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Motivation
Observation: Social multimedia dataset
contains
(1) images
e (2) text information like title, description,
il : comments

(3) other meta information like user information,
image gallery, uploder-defined groups, and
links between shared contents.

Intuition: We hypothesize that using social
media context jointly with pixel information
should improve the state-of-the-art in image

According to Wikipedia this is the 9th best

accelerating production car in the world, My wife and I took the dog out I b I
behind the Ariel Atom. to run around on the highway. abe Ing .
Ground truth:car, indoor; structure, Ground truth: animal, dogs,
transport. female, people, structures

Goal: We seek to understand the relative
contribution of pixels, text and other information in

predicting image labels. WKitware



Proposed framework
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CRF Formulation
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Unary potential with image-level CNN

ﬁig'”w A(yi, x;) = wiix; + b¥

Image-level CNN
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Pairwise potential with text-level CNN and Metadata
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Recurrent Neural Networks. In ICCV 2015.]

T ra | N | N g an d | nfe rence [S. Zheng et al. Conditional Random Fields as

: ‘ Algorithm 1: The outline of our proposed DCRF algo-
rithm
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Input: [ and M
Output: ()

X 4+ CNN;nage(I)
Xtext £ CNNEE:I:t(M)
tset’tgroup — M
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Qi(y) + 7 exp {Ui(y)}

while not converged do

QP (y) «— 3 Sk(i,7)Q;(y) forall k
Vj#i

Qi (y) %ZwBQ“” (v)

()%Z#(y y)Qi(y)
Qi(y) « Ui(y) — Qi(y)
Qi(y) « £ exp{Qi(y)}

end
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MIR-9K Dataset

e A subset of the MIRFLICKR dataset.

2500

e |t contains 6000 training instances
and 3182 testing instances with 24
categories.

2000

1500

1000

Number of instances

elt involves a set of 3,213 users, a
collection of 34,942 words and 17,687 il 1Lt
image groups. I S e

Category Names
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Effectiveness of text-level CNN

95.71 92.20
86.15 85.02 85.62 i 88241 i
73.50 73.78 74.33 73.38
55 73
32 76
27.97 25.39
f‘&xt VGG-19 DCRF-Tag DCRF-Text CPE)J VGG-19 DCRF-Tag CNN-Text
(a) AP (b) Recall (c) Precision (d) Accuracy
Node feature extracted from VGG-19 network.
98.09
B8.34 f—_— 91.05 92.13
80.75 82.47 .
i 73.76 74.20 o34 s
52.81
S 32.76 I
: 2539 .
CN']E&'M Resnes- 152 DCRF-Tag DCRF-Text (_‘N’Em Resnet- 152 DCRF-Tag DCRF-Text CNN-Text Resnet 152 DCRF-Tag DCRF-Text CNN-Text Remet152 DCRE-Ta, DCRF-Text
(a) AP (b) Recall (c) Precision (d) Accuracy

Node feature extracted from ResNet-152 network.
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Visualization of top 20 tag words

Flower
Water

Animal
Portrait

et. al convey little information
relative to any of prediction of

24 categories.
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Effectiveness of the metadata for image labeling

99.20 98.46 99.49
74.33 74.36 74.96 95.71 96.70
73.95 73.94
73.50

VGG-19  DCRF-Tex!  DCRE-Sei DCRF-Group DCRF-TSG Resnet-152 DCRF-Texl DCRF-Sel DCRF-Group DCRF-TSG VO 1P DERRTon DO S5 DORFGresy DORITSS Roinee155 DCRPTo  DCRE So DORF Groug DORF TS

(a) AP with VGG-19 (b) AP with ResNet-152 (c) Recall with VGG-19 (d) Recall with ResNet-152

88.66
85.62 86.43 957 RIS 9249 BRI
82.67 82.39 83.21 92.20 92.13
8075  soo7 o

90.47

88.71

87.61

Resnci-152 DCRF-Text  DCRF-Sct DCRF-Group DCRF-TSG

VGG-19  DCRF-Text  DCRF-Sci DCRF-Group DCRF-TSG Resnct-152  DORF-Text  DCORF-Sel DCRF-Group DCRF-TSG VGG-19  DCRF-Text DCRF-Set DCRF-Group DCRF-TSG

(e) Precision with VGG-19 (f) Precision with ResNet-152 (g) Accuracy with VGG-19 (h) Accuracy with ResNet-152
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Compare with state-of-the-art approach
AP REC PRE ACC

CNNyeo: [15] 27.97 2539 3276 82.47

AlexNet;,, [17] 62.54 76.30 4025 74.56

VGG-19;4 [27] 73.50 77.38 55.73 88.71 [12] J. Johnson et al. Love thy neighbors:
ResNet-152;,,,, [9]1 | 71.59 76.54 52.82 87.62 Image annotation by exploiting image

DenseNet-201,,,,, [10] | 6326 7255 4293 85.06 metadata. In ICCV 2015.

McAuley-CRF [21] | 54.73 40.75 59.44 83.1

[15] Y. Kim. Convolutional neural

John-NCNN,44 [12] | 73.78 61.18 79.01 92.57 networks for sentence classification.
John-NCNN,.., [12] | 72.90 50.59 81.39 91.87 arXiv, 2014.
DCRF,4,-BCE 74.13 92.66 85.86 92.50
DCRF,44-RLoss 7429 93.12 88.18 92.61 [21] J. J. McAuley and J. Leskovec.
DCRF,,,-BCE+RLoss | 74.36  99.20 88.66 92.78 Image labeling on a network:
DCRF,.-BCE 74.05 9152 74.69 91.74 Using social-network metadata for image
DCRF,.,-RLoss | 74.09 9438 77.59 91.93 classification. In ECCV, 2012.
DCRF,..,-BCE+RLoss | 74.26 99.49 83.21 92.77 WKitwar e




Taking in the Scenery

Visualization

do you prefe
17 <a href= hitpwww.
007<fi></a> Woo hoo. Thanks guys!

VGG-19:, animals, dogs, plant_life, structures
John-NCNM: animals, dogs. plant_life

DCRF: animals, degs, plant_life
Ground-truth: animals, dogs, plant_ife, tree

Sta of ik schiet-Hands Up

b 3r frinstee van & A= - ke
onderscheiding, Commandeur in de Orde van Oranje Nassau met de zwaarde
acht onderdelen

VGG-19:, car, female, flower, male, people, plant_ife, portrait, structures
John-NCHN: female, male, people, structures

DCRF: male, peaple, structures

Ground-truth: male, people, structures

Goal keepers dream...

every.... Goal keeper wish many hands at time of a penalty shaot out
{'a..dance shot)

VGG-19;, female, indoor, male, night, people, sunset
John-NCNN: female, indoor. male, night, peaple, sunset
DCRF: indoor, male, night, peaple, sunset
Ground-truth: indaor, male, night, peaple

Y6 N but it never came, 5o instead | forced it, | believe this to be the

taken from PKiN (west side), Warsaw, Poland Explore's best #30

VGG-19:, car, clouds, night, river, sky, structures, sunset, transport
John-NCNN: car, clouds, night, sky, structures, transport

DCRF: car, clouds, night, river, sky, structures, sunset, transport, tree
Ground-truth: clouds, night. sky, structures, sunset, transport

| think this is it Sabo Bridge

White Orchid

1 Ipoked through every

right for something to s
et up and shoot, I've b

s until | had INSPIRATIO  On the bike-pedestnal

Biown Greenway across
Hiawatha Avenue and the Light Rail in Minneapolis. The trike s an An  White orchids seen in Nassau in a Gardens and Wildife Center. A tiny

‘We're through here. Get the lights on the way out. mber 20, 2007

m Fossil Foal.

VGG-19:, female, food, indoor, male, people
John-NCNN: indoor

DCRF: indaor

Ground-truth: indoor

VGG-19:, female, male, night, people, sky, structures, transport
John-NCNN: night, people, sky, structures, transport

DCRF: night, sky, structures, transport

Ground-truth: night. sky, structures, transpart

VGG-19:, flower, lake, plant life
John-NCNN: flower, plant_life
DCRF: flower, plant_life
Ground-truth: flower, plant_life

Homeless Sign Alberto Granado All done.

me<i> by B

| imager
y provided by Sierra Korthaf, <a hr puw fickrcomyphotoka

Tonight | went ta a b\ni\daykaslume ity and thers we scmabiody ived t
cryder/ >Cassandra Leopold<fa>. Wow. Teammwork, huh?

sed like a homeless quy. So | bummed his sign before | left.

ldid=1629

VGG-19;, female, indoor, male, pesple, portrait VGG-19:, female, indoor, male, peaple, portrait VGG-19;, indoor, male
John-NCNN: indoor, male, peaple John-NCNM: indoar, male, people lnrm NCHN:
DCAF: indoor, male, people, portrait DCRF: indoor, male, peaple, portrait F: indoor

Ground-truth: indoor, male, people, portrait Ground-truth: indoor, male, pecple, portrait Ground ot ndoor

6pm Late Evening In The Black Valley Kapok tree branches, showing thomns

This is a brg
next to the|

exttim 10 to San Diego County, | need fa feelthe thoms, to make
izes available.

Killamey, Co. Kerry, Ireland

VGG-19;, clouds, plant_life, sky, structures, tree
John-NCNN: plant_life, sky, structures, tree

DCRF: plant life, niver, sky, structures, tree
Ground-truth: plant_ife, nver, sky, structures, water

VGG-19:, animals, clouds, flower, plant_life, sky, tree
John-NCNN: animals, plant_life, sky, tree

DCRF: plant_life, iver, sky, tree

Ground-truth: plant_life, sky, tree
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Conclusion and future work

e A novel deep fully connected CRF based framework DCRF with neural networks
for image labeling using social network metadata.

e A joint end-to-end CNN-RNN formulation, which combines the strengths of both
CNNs and RNNs.

e Our future work includes investigating more effective meta information, and
improving the efficiency of the current DCRF framework to handle more
complicated real-world application problems.
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Welcome to our Poster 332.

Thanks!

Email: chengjiang.long@kitware.com
Web: http://www.chengjianglong.com
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