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Residual image and illumination estimation have been proven to be helpful for image enhancement. In
this paper, we propose a general framework, called RI-GAN, that exploits residual and illumination
using generative adversarial networks (GANs). The proposed framework detects and removes
shadows in a coarse-to-fine fashion. At the coarse stage, we employ three generators to produce a
coarse shadow-removal result, a residual image, and an inverse illumination map. We also incorporate
two indirect shadow-removal images via the residual image and the inverse illumination map. With
the residual image, the illumination map, and the two indirect shadow-removal images as auxiliary
information, the refinement stage estimates a shadow mask to identify shadow regions in the image,
and then refines the coarse shadow-removal result to the fine shadow-free image. We introduce a
cross-encoding module to the refinement generator, in which the use of feature-crossing can provide
additional details to promote the shadow mask and the high-quality shadow-removal result. In
addition, we apply data augmentation to the discriminator to reduce the dependence between
representations of the discriminator and the quality of the predicted image. Experiments for shadow
detection and shadow removal demonstrate that our method outperforms state-of-the-art methods.
Furthermore, RI-GAN exhibits good performance in terms of image dehazing, rain removal, and
highlight removal, demonstrating the effectiveness and flexibility of the proposed framework.
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1 INTRODUCTION

Shadow removal is a low-level vision task that aims to recover the illumination in shadow
regions while preserving the texture details. Low light in shadow regions can degrade the
scene recognition capability of some vision tasks, such as satellite remote sensing image
analysis [57], public security and military analysis [6, 32], industrial inspection [28–30], and
computational photography [22, 31]. In addition, shadow detection and shadow removal
are necessary to improve the visual effect of image and video editing, such as film and
television post-editing. However, detecting and removing shadows in complex scenes remains
challenging, due to illumination changes, texture variation, and other environmental factors.
Recently, a variety of works, including traditional methods [40, 50, 56] and learning-

based methods [16, 24, 44], have focused on shadow detection and shadow removal. Unlike
traditional methods that rely on prior knowledge (e.g., constant illumination and gradients)
and often bring artifacts on the shadow boundaries, learning-based methods have achieved
significant advances. However, the effectiveness of these methods depends on the training
dataset and the designed models. When the training data are insufficient or the designed
model is deficient, they may produce undesirable results. Also, most existing learning-based
methods focus more on shadow characteristics, without sufficiently exploring other image
properties like residual images and illumination for model design.
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Fig. 1. Framework of our proposed RI-GAN, which is composed of a coarse stage and a refinement stage.
RI-GAN takes a shadow image 𝐼 as input and outputs a residual image 𝐼𝑟𝑒𝑠, an inverse illumination map
𝑆𝑖𝑛𝑣, a shadow mask 𝑀 , and a shadow-free image 𝐼𝑓𝑟𝑒𝑒. < 𝐼𝑟𝑓𝑟𝑒𝑒, 𝐼

𝑟
𝑔𝑡 > denotes augmented data from

rotating the image pair < 𝐼𝑓𝑟𝑒𝑒, 𝐼𝑔𝑡 > by 𝑟 degrees. The four discriminators are joint discriminators
and share the same network and parameters. No particular task-aware components are designed in the
framework.

In this paper, we propose a general framework, called RI-GAN, that exploits residual image
and illumination map using generative adversarial networks (GANs) for shadow detection
and removal by taking advantage of the intrinsic properties of images. Fig. 1 shows the
framework of the proposed RI-GAN, which performs shadow detection and removal tasks in
a coarse-to-fine fashion. The coarse stage employs three generators and two discriminators
to obtain a residual image, a coarse shadow-removal image, and an inverse illumination map.
The refinement stage uses a generator and two discriminators to produce a shadow mask
and a fine shadow-free image. In principle, unlike existing deep learning methods [21, 36, 60],
which are designed particularly for shadow removal, any encoder-decoder structures can be
used as our generators.
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The residual and illumination information between the shadow and shadow-free images
can provide additional information for shadow detection and removal. We also incorporate
two indirect shadow-removal images using the predicted residual image and illumination
map. To take full advantage of the intrinsic properties of the image, we introduce a cross-
encoding module in the refinement generator to learn more abundant features from the
image. The cross-encoding module consists of a residual encoder, an illumination encoder,
and an image encoder. Unlike the residual encoder and the illumination encoder, which have
one input source, the image encoder uses the coarse shadow-removal result and the two
indirect shadow-removal images as input sources. Feature-crossing in the three encoders is
used to obtain richer feature information for high-quality results and to mitigate the reliance
on the residual image and illumination map.
Our RI-GAN adopts an adversarial training process [15] between the generators and

discriminators alternatively to generate a high-quality residual image, illumination map,
shadow mask, and final shadow-removal image. We adopt joint discriminators [20] to ensure
that the four discriminators share the same architecture as well as the same parameter values,
such that all the produced results are indistinguishable from their corresponding ground-
truth images. Moreover, we augment the inputs of the discriminator for shadow-removal
result prediction at the refinement stage by rotating the input pair at different degrees.
Besides judging the true or false classification for the predicted image, this discriminator also
performs rotation-degree classification for the augmented data. Such treatment facilitates
the stability of the discriminator and reduces the dependence between the representations of
the discriminator and the quality of the result.
Given the commonality and generality of residual image and illumination map used in

image processing, the proposed RI-GAN has no particular shadow-aware components for
image shadow removal. Our RI-GAN is a general framework. Besides shadow removal, the
RI-GAN model can be applied to other low-level image processing tasks, such as image
dehazing, rain removal, and highlight removal. Fig. 2 shows different image processing results
using our RI-GAN.

Our main contributions can be summarized as follows:

∙ We propose a general framework, called RI-GAN, with generators in encoder-decoder
structures to exploit residual and illumination information for image shadow detection
and removal.

∙ We introduce a cross-encoding module to make full use of the intrinsic properties of the
image. As such, the network learns more useful information for producing high-quality
results, and the joint discriminators and data augmentation make the network more
stable and effective.

∙ Without any particular shadow-aware components in the proposed network, our RI-
GAN nevertheless outperforms art-of-the-art methods. The results for image dehazing,
rain removal, and highlight removal demonstrate the feasibility and flexibility of the
proposed framework.

This paper is an extended version of our conference paper [55]. We extend [20] in several
ways: (1) Here, we propose a general RI-GAN framework to perform shadow detection and
removal tasks in a parallel joint model, whereas our previous framework, RIS-GAN [55], only
focused on shadow removal. (2) We introduce a cross-encoding module in the refinement
generator to exploit the intrinsic properties of the image. (3) We augment the input sources
of the discriminator at the refinement stage for shadow-removal result prediction, and we
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(a) Image dehazing (b) Image highlight removal

(c) Image rain removal (d) Image shadow removal

Fig. 2. Different image processing tasks using the proposed general RI-GAN. Given a corrupted image
(left), we can restore a clean image (right).

train it with dual-task objectives. (4) We apply the proposed RI-GAN to other three image
processing tasks to demonstrate the effectiveness and flexibility of our method.
The remainder of this paper is organized as follows. In Section 2, we introduce related

work. In Section 3, we present the shadow image formation. In Section 4, we introduce the
proposed general RI-GAN. Section 5 describes the experiments. Section 6 concludes the
paper.

2 RELATED WORK

Shadow detection. Traditional methods often use the light and color difference between
shadows and non-shadows for shadow detection. For example, Finlayson et al. [11] used
light invariance for shadow detection, but this method only achieves satisfactory results on
high-quality images and simple scenes. Zhang et al. [57] used manual interaction to mark
shadow areas and non-shadow areas in images, and then separated the shadow area by
combining a matting algorithm. This method is effective for shadow detection in simple
scenes, but for complex scenes, it requires more interactive information to obtain relatively
complete detection results, which is labor-intensive and cannot be processed in batches. Guo
et al. [17] used a region-based method to detect shadows. Their algorithm is simple and
effective, and suitable for hard shadow detection. But it risks dividing soft shadows in the
image into non-shadow regions.

Deep learning is another common shadow detection strategy [5, 46]. Deep learning methods
learn the appearance characteristics of the shadow areas from annotated datasets, and then
use classifiers for shadow recognition. Nguyen et al. [34] proposed a shadow detector based
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on an antagonism network that used a cascading convolutional neural network. Vicente et al.
[42] used a block-based convolutional neural network to extract a shadow probability graph of
the image. But their method needs interactive feature information. Zhu et al. [60] used global
context and local context information to construct a deep convolutional neural network to
detect shadows. Hu et al. [21] proposed a deep network with a direction-aware spatial context
module for shadow detection through global semantic analysis. These learning-based shadow
detection methods are very effective for simple scenes. For complex scene, however, the
shadow detection results are often inaccurate. In addition, at present, these methods mainly
detect the shadow region in the image, and cannot effectively distinguish hard shadows from
soft shadows.

Shadow removal. Traditional methods for shadow removal usually utilize priors to
build the models and solve them, such as illumination uniformity [17, 23, 40, 50, 51, 57]
and gradient invariance [10, 11]. Methods based on illumination uniformity borrow the
illumination from non-shadow regions to shadow regions. Shor et al. [40] proposed a linear
mapping model to remove shadows in the image. Their model has low time complexity but
can only deal with images with consistent texture in shadow regions. Xiao et al. [50] proposed
a parameter-adaptive shadow-removal algorithm, which can process images with multiple
textures in shadow regions. Since shadow regions are segmented beforehand and processed
independently, the recovered illumination in different shadow areas may be inconsistent.
Zhang et al. [57] decomposed images into overlapping image patches, and proposed a local-
to-global method to remove shadows. However, such illumination transfer-based methods
require taking texture matching for shadow regions and non-shadow regions before removing
shadows, and the effectiveness of these methods depends on the illumination in the matched
non-shadow region. Another typical methods are based on gradient domain manipulation
to reconstruct the shadow-free result utilizing the gradient information on shadow regions.
Finlayson et al. [11] reconstructed the shadow-free images by solving a gradient-based Poisson
equation. Liu et al. [26] constructed illumination variation lines at the shadow boundary to
eliminate the gradient change caused by the change of illumination, and reconstructed a
shadowless image using the illumination variation lines. Due to the influence of illumination
changes at the shadow boundary, both illumination- and gradient-based methods cannot
effectively handle boundary problems, especially in the presence of complex textures or color
distortions.
Recently, deep neural networks have been used for shadow removal by analyzing and

learning the mapping relations between shadow images and their corresponding shadow-free
images [54]. Learning-based methods for shadow removal have shown their potential. With
suitable network models and datasets, these methods can produce good shadow-removal
results [12, 21, 41, 54]. Hu et al. [21] used multiple convolutional neural networks to learn
image features for shadow detection combined with multi-level color transfer. They proposed
a Bayesian formulation to remove shadows in images. Qu et al. [36] proposed an end-to-end
DeshadowNet to recover illumination in shadow regions. This network integrates high-level
semantic information, middle-level appearance information, and local image details. Wang et
al. [44] proposed a stacked conditional generative adversarial network (ST-CGAN) for image
shadow removal. Sidorov [41] proposed an end-to-end architecture, named AngularGAN,
oriented specifically to the color constancy task, without estimating illumination color or an
illumination color map. Unlike the commonly used multi-branch paradigm, they stacked all
the tasks for multi-task learning. Such deep learning methods can produce better shadow-
removal results, but they require a large training dataset. Wei et al. [47] proposed a two-stage
generative adversarial network for shadow inpainting and removal with slice convolutions.
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Ding et al. [9] proposed an attentive recurrent generative adversarial network (ARGAN) to
detect and remove shadows with multiple steps. These methods rely heavily on the designed
model. Unlike existing methods, our RIS-GAN utilizes a explored residual image and an
inverse illumination map to generate more accurate shadow-removal results.

3 SHADOW IMAGE FORMATION

Based on matting and compositing operations, [48] proposed the following image compositing
equation:

𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒 = 𝛼𝐹 + (1− 𝛼)𝐵, (1)

where 𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒, 𝐹 , 𝐵, and 𝛼 are the observed image, foreground image, background image,
and fractional alpha, respectively. Inspired by this image compositing equation, we model
the shadow image 𝐼 as a fusion of the shadow-free image 𝐼𝑓𝑟𝑒𝑒 and the shadow mask 𝑀 :

𝐼 = (1− 𝛽)𝐼𝑓𝑟𝑒𝑒 + 𝛽𝑀, (2)

where 𝛽 is the fractional alpha. 𝐼𝑓𝑟𝑒𝑒 and 𝑀 can be considered the background image and
the foreground image, respectively. The purpose of shadow detection and removal is to detect
the shadow regions 𝑀 and extract the shadow-free image 𝐼𝑓𝑟𝑒𝑒 from the shadow image 𝐼.

4 THE GENERAL RI-GAN

4.1 RI-GAN Architecture

Residual image and illumination have been widely used in image processing. We exploit
residual image and illumination map between the shadow image and the shadow-free image
using generative adversarial networks (GANs) [15] for shadow detection and removal. The
residual image denotes the difference between the shadow image and shadow-free image in
color space, and the illumination map shows the brightness information for converting a
shadow-free image to a shadow image. The intuition behind this is that the residual image
and the inverse illumination map can provide additional information and insights for shadow
detection and removal. This view also satisfies other low-level vision tasks, such as image
rain removal and highlight removal. Fig. 3 presents some results of residual images and
illumination maps for different image processing tasks.

The proposed RI-GAN for shadow detection and removal with multiple GANs is illustrated
in Fig. 1. It is composed of a coarse stage and a refinement stage. The coarse stage 𝑆𝑐𝑜𝑎𝑟𝑠𝑒

contains three generators and two discriminators: a residual generator 𝐺𝑟𝑒𝑠, a shadow
removal generator 𝐺𝑐𝑜𝑎𝑟𝑠𝑒, an illumination generator 𝐺𝑖𝑙𝑙𝑢𝑚, a residual discriminator 𝐷𝑟𝑒𝑠,
and an illumination discriminator 𝐷𝑖𝑙𝑙𝑢𝑚. The refinement stage 𝑆𝑟𝑒𝑓𝑖𝑛𝑒 contains a refinement
generator 𝐺𝑟𝑒𝑓𝑖𝑛𝑒, a detection discriminator 𝐷𝑑𝑒𝑡𝑒𝑐𝑡, and a removal discriminator 𝐷𝑟𝑒𝑓 . The
generators in our model are encoder-decoder structures.

Given an input shadow image 𝐼, the three generators at 𝑆𝑐𝑜𝑎𝑟𝑠𝑒 generate a residual image
𝐼𝑟𝑒𝑠, a coarse shadow-removal image 𝐼𝑐𝑜𝑎𝑟𝑠𝑒, and an inverse illumination map 𝑆𝑖𝑛𝑣. With
the element-wise addition, we are able to get an indirect shadow-removal image 𝐼1𝑚𝑖𝑑 using
the input shadow image 𝐼 and the residual image 𝐼𝑟𝑒𝑠:

𝐼1𝑚𝑖𝑑 = 𝐼𝑟𝑒𝑠 + 𝐼. (3)

With the element-wise multiplication, we can get another indirect shadow-removal image
𝐼2𝑚𝑖𝑑 using the input shadow image 𝐼 and the inverse illumination 𝑆𝑖𝑛𝑣:

𝐼2𝑚𝑖𝑑 = 𝑆𝑖𝑛𝑣 * 𝐼. (4)
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Fig. 3. Example of residual images and illumination maps. The first, second, and third rows show input
images, residual images, and illumination maps, respectively.

Then, by using the predicted residual image, the illumination map, and the two indirect
shadow-removal images as supplementary information, the refinement generator refines the
coarse shadow-removal image to a fine shadow-free image 𝐼𝑓𝑟𝑒𝑒 and estimates a shadow
mask 𝑀 to indicate shadow regions in the image.
The four discriminators share the same architecture and the same parameters. The

alternative training between generators and discriminators ensures the excellent quality of
the prediction results.

4.2 Encoder-Decoder Generators

In principle, any encoder-decoder structures can be used in our RI-GAN framework. In
this paper, we do not design task-specific components in the framework, and we adopt the
DenseUNet architecture [37] for our encoder-decoder generators. DenseUNet consists of a
contracting path to capture context and a symmetric expanding path to upsample. Unlike
the conventional UNet architecture, DensUNet adds dense blocks in the network, which
concatenate each layer’s output with its input and feed it to the next layer. This enhances
information and gradient flow in our encoder-decoder generators.
The residual generator 𝐺𝑟𝑒𝑠 is designed to obtain a residual image that is close to the

ground-truth residual image 𝐼𝑟𝑒𝑠𝑔𝑡 obtained between the shadow image and the corresponding
ground-truth image 𝐼𝑔𝑡:

𝐼𝑟𝑒𝑠𝑔𝑡 = 𝐼𝑔𝑡 − 𝐼. (5)

We design the illumination generator 𝐺𝑖𝑙𝑙𝑢𝑚 to estimate the inverse illumination map in the
shadow image. Note that the ground-truth inverse illumination map is calculated based on
Retinex-based image enhancement methods [13, 18, 45]:

𝑆𝑖𝑛𝑣
𝑔𝑡 = 𝐼𝑔𝑡 * 𝐼−1, (6)

where 𝐼𝑔𝑡 can be considered a reflectance image, and 𝐼 is the observed image.
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(a) (b) (c) (d) (e) (f)

Fig. 4. Visualization of shadow-removal results using our RI-GAN. From left to right: the shadow image
𝐼 (a), the indirect shadow-removal image 𝐼1𝑚𝑖𝑑 by the residual image (b), the indirect shadow-removal
image 𝐼2𝑚𝑖𝑑 by illumination (c), the coarse shadow-removal image 𝐼𝑐𝑜𝑎𝑟𝑠𝑒 (d), the final shadow-free
image 𝐼𝑓𝑟𝑒𝑒 (e), and the ground-truth image 𝐼𝑔𝑡 (f).

Refinement generator. The predicted residual image and illumination map are used as
supplementary information to help the refinement generator predict the shadow mask and
shadow-free image. However, inaccurate residual images and illumination maps can misguide
the network and produce undesirable results. To utilize residual image and illumination
map effectively, we introduce a cross-encoding module to extract the features. The module
consists of a residual encoder, an illumination encoder, and an image encoder. Unlike residual
and illumination encoders with merely one input source, our image encoder uses two indirect
shadow-removal images and the coarse shadow-removal image as input sources. Specifically,
the downsampled extracted features from the residual encoder and the illumination encoder
are fed into the image encoder, allowing the network to obtain richer feature information.
Such treatment can relieve the reliance on the residual image and illumination map and
produce more convincing results.

To better understand our generators, we visualize the two indirect shadow-removal images,
the coarse shadow-removal image, and the final shadow-free result in Fig. 4. As we can
observe, the indirect shadow-removal images obtained by the residual image and illumination
map have good quality and are complimentary for further refinement to get the final
shadow-free image.

4.3 Joint Discriminator

The discriminators are convolutional networks used to distinguish the predicted residual
image, the estimated inverse illumination map, the shadow mask, and the final shadow-free
image produced by the generators as either real or fake, compared with the corresponding
ground-truth. We use GANs with joint discriminators [20] to ensure that all the predicted
results are indistinguishable from the related ground-truth images. The four discriminators
share the same network and parameters. The joint discriminators are trained to learn a joint
distribution to judge whether the produced results are real or fake.
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Inspired by data augmentation [3], we train the removal discriminator with dual-task
objectives. We rotate the predicted shadow-free image 𝐼𝑓𝑟𝑒𝑒 and the corresponding ground-
truth image 𝐼𝑔𝑡 simultaneously at different degrees and produce augmentation pairs. Similar
to the original real and fake image pair, the additional image pairs are also fed into the
removal discriminator during training. Besides judging the predicted image as real or fake,
this discriminator also performs rotation degree classification for all the inputs containing the
augmentation images. Data augmentation for the discriminator renders the network more
stable and useful. Note that only the original predicted images are considered for the true or
false classification task. For data augmentation, we rotate the images to four different degrees.
Let 𝑅 be the set of possible rotations, and 𝑅 = {0∘, 90∘, 180∘, 270∘}. < 𝐼𝑟𝑓𝑟𝑒𝑒, 𝐼

𝑟
𝑔𝑡 >, 𝑟 ∈ 𝑅

denotes the augmented input pairs. When 𝑟 = 0∘, the image pair is the original true and
false images.

Our discriminator consists of five convolution layers, each followed by a batch normalization,
a leaky ReLU activation function, and one fully connected layer. After the last fully connected
layer, there are two outputs. One is the probability value that the input image (the result
produced by the generator) is a real image. The other is the probability value for the
classification of the rotation degree. Fig. 5 gives details of the discriminator. Note that
discriminators 𝐷𝑟𝑒𝑠, 𝐷𝑑𝑒𝑡𝑒𝑐𝑡 and 𝐷𝑖𝑙𝑙𝑢𝑚 only have the output path for judging the truth of
the predicted image.

 gtclean II , Real/Fake?
Batchnorm

Leakly ReLU

Convolution
Ratation Degree

Fig. 5. Architecture of the discriminators in our RI-GAN, consisting of five convolution layers with batch
normalization and leakly ReLU activations. For these five convolution layers, the kernel sizes are 4× 4;
the strides are 4× 4, except the first convolution layer, whose stride is 2× 2; and the number of output
channels is 64 → 128 → 256 → 512 → 1.

We use the spectrum normalization method [33] to stabilize the training process of the
discriminator network, because spectral normalization is a simple and effective standardized
method for limiting the optimization process of the discriminator in GANs. It can improve
the performance of the generators.

4.4 Loss Functions

To obtain a robust parametric model, the loss function that we use to optimize the proposed
RI-GAN for shadow detection and removal contains seven components: coarse removal loss
ℒ𝑐𝑜𝑎𝑟𝑠𝑒, residual loss ℒ𝑟𝑒𝑠𝑖𝑑, illumination loss ℒ𝑖𝑙𝑙𝑢𝑚, cross-loss ℒ𝑐𝑟𝑜𝑠𝑠, detection loss ℒ𝑑𝑒𝑡𝑒𝑐𝑡,
shadow removal loss ℒ𝑟𝑒𝑚𝑜𝑣𝑎𝑙, and adversarial loss ℒ𝑎𝑑𝑣. The total loss ℒ can be written as

ℒ = ℒ𝑐𝑜𝑎𝑟𝑠𝑒 + ℒ𝑟𝑒𝑠𝑖𝑑 + ℒ𝑖𝑙𝑙𝑢𝑚 + 𝛽1ℒ𝑐𝑟𝑜𝑠𝑠 + 𝛽2ℒ𝑑𝑒𝑡𝑒𝑐𝑡 + 𝛽3ℒ𝑟𝑒𝑚𝑜𝑣𝑎𝑙 + 𝛽4ℒ𝑎𝑑𝑣, (7)

where 𝛽1, 𝛽2, 𝛽3, and 𝛽4 are the weight parameters.
Coarse removal loss is defined with the visual-consistency loss and perceptual-consistency

loss between the coarse shadow-removal result 𝐼𝑐𝑜𝑎𝑟𝑠𝑒 and the corresponding ground-truth
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𝐼𝑔𝑡:

ℒ𝑐𝑜𝑎𝑟𝑠𝑒 = ℒ𝑣𝑖𝑠 + ℒ𝑝𝑒𝑟𝑐𝑒𝑝𝑡

= ||𝐼𝑔𝑡 − 𝐼𝑐𝑜𝑎𝑟𝑠𝑒||1 + ||VGG(𝐼𝑔𝑡)−VGG(𝐼𝑐𝑜𝑎𝑟𝑠𝑒)||22,
(8)

where ℒ𝑣𝑖𝑠 is the visual-consistency loss between the predicted image and the corresponding
ground-truth image. It is calculated using the L1-norm. ℒ𝑝𝑒𝑟𝑐𝑒𝑝𝑡 is the perceptual-consistency
loss aiming to preserve the image structure. VGG(·) is the feature extractor from the VGG19
model.

Residual loss calculates the L1-norm between the residual result generated by the
residual generator at 𝑆𝑐𝑜𝑎𝑟𝑠𝑒 and the ground-truth residual image 𝐼𝑟𝑒𝑠𝑔𝑡 :

ℒ𝑟𝑒𝑠𝑖𝑑 = ||𝐼𝑟𝑒𝑠𝑔𝑡 − 𝐼𝑟𝑒𝑠||1. (9)

Illumination loss calculates the L1-norm between the inverse illumination result gener-
ated by the illumination generator at 𝑆𝑐𝑜𝑎𝑟𝑠𝑒 and the ground-truth inverse illumination map
𝑆𝑖𝑛𝑣
𝑔𝑡 . Then, the illumination loss can be calculated as:

ℒ𝑖𝑙𝑙𝑢𝑚 = ||𝑆𝑖𝑛𝑣
𝑔𝑡 − 𝑆𝑖𝑛𝑣||1. (10)

Cross-loss is designed to ensure the consistency and correlation among the residual
image, illumination, and image information. It calculates the L1-norm between the two
indirect shadow-removal images 𝐼1𝑚𝑖𝑑 and 𝐼2𝑚𝑖𝑑 and the ground-truth image 𝐼𝑔𝑡:

ℒ𝑐𝑟𝑜𝑠𝑠 =||𝐼𝑔𝑡 − 𝐼1𝑚𝑖𝑑||1 + ||𝐼𝑔𝑡 − 𝐼2𝑚𝑖𝑑||1. (11)

Detection loss is used to calculate the loss between the produced shadow mask 𝑀 by
the refinement generator and the corresponding ground-truth shadow mask 𝑀𝑔𝑡. It is used
as the supervision in the training processing for shadow detection. That is,

ℒ𝑑𝑒𝑡𝑒𝑐𝑡 = ||𝑀 −𝑀𝑔𝑡||22. (12)

Shadow removal loss is also defined with the visual-consistency loss and perceptual-
consistency loss. That is,

ℒ𝑟𝑒𝑚𝑜𝑣𝑎𝑙 = ||𝐼𝑔𝑡 − 𝐼𝑓𝑟𝑒𝑒||1 + ||VGG(𝐼𝑔𝑡)−VGG(𝐼𝑓𝑟𝑒𝑒)||22, (13)

where VGG(·) is the feature extractor from the VGG19 model.
Adversarial loss is the joint adversarial loss for the network. It contains the direct

adversarial loss ℒ𝑎𝑑𝑣 𝑑𝑖𝑟𝑒𝑐𝑡 and rotating adversarial loss ℒ𝑎𝑑𝑣 𝑟𝑜𝑡𝑎𝑡𝑒, and is written as

ℒ𝑎𝑑𝑣 = ℒ𝑎𝑑𝑣 𝑑𝑖𝑟𝑒𝑐𝑡 + ℒ𝑎𝑑𝑣 𝑟𝑜𝑡𝑎𝑡𝑒. (14)

Direct adversarial loss ℒ𝑎𝑑𝑣 𝑑𝑖𝑟𝑒𝑐𝑡 is the adversarial loss for the four discriminators to
judge whether the produced results are real or fake:

ℒ𝑎𝑑𝑣 𝑑𝑖𝑟𝑒𝑐𝑡 = E(𝐼,𝐼𝑓𝑟𝑒𝑒,𝐼𝑔𝑡,𝑀,𝑀𝑔𝑡,𝐼𝑟𝑒𝑠
𝑔𝑡 ,𝑆𝑖𝑛𝑣

𝑔𝑡 )[𝑙𝑜𝑔(𝐷𝑑𝑒𝑡𝑒𝑐𝑡(𝑀
𝑔𝑡)) + 𝑙𝑜𝑔(1−𝐷𝑑𝑒𝑡𝑒𝑐𝑡(𝑀))

+ 𝑙𝑜𝑔(𝐷𝑟𝑒𝑠(𝐼
𝑟𝑒𝑠
𝑔𝑡 )) + 𝑙𝑜𝑔(1−𝐷𝑟𝑒𝑠(𝐼𝑟𝑒𝑠))

+ 𝑙𝑜𝑔(𝐷𝑖𝑙𝑙𝑢𝑚(𝑆𝑖𝑛𝑣
𝑔𝑡 )) + 𝑙𝑜𝑔(1−𝐷𝑖𝑙𝑙𝑢𝑚(𝑆𝑖𝑛𝑣))

+ 𝑙𝑜𝑔(𝐷𝑟𝑒𝑓 (𝐼𝑔𝑡)) + 𝑙𝑜𝑔(1−𝐷𝑟𝑒𝑓 (𝐼𝑓𝑟𝑒𝑒))],

(15)

where 𝐷𝑟𝑒𝑠, 𝐷𝑖𝑙𝑙𝑢𝑚, 𝐷𝑑𝑒𝑡𝑒𝑐𝑡, and 𝐷𝑟𝑒𝑓 are the four discriminators.
Rotating adversarial loss ℒ𝑎𝑑𝑣 𝑟𝑜𝑡𝑎𝑡𝑒 is the adversarial loss for the discriminator 𝐷𝑟𝑒𝑓 to

perform rotation-degree classification:

ℒ𝑟𝑜𝑡𝑎𝑡𝑒 =E(𝐼,𝐼𝑔𝑡,𝐼𝑓𝑟𝑒𝑒)[−
∑︁
𝑟

𝑙𝑜𝑔(𝐷𝑟𝑒𝑓 (𝐼
𝑟
𝑔𝑡, 𝐼

𝑟
𝑓𝑟𝑒𝑒))], (16)

J. ACM, Vol. 37, No. 4, Article 111. Publication date: November 2022.



RI-GAN for shadow detection and shadow removal 111:11

where 𝑟 ∈ 𝑅 = {0∘, 90∘, 180∘, 270∘}. 𝐼𝑟𝑔𝑡 and 𝐼𝑟𝑓𝑟𝑒𝑒 are the images that the ground-truth 𝐼𝑔𝑡
and the predicted shadow-removal result 𝐼𝑓𝑟𝑒𝑒 rotate 𝑟 degrees, respectively.
Overall, our objective for the training task is to solve a mini-max problem that aims to

find a saddle point between the generators and discriminators of our network.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 6. Shadow removal results. From left to right: input images (a); shadow-removal results of Guo
et al. [17] (b), Zhang et al. [57] (c), DeshadowNet [36] (d), ST-CGAN [44] (e), DSC [21] (f), Angu-
larGAN [41] (g), ARGAN [9] (h), and our RI-GAN (i); and the corresponding ground-truth shadow-free
images (j).

(a) (b) (c) (d) (e) (f) (g)

Fig. 7. Shadow detection results. From left to right: input images (a); shadow detection results of Guo
[17] (b), Zhang [57] (c), ST-CGAN [44] (d), DSC [21] (e), and BDRAR [59] (f); and shadow detection
results of our method (g).

5 EXPERIMENTS

To evaluate and verify the effectiveness of the proposed RI-GAN, we present different
experiments using our RI-GAN. The proposed model is implemented in Tensorflow in a
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computer with NVIDIA GeForce RTX2080Ti. In our experiments, the input size of the
image is 256×256. The minibatch size is 2. The initial learning rate is set at 0.001. We use
the Momentum optimizer to optimize our generator, and we use the Adam optimizer for
the discriminator. We alternatively train our generator and discriminator for 10,000 epochs.
The parameters 𝛽1, 𝛽2, 𝛽3, and 𝛽4 are set as 1, 0.2, 10, and 1, respectively, in our image
shadow detection and shadow removal experiments.

5.1 Comparisons with State-of-the-art Approaches

Datasets. For the shadow detection and removal task, we use the 1330 triplets of shadow
images, shadow masks and shadow-free images from the ISTD dataset [44] for training,
and we use the remaining 540 triplets for testing. We also evaluate the shadow detection
results on the UCF dataset, which contains 110 pairs of shadow images and shadow masks.
Besides the ISTD test data, we use data from the publicly available SRD dataset [36] for
shadow-removal evaluation, which has 408 pairs of shadow and shadow-free images.

Table 1. Quantitative comparison results of shadow detection on the UCF and ISTD datasets in terms
of BER (the smaller, the better).

Methods Venue/Year UCF ISTD

Guo et al. CVPR/2011 28.32 27.16

Zhang et al. TIP/2015 9.21 8.56

ST-CGAN CVPR/2018 17.69 3.84
DSC CVPR/2018 8.73 2.40

BDRAR ECCV/2018 9.45 2.20

DSDNet CVPR/2019 7.59 2.17
MTMT-Net CVPR/2020 7.34 1.72

FDRNet ICCV/2021 7.28 1.55

RI-GAN TOMM/2022 7.25 1.70

Metrics. We use the balance error rate (BER) [21] between the ground-truth mask and
the predicted shadow mask to evaluate the shadow-detection performance. We use the root
mean square error (RMSE) calculated in Lab space between the recovered shadow-removal
image and the ground-truth shadow-free image to evaluate the shadow-removal performance.

Shadow detection. We compare our shadow-detection results with some state-of-the-art
shadow-detection methods, namely, Guo et al. [17], Zhang et al. [57], ST-CGAN [44], DSC
[21], BDRAR [59], DSDNet [58], MTMT-Net [5], and FDRNet [61]. Fig. 7 shows shadow-
detection results for different methods. From these results, we can see that traditional
methods of Guo et al. and Zhang et al. can effectively detect hard shadows with large areas,
but for soft shadows or complex shadows, they do not obtain accurate results, as shown in
Fig. 3(b, c). By considering both the residual and illumination information in our method,
we can detect more accurate shadow regions (Fig. 3(g)) than other learning-based methods
(Fig. 3(d-f)).

To further demonstrate the superiority of our approach, we evaluate the performance of
shadow detection on the UCF dataset and ISTD test dataset. The results are summarized
in Table 1. We can observe that our method achieves the optimal or suboptimal results on
the two datasets, demonstrating the good performance of our method in terms of shadow
detection.

Shadow removal. We compare our RI-GAN with some state-of-the-art shadow-removal
methods, including the two traditional methods, viz., Guo et al. [17] and Zhang et al.
[57], and recent learning-based methods, viz., DeshadowNet [36], DSC [21], ST-CGAN [44],
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 8. Shadow-removal results for images with complex scenes. From left to right: input images (a);
shadow-removal results of Zhang et al. [57] (b), DeshadowNet [36] (c), ST-CGAN [44] (d), DSC [21]
(e), AngularGAN [41] (f), and ARGAN [9] (g), and CANet [4] (h); and shadow-removal results of our
RI-GAN (i).

FusionNet [12], ARGAN [9], DHAN [7], and CANet [4]. For a fair comparison, we use
the same training data with the same input size of images (256 × 256) to train all the
learning-based methods on the same hardware. We summarize the comparison results in
Table 2. From the table, we can observe that among all the competing methods, our proposed
RI-GAN achieves smaller or similar RMSE values in shadow regions and the entire images
on the two datasets, even though we have no particular shadow-aware components designed
in our generators. This suggests that the recovered shadow-removal images obtained by our
RI-GAN are much closer to the corresponding ground-truth shadow-free images.

Table 2. Quantitative comparison results of shadow removal on the SRD and ISTD datasets using
the RMSE metric (the smaller, the better). S and A represent shadow regions and the entire image,
respectively.

Methods Venue/Year
SRD ISTD

S A S A

Guo et al. CVPR/2011 31.06 12.60 18.95 9.30
Zhang et al. TIP/2015 9.50 7.24 9.77 8.16

Deshadow CVPR/2017 17.96 8.47 12.76 7.83
ST-CGAN CVPR/2018 18.64 8.23 10.33 7.47

DSC CVPR/2018 10.89 6.23 9.76 6.67
DHAN AAAI/2020 8.94 5.67 8.14 6.37

CANet ICCV/2021 8.62 6.42 8.86 6.15
FusionNet CVPR/2021 8.56 6.51 8.14 5.92

RIS-GAN AAAI/2020 8.22 6.78 8.99 6.95
RI-GAN TOMM/2022 8.17 6.21 8.12 5.91

To further demonstrate the superiority of our proposed RI-GAN, we provide some visu-
alization results in Fig. 6 and Fig. 8, covering traditional and learning-based methods for
shadow removal. From these images, we can observe that the recovered shadow-removal
images generated by traditional methods have boundary problems, such as color distortion
or texture loss. For recent deep learning methods, DeshadowNet, ST-CGAN, DSC, ARGAN,
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and CANet deal with the images in aspect of color space, without considering other image-
intrinsic information. This may lead to unsatisfactory shadow-removal results like color
distortion or incomplete shadow removal. In contrast, by fully utilizing image information
such as residual images and inverse illumination maps, our proposed RI-GAN can effectively
remove shadows and produce good results in both simple and complex scenes.

5.2 Application to Other Image Processing Tasks

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 9. Image dehazing results. From left to right: input images (a); dehazing results of He et al. [19] (b),
AOD-Net [25] (c), DenseGAN [37] (d), GridDehazeNet [27] (e), LapDehazeNet [49] (f), our RI-GAN
(g), and ground-truth haze-free images (h).

5.2.1 Image Dehazing. Datasets. We train the proposed RI-GAN for image dehazing task
on the NYU dataset, which contains 1449 image pairs of haze images and haze-free images.
Then, we evaluate the haze-removal results on test datasets of I-haze (30 image pairs with
outdoor scenes) and O-haze (45 image pairs with indoor scenes).
Metrics. We use the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM)
between the ground-truth haze-free image and the predicted haze-removal result to evaluate
the performance of our RI-GAN on haze removal.

Image dehazing is similar to image shadow removal. It aims to recover a haze-free image
(𝐼𝑓𝑟𝑒𝑒) from a haze image (𝐼). Fig. 9 gives image dehazing results compared with the
traditional method of He et al. [19], and five learning-based methods, viz., AOD-NET [25],
DenseGAN [37], GridDehazeNet [27], DMPHN [8], and LapDehazeNet [49]. As shown in
Fig. 9(b), although the haze-free results by He et al. [19] can extract the haze-free images
effectively, some details may be missing compared with the ground-truth haze-free images.
The results from AOD-NET, DenseGAN, and GridDehazeNet still exhibit some haze in the
images, as shown in Fig. 9(c-e). However, our results remove most haze and preserve the
details in the image, as shown in Fig. 9(f).
We also evaluate the haze-removal results on test datasets of I-haze and O-haze. For a

fair comparison, we train all the learning-based methods on the NYU dataset. The results
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are summarized in Table 3, from which we can observe that the proposed RI-GAN can
be directly applied to image dehazing and achieves favorable results compared with the
state-of-the-art methods.

Table 3. Quantitative comparison results of haze removal on the I-HAZE and O-HAZE datasets using
the PSNR metric (the larger, the better) and the SSIM metric (the larger, the better).

Methods Venue/Year
I-HAZE O-HAZE

PSNR SSIM PSNR SSIM

He et al. PAMI/2011 12.86 0.54 15.06 0.62

AOD-NET ICCV/2017 9.79 0.29 14.98 0.48
DenseGAN CVPR/2018 10.16 0.37 15.01 0.58

GridDehazeNet ICCV/2019 12.05 0.46 16.07 0.61
DMPHN CVPR/2020 12.21 0.48 16.14 0.51

LapDehazeNet CVPR/2021 11.60 0.45 15.67 0.52

RI-GAN TOMM/2022 12.88 0.56 16.32 0.61

5.2.2 Image Rain Removal. Datasets and Metrics. For image rain removal, we train our
RI-GAN on the Rain100H dataset, which contains 1800 image labels. Each label contains a
rainy image and a corresponding rain-free image. We evaluate the results on the Rin100H
(contains 100 image labels) and Rin100L (contains 200 image labels) test datasets. Similar
to the haze-removal task, we also use the PSNR and SSIM between the ground-truth image
and the predicted result to evaluate the rain-removal performance.

Image rain removal aims to remove the rain-streak layer from the input image and obtain
a rain-free result. We use a rainy image as the corrupted input image and the corresponding
ground-truth rain-free image as the supervision to train our model. Fig. 10 shows image
rain-removal results compared with four state-of-the-art rain-removal methods, viz., CRDNet
[35], RecDerain [38], RCDNet [43], and RLNet [2]. From the results, we can find that our
methods can recover the rain-free images without unexpected patterns and better preserve
image details.
We also evaluate our rain removal results compared with these two methods on the

Rin100H and Rin100L test datasets. For a fair comparison, we train both these methods on
the Rain100H dataset. The results are summarized in Table 4, from which we can observe
that our proposed RI-GAN can also be directly used for rain removal and achieves preferable
results compared with the two state-of-the-art methods.

Table 4. Quantitative comparison results of rain removal on the Rain100H and Rain100L testing dataset
using the PSNR metric (the larger, the better) and the SSIM metric (the larger, the better).

Methods Venue/Year
Rain100H Rain100L

PSNR SSIM PSNR SSIM

CRDNet SPL/2020 15.75 0.50 20.70 0.59
RecDerain TIP/2020 14.40 0.51 23.36 0.71
RCDNet CVPR/2020 28.70 0.88 33.41 0.96
RLNet CVPR/2021 29.50 0.89 33.98 0.96
RI-GAN TOMM/2022 28.94 0.89 33.98 0.97
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(a) (b) (c) (d) (e) (f) (g)

Fig. 10. Image rain-removal results. From left to right: input images (a); rain-removal results of CRDNet
[35] (b), RecDerain [38] (c), RCDNet [43] (d), RLNet [2] (e), our RI-GAN (f), and ground-truth rain-free
images (g).

5.2.3 Highlight Removal. Datasets and metrics. We perform highlight-removal experi-
ments on the SHIQ dataset and LIME dataset. The SHIQ dataset contains 16K image pairs
of highlight images and highlight-free images. We select 6000 image pairs from the SHIQ
dataset for training and 1000 image pairs for testing. The LIME dataset contains 80K+
image pairs, and we select 1000 image pairs for testing. Similar to the haze-removal task, we
also use the PSNR and SSIM between the ground-truth image and the predicted result to
evaluate the highlight-removal performance.
Highlights in the images can reduce the image quality and weaken the visual effect.

Highlight removal aims to recover a highlight-free image. We train the proposed RI-GAN
using the SHIQ dataset to perform the image highlight-removal task. We compare our method
with five different highlight removal methods: Shen et al. [39], Yang et al. [53], Akashi et
al. [1], Yamamoto et al. [52], and Fu et al. [14]. For a fair comparison, we use the same
dataset to train all the learning-based methods. Fig. 11 shows some image highlight-removal
results. From the images, we can observe that our results are closer to the ground-truth
highlight-free images. Table 5 summarizes the comparison results on two testing datasets.
From the table, we can observe that our proposed RI-GAN can obtain superior evaluation
results compared with the state-of-the-art methods.
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 11. Image highlight-removal results. From left to right: input images (a); highlight-removal results
of Shen et al. [39] (b), Yang et al. [53] (c), Akashi et al. [1] (d), Yamamoto et al. [52] (e), Fu et al. [14]
(f), our RI-GAN (g), and ground-truth highlight-free images (h).

Table 5. Quantitative comparison results of image highlight removal on the testing datasets of SHIQ
and LIME using the metrics of PSNR (the larger, the better) and SSIM (the larger, the better).

Methods/Year Venue
SHIQ LIME

PSNR SSIM PSNR SSIM
Shen et al.[39] AO/2013 13.72 0.44 14.11 0.50
Yang et al.[53] PAMI/2015 14.44 0.52 17.53 0.61
Akashi et al.[1] CVIU/2016 14.27 0.57 16.33 0.57

Yamamoto et al.[52] MTA/2019 20.21 0.64 21.17 0.69
Fu et al.[14] CVPR/2021 32.37 0.87 34.28 0.90
RI-GAN TOMM/2022 33.64 0.94 35.83 0.92

5.3 Ablation Study

To evaluate the importance of each component in our proposed RI-GAN, we perform
ablation experiments on four different image processing tasks with and without each specific
component. Specifically, we focus on four major components: the residual generator, the
illumination generator, feature-crossing at 𝐺𝑟𝑒𝑓𝑖𝑛𝑒, and data argumentation for 𝐷𝑟𝑒𝑓 . With
these components, we reconstruct four different variants with or without the corresponding
components, and test them with different image processing tasks. We mark the four variants
as RI-GAN1, RI-GAN2, RI-GAN3, and RI-GAN4. Each variant removes one component
from the full RI-GAN architecture. For example, RI-GAN1 is the network without the
residual generator at 𝐺𝑟𝑒𝑠, and RI-GAN2 is the network without the illumination generator
at 𝐺𝑖𝑙𝑙𝑢𝑚.
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 12. Image processing results for different tasks. From left to right: input images (a); results of RI-
GAN1 (b), RI-GAN2 (c), RI-GAN3 (d), RI-GAN4 (e), RIS-GAN (f), our RI-GAN (g), and the ground-truth
(h).

The results for the ablation study are summarized in Table 6. From the table, we can
observe that: (1) the four variants demonstrate lower performance than RI-GAN, and the
combination leads to the best performance; and (2) the four components are necessary to
ensure high-quality image processing results. We also provide visual results in Fig. 12 that
show that our RI-GAN recovers the best clean images and makes the results more realistic.
We use a two-branch structure in the refinement generator for shadow detection and

shadow removal. To illustrate the positive interaction between the two tasks, we design two
variants for shadow detection and shadow removal separately, denoted as DetectionRI-GAN
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Table 6. Quantitative results of ablation study on four different image processing tasks. 1○, 2○, 3○,
and 4○ represent the residual generator, illumination generator, feature-crossing in 𝐺𝑟𝑒𝑓𝑖𝑛𝑒, and data
argumentation for 𝐷𝑟𝑒𝑓 , respectively. The test reconstructed network maintains the component marked
with X and ignores the component marked with ×. The test datasets for the four applications are ISTD,
O-haze, Rain100H, and SHIQ in our quantitative experiments. Specifically, RMSE(S) and RMSE(A) in
the table show the RMSE on shadow regions and on the whole image, respectively.

Methods
Components Shadow Removal Dehazing Rain Removal Highlight Removal

1○ 2○ 3○ 4○ RMSE(S) RMSE(A) PSNR SSIM PSNR SSIM PSNR SSIM

RI-GAN1 × X X X 9.83 7.07 10.79 0.48 20.73 0.61 27.18 0.93

RI-GAN2 X × X X 9.28 7.03 11.43 0.49 24.69 0.73 27.89 0.89
RI-GAN3 X X × X 8.71 6.58 11.33 0.50 24.78 0.76 29.91 0.92

RI-GAN4 X X X × 8.57 6.34 12.85 0.54 27.57 0.80 31.05 0.92

RI-GAN X X X X 8.12 5.91 12.88 0.56 28.94 0.89 33.64 0.94

Table 7. Quantitative results of a user study on four different image processing tasks. Values in the table
show the percentage of the most natural images in the corresponding application results.

Shadow Removal Dehazing Rain Removal Highlight Removal

Methods
Percentage

(%)
Methods

Percentage

(%)
Methods

Percentage

(%)
Methods

Percentage

(%)
RI-GAN 26.51 RI-GAN 25.94 RI-GAN 26.48 RI-GAN 27.42

ST-CGAN 24.09 DenseGAN 23.66 CRDNet 23.58 Yang et al. 25.70
CANet 23.88 GridDehazeNet 24.87 RecDerain 23.62 Yamamoto et al. 19.71

FusionNet 25.52 LapDehazeNet 25.53 RLNet 26.32 Fu et al. 27.17

and ShadowRI-GAN. DetectionRI-GAN removes the shadow decoder in the refinement
generator, and only performs the shadow-detection task. ShadowRI-GAN removes the
detection decoder, and only conducts the shadow-removal task. We evaluate the performance
of DetectionRI-GAN and ShadowRI-GAN on the ISTD test dataset. DetectionRI-GAN
obtains a BER value of 1.97, and ShadowRI-GAN obtains an RMSE of 6.04. The two
values are higher than that of RI-GAN. The superior values produced by our joint model
demonstrate the positive interaction between the shadow-detection and shadow-removal
tasks in our RI-GAN.
We adopt the joint discriminator to ensure that the four discriminators share the same

architecture with the same parameter values. To evaluate the effectiveness of joint discrimi-
nator, we reconstruct our RI-GAN by applying four independent discriminators. The four
discriminators have the same architecture, but they do not share the common parameters.
The evaluation value of the RMSE on the ISTD dataset for the shadow-removal task is 6.01.
This value is poorer than that of the RI-GAN using the joint discriminator. This confirms
that the joint discriminator improves the performance of the proposed network.

5.4 User Study

To further evaluate the effectiveness of the proposed RI-GAN, we conducted a user study to
evaluate the visual performance of the proposed RI-GAN and some other methods for the
four image processing tasks. We selected 100 random volunteers to complete our user study.
For each image processing task, we prepared 100 sets of images. Each set contained the
image processing results using state-of-the-art methods and our RI-GAN. For each volunteer,
we randomly showed them ten sets of images for each task. They selected the most natural
image in each set. Thus, there were 1000 selected results for each task. The evaluated results
are summarized in Table 7. From the table, we can observe that our RI-GAN obtains a higher
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proportion of the most natural results compared with the corresponding state-of-the-art
methods for each task. These results indicate that our proposed framework produces more
pleasing results for users.

5.5 Discussion

Running time. In our testing experiments for image processing tasks, the time is mainly
spent loading the pre-model. Generally, 50 to 60 seconds are required to load the trained
model. After loading the pre-model, processing 100 images (256×256) consume 12 to 15
seconds.
Limitations. Our RI-GAN is designed for image-level image processing applications, where
input and output images are the same size. So our RI-GAN is unfit for tasks that have
different image resolutions between the input and the output, such as super-resolution.
Furthermore, the proposed model is a supervised method, which requires different training
datasets for different tasks.

6 CONCLUSION

In this paper, we have proposed a general framework, called RI-GAN, for shadow detection
and removal that exploits residual image and illumination map. Our RI-GAN is composed
of a coarse stage and a refinement stage. With the results predicted at the coarse stage, the
refinement stage produces a shadow mask to identify shadow regions and remove shadows in
the image. Specifically, the refinement generator employs a cross-encoding module to make full
use of intrinsic properties of the image, such that the network learns more useful information
for promoting high-quality results. Further, joint discriminators and data augmentation
render the network more stable and effective. Our extensive experiments confirmed the
advantages of incorporating residual image and illumination for image processing tasks. Also,
the experiments in shadow removal and three other image processing tasks demonstrated
the effectiveness and flexibility of the proposed framework.

The proposed RI-GAN is still a pixel-based analysis method. In the future, we would like
to improve it and apply patch-based analysis to further improve the performance of the
shadow-removal task. Moreover, we will extend the current work to video-level tasks and
apply residual image and illumination to solve other vision-related problems.
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