In order to estimate the number of objects in an image, there are
generally two methods: one is to input the images and output the es-
timated count; the other is to input the image, regress the distribution
density map, and get the number of objects by summing the number of
the density distribution. Counting CNN uses the second one. The rea-
sons are as follows:

• Different degrees of perspective distortion, different postures and
occlusion, resulting in counting the total number of direct regression
images not accurate enough, because the group information pro-
vided is quite limited. For example, a large number of candidate
windows need to be detected during the detection process, which
reduces the efficiency of the algorithm and is not suitable for scenes
with multi-perspective and multi-objective overlapping. In recent
years, to our best knowledge, most of the researchers (Lempitsky
and Zisserman, 2010; Zhang et al., 2016b; Kang et al., 2018) had
adopted regression-based density maps, and calculated the total
number of objects in the image by integrating the density map. This
is because the density map contains more abundant spatial dis-
tribution information and can estimate the number of any area of
the image. The density map gives the spatial distribution of objects
in a given image relative to the total number of objects, which helps
us better understand the scene information. It can be counted by
spatial integration, and local area analysis can be performed to
produce more accurate numbers based on the density map. It is also
more suitable for any input image with different perspectives.

• As for images with different perspective, by learning from density
map, CNN model could learn features with more semantic in-
formation so that counting accuracy is improved.

Therefore, following Counting CNN, our solution counts the number of
pigs based on the density map algorithm, and the model needs to learn
the density distribution of individuals in the image. Given the anno-
tated position of each pig in image, the ground-truth density map is
obtained by Gaussian kernel convolution (Lempitsky and Zisserman,
2010; Onoro-Rubio and Lopez-Sastre, 2016). We set the gradient of heat
map according to the radius of the point. If two points intersect, theFig. 3. (a) Counting CNN architecture; (b) ResNeXt architecture.
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heat of this intersection area is superimposed. True value density dis-
tribution function is estimated by calculating kernel density as

∑=
∈

D p N p μ( ) ( ; , Σ),I
μ AI (1)

where = ⋯ = ×A A A σ I{ , , }, ΣI C I1 ( )
2 2 2 and I is the image, AI is a set of

annotated 2D points of image I, C I( ) represents the number of target
annotations in the I image, N p μ( ; , Σ) is the evaluation of a normalized
2D Gaussian kernel, p is the position of a pixel, with the mean dot μ and
isotropic covariance matrix Σ. The size of Σ is σ , which controls the
smoothness of the 2D Gaussian kernel and we set =σ 15 in this paper.

According to the density map generated by Gaussian convolution,
we sum up all the pixel values in the density map to get the final
number as

∑=
∈

S D p( )I
p I

I
(2)

In this way, we can generate the density map for the original image,
shown in Fig. 5 (①). Although there are overlapping among objects, all
Gaussian is additive together, which keeps the total number of objects.
Since the output density map of the model is down-sampled to 18×18,
the true density map is also resized to 18×18.

To achieve accurate generation of density map in our model, we
need to develop learning criteria for the neural network, which mea-
sures the distance between the density map and the truth density map
at the training stage. According to the related research (Kang et al.,
2018; Zhang et al., 2016b; Zhang and Shi, 2018), the Euclidean distance
is mostly used to estimate the difference between the two density maps,
the loss function is defined as

∑= −
=

L θ
N

D x θ D( ) 1
2

‖ ( ; ) ‖
i

N

i i
1

2

(3)

where θ represents parameters that can be learned from the network
model, N is the number of training images, and xi represents the input
image, D x( )i is the model predicted density map, Di represents the truth
density map of the input image x L θ, ( )i is the loss between the

estimated density map and the truth density map. As illustrated in Fig. 5
(②), the predicted density map and the truth density map carry on Back
Propagation (BP) network optimizing the whole network structure by
iterative training according to the loss function.

At testing stage, as shown in Fig. 5 (③), given a testing image, we
extract patches by sliding the window, and feed them to our objects
counting model. Due to the dense extraction, the image patches are
overlapped, and it is possible that one pig exists in multiple patches.
Finally, we average all predicted overlapped image patches and com-
bine them to get the complete predicted distribution density map,
which is the sum up of all the pixel values in the density map to obtain
the total number of pigs. It is a commonly adopted method in present
research (Boominathan et al., 2016; Han et al., 2017; Zhang et al.,
2015).

3.4. Implementation details

We apply L2 regularization to avoid overfitting. We initial some
parts of parameters with the pre-trained models, and optimize all the
parameters using Adam with a learning rate of 0.001. We set the first
and second order moment calculation as 0.9 and 0.99. The weights of
each layer of the deep network are initialized with the Gaussian in-
itializer (Krahenbuhl et al., 2015).

4. Experiment

We conduct experiments to verify the effectiveness of the proposed
approach on our self collected dataset for pig counting. For measure-
ment metrics, we use the Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) to evaluate the performance of our proposed
method. The MAE represents the average difference between the pre-
dicted result and the actual result, characterizes the accuracy of the
algorithm. While the RMSE represents the degree of dispersion in the
differences, and exams the robustness of models. In general, the smaller
the MAE is, the higher accuracy of the estimated value is, and the
smaller the RMSE is, the higher the robustness is. They are defined as

Fig. 4. Our proposed model architecture.
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Fig. 5. Visualization of pig counting from density map.

Fig. 6. Data augmentation by rotation, vertical flipping and cropping.

Table 1
Comparison between internet-derived and real-world pig datasets.

Dataset Multi screen Data format Annotation format Counting support Average pig count per image Range of pig count per image Resolution

Internet data ✓ Image Mark with dots ✓ 10.5 3–40 High
Real-world data ✓ Video sequence and image Mark with dots ✓ 15.0 3–21 Low

Table 2
Number of images and patches for deep neural networks.

Usage Number of images Number of patches

Training datasets (internet) 1918 3 068 800
Validation datasets (internet) 581 929 600

Test dataset (internet) 485 N/A
Test dataset (real life) 417 N/A

Total 3401 3 998 400

Fig. 7. Performance of pig counting in term of MAE with different stride values.
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follow:

̂∑= −
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i
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where N is the number of test images, yi represents the actual number
of pigs in the ith image, and ̂yi represents the predicted number of pigs
in the ith image.

4.1. Dataset

We collected some images from internet websites, containing dif-
ferent scenes and different perspectives, and different density dis-
tributions of pig population. To obtain annotations, we wrote a GUI-
based annotating tool to obtain the x y( , ) coordinates of center points,
each of which represents one pig. Each image was annotated three
times by ourselves separately, and the results of three annotations were
cross-validated manually by us. If the annotated images similarity were
within the predefined threshold, then we put them in dataset. The
different annotated images were re-annotated, repeating it until more
than five times, if still different, we discarded this image. In this way,
we can control the annotation noise to some extents. Finally, we ac-
quired the 373 valid images, but it is too small and easy to result in
over-fitting, so data augmentation technique is introduced.

At the training stage, note that we applied data augmentation by
rotating with 90, 180 and 270 degrees, vertical flipping and cropping
(see Fig. 6). We extracted patches with the size of ×72 72 from training
image and validation images for the purpose of training. The data
splitting information is summarized in Table 2. We got a pig herd da-
taset of total 2984 images by data augmentation, and randomly selected
1918 images as training, 581 images as validation and the resting 485
images as testing. To verify whether our model is suitable for practical
applications, we also collected 417 images from a real farm for testing
(see in Table 2). Among these real images, pigs are well distributed in
each image. Table 1 summarizes the difference between the internet-
derived and real-world datasets for pig counting. The data obtained
from the internet contains only multi-perspective images, whereas the
data observed from the farm includes not only the captured images but
also video sequences, which contains pigs motion and tracking in-
formation. We collected images in perspective of overlooking to ob-
serve each object as much as possible, the number of pigs within per
image ranges from 3 to 21.

4.2. Choosing stride values for pig counting

A stride with an appropriate number of pixels must be set to scan the
images and to combine the density sub-maps obtained into the density
map as the estimated density map. We chose the stride value 5, 10, 15,
20, and 25 to run the experiments and the results are summarized in
Fig. 7. We also provided the runtime of each stride value, to test and
select the appropriate stride value in Table 3. As we can see, with the
stride value 15, our approach can achieve MAE 2.78 and the runtime is
50 s.

4.3. Effectiveness of the proposed network architecture

To verify the effectiveness of our proposed network architecture, we
design two baselines. One is to remove the scale parameters in scale
layer, and the other one is to remove BN layer and scale layer in
Table 4. From the table, “lr_mult” represents the coefficient of learning
rate, and “decay_mult” represents the weight attenuation coefficient;
“filler” represents the initialization for the learned scale parameter in
scale layer, and “bias_filler” represents bias initialization in scale layer.
We used the same data setting with the stride value 15 to train these
networks and evaluated them on the same testing dataset. The results
are summarized in Table 5.

As we can observe, adjusting the network structure does not greatly
change the mean error of validation set or test set, but the lower mean
error shows that our network combines with BN layer and scale para-
meters in scale layer, which improve the network learning ability and
the performance of model obviously. According to the performance of
the validation set, we chose early stopping training, and selected the
model with best performance. Fig. 8 shows the learning curve of the
training data in adjusted network architectures. The number of steps is
the number of training iterations (a total of 50 000 steps), and the or-
dinate represents the Euclidean loss between the true density map and
the predicted density map. As seen from Fig. 8, we used a simple
moving average to smooth the curve, it shows that the adjusted com-
plete network has faster converging time and smaller losses than the
other two networks.

Table 3
Running times for a set of stride values.

Stride value (pixels) 5 10 15 20 25
Run time (seconds) 184 95 50 58 48

Table 4
Hyperparameters of the proposed network architectures.

Common hyperparameters Network architecture Network architecture hyperparameters

BN layer Scale layer Scale layer
Without filler With filler

Base learning rate:0.0001 Without BN layer – – –
Learning rate policy:inv and scale layer

Solver type:Adam Without scale lr_mult: 0 lr_mult: 0.1 –
Momentum:0.9 parameter in decay_mult: 0 decay_mult: 0

Weight decay:0.001 scale layer

Batch size:128 Complete network lr_mult: 0 lr_mult: 0.1 filler: value= 1
Regularization_type:L2 decay_mult: 0 decay_mult: 0 bias_filler: value= 0

Table 5
Effects of different network architectures on model performance.

Network architecture Datasets

Validation (internet)
MAE

Test (internet) MAE

Complete network 2.74 2.78
Without scale parameters in scale

layer
2.94 2.93

Without BN layer 3.07 3.04
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4.4. Comparison of the state-of-the-art methods

We compared our proposed CNN model with three existing
methods: (1) counting based on image processing, (2) regression forest
method(Fiaschi et al., 2012), and (3) Counting CNN. Among these
competing methods, the first two solutions take the advantages of tra-
ditional computer vision methods, the third one applies the deep
learning technique. The last two methods and our model uses the in-
tegral function for calculation. To facilitate the readers to understand
the competing methods, we summarize the description of each method
in Table 6.

We evaluated all the competing methods on the test images col-
lected from internet websites and from the real farm and summarized
the performances in term of MAE and RMSE in Table 7. As we can see,

the solution designed in this paper has achieved the best MAE and
RMSE results in both test dataset (internet) and test dataset (real life),
the mean error of the algorithm in the test dataset (internet) is 2.78, and
in the test dataset (real life) is 1.67. Especially in real-world datasets,
our solution is most effective, because that the test dataset (internet) is
in different density distributions with different degrees of occlusion,
and more complex environment and different perspectives. It worths
mentioning that the distribution density of pigs in each image collected
from the real farm is relatively homogeneous and fewer changes, and
our solution is significantly better than other three algorithms. Com-
pared to original Counting CNN model, the depth of our neural network
is much deeper, and therefore able to extract more useful feature in-
formation, which makes our model fit better with the reality and get
better estimates for the number of pigs.

Table 8 summarizes the average running time for pig counting in an
image using different methods. From the table, we can observe that our
CNN model is faster than the regression forest, slower than image
processing, but has the lowest error. This is because the optimization
process of our solution is simple and robust, while traditional image
processing algorithm has challenging factors like illumination changes,
occlusion and overlapping in scenes, which may cause some areas to be
misidentified as pigs (such as drains, pig pens, trough). These factors
increase the noise of the images and difficulty in recognition and in-
complete counting. With high accuracy and low computation cost, our
proposed solution meets the demand of agricultural technology.

To better explain why our proposed CNN model is able to outper-
form the competing algorithm, we compared prediction maps obtained
by the competing methods in Fig. 9. As mentioned in Section 3, both
ground truth and the prediction map for our proposed model is density
map. The regression forest method is based on the density histogram.
For counting based on image processing method, we use region growing
method. Fig. 9 (e) and Fig. 9 (j) indicates that some background areas
are misidentified as pigs. Fig. 9 (c) and Fig. 9 (h) show that our pro-
posed model can also generate high-quality pig herd density map and
count estimation, and can effectively distinguish between background

Fig. 8. Different network architectures of three instances in training.

Table 6
Summarization of competing methods.

Methods Loss function Prediction Feature methods Computer vision methods

Regression forest Frobenius norm Density patch map Random regression Traditional machine learning
Counting based on image processing — Crop image Gradient map Traditional image processing

Counting CNN Euclidean loss Density patch map CNN Deep learning

Table 7
Comparison of MAE and RMSE in methods (the result of our model is marked in
bold).

Methods Test images (internet) Test images (Real life)

MAE RMSE MAE RMSE

Counting based on image
processing

4.79 6.48 6.16 6.90

Regression forest 2.90 3.79 2.44 2.96
Counting CNN 3.23 4.50 7.15 7.55
Our CNN model 2.78 3.66 1.67 2.13

Table 8
Average time of counting for each image (real-world).

Methods Average time for one image (s)

Our CNN model 0.042
Counting based on image processing 0.025

Regression forest 0.183
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areas and pig herd goals, without pre-processing or human interven-
tion.

4.5. Visualization

We visualize five representative images and their predictions and
actual counts in two test datasets, as shown in Fig. 10 for the internet
images and Fig. 11 for images collected from the real farm, respectively.
The second row of each figure (GT) shows the true density map; the
third row in each figure (Pred) shows the predicted density map, the
actual and predicted pig counts are above these images.

For the internet images, the first three columns in Fig. 10(a–c) show
that the difference between our predicted counts and actual counts is
small. The results show that our proposed model accurately counts pigs
regardless of the camera perspective. Fig. 10(d–e) shows a large dif-
ference between the true value and the model-predicted value because
there are overcrowding and overlapping among pigs, which results in
lower prediction accuracy.

Regarding real images from the farm, as shown in Fig. 11, the re-
sults in the fifth column are not as good as those in the first four col-
umns due to the effect of the perspective. We observe that our model is

successful and unaffected by changes in illumination, so the specific
environment does not need to be controlled, and the model is more
robust than the original model. Our solution is thus fully applicable to
pig counting in the agricultural industry.

5. Conclusion

In this paper, a new solution for pig counting on the farm using deep
learning is proposed. Our network is based on combination of Counting
CNN and ResNeXt model to improve high-accuracy, low computational
cost to high accuracy and high efficiency. The results demonstrate that
in real-world data, our method gets a mean absolute error of 1.67, re-
gardless of pigs with shadow, overlapping or different perspectives.
This method could help to improve the management of current farms
and agricultural production. However, for objects with greatly over-
lapped, with a decrease in counting accuracy. In future work, we will
improve the counting accuracy in complex images by designing a
multiscale input model, which uses different sizes of receptive fields.
Besides, more images with complex situations will be captured in our
future work.

Fig. 9. The first four columns of instances in comparison between the regression forest and our model density prediction maps, the final column of instances for
traditional image processing, (a) and (f) image dots marked by red cross are the ground-truth pigs. Except for images (e, j) in the final column, images of the top line
are obtained from the internet and images of the last line are obtained from real life. The color of the density map is mainly represented by the density of the herd
represented by this point. In the figure, the red region represents the region with larger pixel value that is the region with higher density value, and for the region
with lower density, the color is blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Density map for test images, images are obtained from the internet. From top to bottom are testing images, GT and our prediction.
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