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Abstract
In this paper, we propose a two-stage top-down and bottom-up Generative Adversarial Networks (TBGANs) for shadow inpainting
and removal which uses a novel top-down encoder and a bottom-up decoder with slice convolutions. These slice convolutions can
effectively extract and restore the long-range spatial information for either down-sampling or up-sampling. Different from the
previous shadow removal methods based on deep learning, we propose to inpaint shadow to handle the possible dark shadows to
achieve a coarse shadow-removal image at the first stage, and then further recover the details and enhance the color and texture
details with a non-local block to explore both local and global inter-dependencies of pixels at the second stage. With such a
two-stage coarse-to-fine processing, the overall effect of shadow removal is greatly improved, and the effect of color retention in
non-shaded areas is significant. By comparing with a variety of mainstream shadow removal methods, we demonstrate that our
proposed method outperforms the state-of-the-art methods.

CCS Concepts
• Computing methodologies → Shadow Inpainting; Shadow Removal; Top-down; Bottom-up; Slice Convolution; Non-local
Block; Generative Adversarial Networks;

1. Introduction

Shadows are common in natural scenes, and they are known to
wreak havoc in many computer vision tasks such as image segmen-
tation [QJL∗19], object detection and recognition [LWH∗14, TM19,
HLYG13, LH15, LH17, HLYG18]. Therefore the ability to generate
shadow-free images would benefit many computer vision algorithms.
Furthermore, for aesthetic reasons, shadow removal can benefit im-
age editing and computational photography algorithms [LKZF19].
Automatic shadow detection and removal from single images, how-
ever, are very challenging. A shadow is cast whenever an object
occludes an illuminent of the scene, and it is the outcome of com-
plex interactions between the geometry, illumination, and reflectance
present in the scene. Identifying shadows is therefore difficult be-
cause of the limited information about the scene’s properties.

There have been a number of approaches including physics-based
method like illumination and texture [FHLD05, MTC07, LG08],
traditional statistical learning-based methods with hand-crafted
features [CGC∗03, WTBS07, GTB15, AHO10], and recent deep
learning-based methods [KBST15, VHS17, QTH∗17, NVT∗17] pro-
posed for shadow removal. Although state-of-the-art shadow re-
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moval methods have been able to generate high quality shadow-
removal images, the results are still far from perfect especially there
are dark shadows in complex scenes.

Figure 1: Given a dark shadow image, we apply our 1st-stage TB-
GAN to inpaint the shadow area and get a coarse shadow-removal
image. Then we apply our 2nd-stage TBGAN to further refine the
coarse result from the 1st-stage TBGAN and achieve a high-quality
and photo-realistic shadow-removal image. From left to right are
input dark shadow image, result with the 1st-stage TBGAN, result
with the 2nd-stage TBGAN, and the corresponding ground-truth
shadow-free image.

As a real-world example, Figure 1 provides a dark shadow image
in which the dark shadow is cast on the ground. The umbrella
shadow area is not clearly visible, and there is even no direct color
and texture clue information about the background in the human
body shadow area. It is very challenging to remove shadow and
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recover a shadow-free image on such a kind of dark shadows which
appear as “black holes" without providing any useful contextual
information in the shadow area.

To handle dark shadows, we propose a novel tow-stage top-down
and bottom-up Generative Adversarial Networks (TBGANs) in this
paper for inpainting in shadow area and shadow removal in a coarse-
to-fine fashion, as illustrated in Figure 2. We design the 1st-stage
TBGAN for inpainting the shadow area which we can review as the
partially or incompletely missing region, and the inpainting image
generated from the network can be regarded as a coarse shadow-
removal image. This treatment makes us possible to incorporate
sufficient outsider training data to address the issue of lack sufficient
training images for shadow-removal. With the shadow inpainting
images obtained from the 1st-stage TBGAN, we combine them with
the original input shadow images to feed into the 2st-stage TBGAN
for further removing shadows as a refinement stage.

Another novelty of our approach is that we propose a top-down
convolution module and a bottom-up convolution module which
decomposes a 2D convolution/deconvolution kernel into two 1D
convolution/deconvolution kernels separately so that it is able to
extract long-rage contextual information for down-sampling and up-
sampling. Such two modules have been successfully incorporated
in the design of both generator and discriminator in the two-stage
TBGANs.

It is worth noting that we also design a non-local block in the 2nd-
stage TBGAN to explore both the local and global contextual spatial
information for the recovery of a high-quality and photo-realistic
shadow-removal image. We argue that our non-local block is able to
capture long-range dependencies directly by computing interactions
between any two positions and models the inter-dependencies of
pixels. It is complementary to slice convolutions and helps with
capturing long-range dependencies across shadow area and non-
shadow area based on inter-dependencies of pixels.

Different from the recent work [DU17] which uses the two-
stage networks within the only one GAN to generate missing part
from coarse to fine, we use the 1st-stage GAN with slice convolu-
tions/deconvolutions to inpaint shadow and then use the 2nd-stage
GAN with the same structure plus a non-local block and 1×1 con-
volution to refine the recovered shadow-removal images. Besides the
two-GAN structure with slice convolutions and non-local module,
we shall highlight our biggest novelty is that we are able to explore
the correlation between inpainting images and shadow images so
that we can make full use of unlimited inpainting images to improve
the shadow-removal performance. To our best knowledge, we are
the first one to incorporate inpainting datasets for shadow removal.

To sum up, the contribution for this paper are three-fold:

• We propose a novel two-stage top-down and bottom-up Genera-
tive Adversarial Networks (TBGAN) for inpainting shadow area
as a coarse shadow removal, and then continue to refine to obtain
a high quality shadow-free image.
• In such two-stage TBGANs, our top-down encoder and bottom-up

decoder with slice convolutions have been successfully adopted
to extract long-range contextual spatial information for either
down-sampling or up-sampling.
• We also design a non-local block in the 2nd-stage TBGAN to

explore both the local and global contextual spatial information
for better recovery of shadow-free images.

Our experiments conducted on multiple shadow-removal benchmark
datasets have strongly demonstrated the efficacy of the proposed
approach.

2. Related Work

A variety of shadow detection and removal methods have been
proposed, in this section, we only review the most related works to
our method.

Several shadow removal methods are proposed based on gradi-
ent domain manipulation [FHLD05, MTC07, LG08]. Finlayson et
al. [FHLD05] removed the shadows by performing gradient oper-
ations for non-shadow regions. This method depends on accurate
shadow edges detection and may not produce satisfactory results due
to the inaccurate shadow edges detection. Mohan et al. [MTC07]
removed shadows using gradient domain manipulation. This method
works in the gradient domain and reintegrates the image after rec-
ognizing and removing gradients caused by shadows. This method
requires much user interaction to specify the shadow boundary.
Liu et al. [LG08] removed shadow by solving a Poisson equation,
which constructed a shadow free and texture-consistent gradient
field between the shadow and lit area. But this method also depends
on accurate shadow boundaries. Shadow matting is also exploited
in shadow detection and removal [CGC∗03, WTBS07, GTB15].
Chuang et al. [CGC∗03] proposed a method for shadow extracting
and editing which considered the input image as a linear combina-
tion of a shadow-free image and a shadow matte image. Instead of
considering shadow extraction as the conventional matting equation,
Wu et al. [WTBS07] supposed shadow effect as a light attenuation
problem, and applied user-supplied hints to identify shadow and
non-shadow regions. Although these two methods tried to preserve
the texture appearance under the extracted shadow, they still do not
effectively recover the image detail in the shadow areas. Gryka et
al. [GTB15] removed soft shadows applying a data-driven method,
while this method requires accurate shadow annotation and specified
initial shadow matte.

Several shadow removal methods are proposed based on illumi-
nation transferring. Inspired by the color transfer theory [RAGS01]
Shor et al. [SL08] performed shadow removal by applying the illu-
mination in the non-shadow sample region to shadow regions. This
method requires that the shadow regions and the sample region share
similar texture to produce satisfied results. By improving [SL08],
Xiao et al. [XSXM13] recovered the illumination under the shadow
regions using adaptive multi-scale illumination transfer. Later, Xiao
et al. [XXZC13] removed shadow by performing illumination trans-
fer between matched subregions. Guo et al. [GDH11] also detected
as well as removing shadows based on paired regions. Zhang et
al. [ZZX15] removed the shadows in image by using a coarse-to-fine
illumination patch optimization strategy. Due to the size limitation
of local patches, this method is difficult to provide satisfying results
for shadows with large illumination variances. Given user annota-
tion for shadow mask extraction, Arbel and Hel-Or [AHO10] fit a
smooth thin-plate surface model in the shadow regions to produce
an approximate shadow matte. With smooth thin-plate approxima-
tion, this method does not work well on shadows cast on different
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types of surfaces, also not handle the shadow boundaries well. As
image depth is a useful cue for shadow detection and removal, Xiao
et al. [XTT14] applied depth information provided by the depth
sensor to remove shadows in RGB-D image. The performance of
this method depends on the accuracy of the input depth map.

Recently, deep learning networks have been applied to the task
of shadow detection [NVT∗17, HFZ∗18] and removal [KBST15,
VHS17, QTH∗17, NVT∗17]. Nguyen et al. [NVT∗17] detected
shadow using conditional generative adversarial networks. Hu et
al. [HFZ∗18] detected shadow by analyzing image context in a
direction-aware spatial context manner. However, these methods
only work well on image with simple shadow. They cannot de-
tect accurate shadow with complex scenes. Khan et al. [KBST15]
used multiple convolutional neural networks to learn useful feature
representations for shadow detection. With the shadow detection
results, they further proposed Bayesian formulation for shadow re-
moval. Vicente et al. [VHS17] considered shadow detection as a
problem of labeling image regions and trained a kernel least-squares
support vector machine for shadow detection and removal. Qu et
al. [QTH∗17] proposed an end-to-end DeshadowNet to recover illu-
mination in shadow regions, which integrated high-level semantic
information, mid-lever appearance information and local image de-
tails for shadow matte prediction. Wang et al. [WLY18] proposed a
STacked Conditional Generative Adversarial Network (ST-CGAN)
to perform the two tasks of shadow detection and shadow removal.
Ding et al. [DLZX19] proposed an attentive recurrent Generative
Adversarial Network for shadow detection and removal with multi-
ple progressive steps in a coarse-to-fine fashion.

However, these deep learning based shadow detection and re-
moval methods cannot handle complex shadows (for example, the
images with both hard and soft shadow), and may create visible
artifacts and in the shadow regions if the shadow type and sur-
face material are not well represented in the training dataset, which
greatly restricts possible application scenarios. In this paper, dif-
ferent from above methods, we first perform content completion
in the shadow region, and then remove the shadow based on the
shadow content inpainting results. We also borrow the STacked
Conditional Generative Adversarial Network (ST-CGAN) for our
task, while different from [WLY18], we perform the two tasks of
shadow inpainting and shadow removal.

3. Method

As illustrated in Figure 2, our proposed two-stage framework for
image shadow removal is composed of two TBGANs. The 1st-stage
TBGAN is for inpainting in shadow area, which can be pre-trained
using a large number of training data existing in image inpainting
fields and then fine-tuned by a limited number of image pairs of
shadow images and the corresponding shadow-free image. Such a
GAN [KF19, LLK19, DLTLM19] can explore the low-frequency
information to generate an inpainting image we consider as a coarse
shadow-removal image. The 2nd-stage TBGAN is for shadow re-
moval, which makes full use of shadow image and inpainting image
obtained from the 1st-stage TBGAN to exploit the high frequency
information for generating a shadow-free image. Both these two
TBGANs use a symmetric encoder-decoder structure in which slice

convolutions are used in both the top-down encoder and bottom-up
decoder.

3.1. Slice convolutions in top-down encoder and bottom-up
decoder

We propose to use a long slice convolution kernel for down-sampling
that guarantees a long-range receptive field in a finite number of
layers. As illustrated in Figure 3, each down-sampling consists
of a slice convolution. This convolution method can replace the
down-sampling process of any convolutional encoder. Each module
convolution kernel consists of two components, vertical convolution
and horizontal convolution. Suppose the shape of the input tensor is
Cin×H×W , Cin is the number of input channels, H is the height of
the image, W is the width, and the number of output channels is Cout .
The shapes of the vertical convolution kernel and the horizontal
convolution kernel are W/2× 1 and 1×H/2. Respectively, The
down-sampling step size is 2×1 and 1×2, and the margin is filled
with 0 accordingly to ensure the size of the output tensor does not
change. First, the horizontal convolution is performed, and the output
tensor size is halved in the horizontal direction; then the vertical
convolution is performed, and the output tensor size is halved in
the vertical direction. Batch normalization and activation functions
are added after each long and narrow convolution operation. After
processing by a top-down module, the output tensor is Cout × H

2 ×
W
2 .

The slice convolution in this paper can have half of the receptive
field in the initial stage of encoding of the generative network, and
the extraction of the primary features can be considered more widely.
In each down-sampling process, the convolution kernel can have
more than half of the feature receptive range. In the process of halv-
ing the size of the convolution kernel, the high-dimensional features
of the deep network can be obtained from the top down, and the
features are gradually finely filtered and encoded. In order to prevent
the convolution kernel parameter growth caused by the increase of
the input image size, we use a convolution kernel decomposition
operation similar to Google Inception V3 Net [SVI∗16] for the large
convolution kernel. Thus, even if the input image size is multiplied,
the number of parameters of the convolution kernel only shows a
logarithmic growth trend.

To keep the symmetry in the encoder-decoder structure, we design
a slice deconvolution (see Figure 3) to up-sample the feature maps
from Cin×H ×W to Cout ×H ×W ∗ 2 by a deconvolution with
the kernel size W ×1 and then continue to Cout ×H ∗2×W ∗2 by
another decovolution with the kernel size of 1×H.

3.2. The 1st-stage TBGAN for inpainting in shadow area

We combine the images from the Places365 dataset [ZLK∗18] and
the Irregular Mask dataset [LRS∗18]. For each raw image x, we
sample a binary mask m at a random location to obtain input im-
age z = x�m with missing regions. We first use the image pairs
{(z,x)} to train the 1st-stage TBGAN. Once it converges, we fine-
tune the model with ISTD [WLY18], which is a shadow dataset
with triplets of shadow image xshw, shadow mask mshw, and the
corresponding shadow-free image xs f ree. Note that we use the im-
age pairs {(xshw,xs f ree)} for training, and we consider xshw as an
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Figure 2: The architecture of the proposed two-stage TBGANs for shadow inpainting and removal models. The shadow image is fed into the
1st-stage TBGAN in order to predict possible light intensity, color, and texture information for the shadow area and get a shadow inpainting
image. The 2nd-stage TBGAN takes shadow inpainting image with high frequency information and the shadow image containing shadow area
as input to recover a high-quality and photo-realistic shadow-removal image. Unlike the generator G1 of the 1st-stage TBGAN, the generator
G2 of the 2nd-stage TGBAN incorporate an non-local block (see Figure 5) to explore both both local and global inter-dependencies of pixels.
Both these two TGBANs share the same architecture of discriminator (D1/D2) with a two-branch network to incorporate adversarial loss,
perceptual loss, and style loss.

image with partially or incompletely missing regions and xs f ree as
the ground-truth image to train the shadow inpainting network. The
loss functions used to train the 1st-stage TBGAN include L1 loss
with high-dimensional feature, perceptual loss, style loss and total
variation loss, and a restored image of the output shadow area, as
discussed in Section 3.4.

The intuition behind is that we want to actively identify the dark
shadow areas as missing regions for recovery and take the inpait-
ing images as the preliminary shadow-removal results. That’s why
we propose to make full use of sufficient training data for image
inpainting. We transfer the domain for image inpainting to the do-
main for shadow removal by fine-tuning the model that is trained
on the Places365 dataset and the Irregular Mask dataset with the
ISTD dataset. This treatment can effectively address the issue of
lacking sufficient training data for training a shadow-removal model
by incorporating sufficient outsider training data.

For images with hard-shadow areas in complex scenes, texture
details may be lost due to weak illumination information. It is diffi-
cult to restore the corlor and texture details in shadow area by using
the deep learning method only for shadow removal. Therefore, in
this stage, we can apply the trained 1st-stage TBGAN to recover
some texture details missing in the shadow regions. Meanwhile, the
normal illumination in the non-shadow area can speculate and repair
the low-frequency information such as light intensity and color type
in the shadow area. As illustrated in Figure 4, our 1st-stage TBGAN
is able to handle dark shadows and recover coarse shadow-removal
images through shadow inpainting.

3.3. The 2nd-stage TBGAN for shadow removal

We take the 2nd-stage TBGAN for shadow removal which further
recovers the shadow-free image from the coarse shadow-removal
image at the 1st stage in a coarse-to-fine fashion. Note that the
input for the network is the concatenation of the input image and
inpainting image obtained from the 1st-stage TBGAN and we take
the corresponding ground-truth shadow-free image for training. We
argue that this treatment is reasonable because the inpainting image
supplements the low frequency information, and the original shadow
image contains high frequency information.

To make full use of both local and global spatial information
for better recovery of shadow-free images, we introduce a non-
local block to obtain the global correlation at the feature space to
improve the overall shadow-removal effect. Inspired by Wang et
al. [WGGH18], we design a non-local block to get a non-local
feature map y to recovery a high-quality shadow-removal image
from the feature map x as:

yi =
1
C(x) ∑

∀ j
f
(
xi,x j

)
g
(
x j
)
, (1)

where C(x) is the normalization factor, and the response f for xi
and all x j is computed to measure the correlation between each
position pair (xi,x j). And the function g computes a represen-
tation of the input signal at the position j. In this paper, we fol-
low [BCM05, VSP∗17] and define the function f as an embedded
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Figure 3: The slice convolution and deconvolution are with long-
range convolution size in horizontal and vertical directions sepa-
rately, which is more effective to extract the long-range dependency
information with less parameters.

Figure 4: Illustration of three dark shadow examples. From left to
right are input dark shadow images, the results of shadow inpainting
with our 1st-stage TBGAN, and the corresponding ground-truth
shadow-free images, respectively.

Gaussian function. Then we can rewrite Equation 1 as:

yi = so f tmax(θ(xi)
T

φ
(
x j
)
)g

(
x j
)
, (2)

where θ, φ and g is implemented as 1× 1 convolution in image
space. For a given i, the so f tmax computation along the demension
j to replace 1

C(x) .

𝜃:  1 ൈ 1 Conv 𝑔:  1 ൈ 1 Conv𝜙:  1 ൈ 1 Conv

𝐻𝑊 ൈ 𝐶 𝐶 ൈ 𝐻𝑊 𝐻𝑊 ൈ 𝐶

𝐻 ൈ 𝑊 ൈ 𝐶 𝐻 ൈ 𝑊 ൈ 𝐶 𝐻 ൈ 𝑊 ൈ 𝐶

𝐻𝑊 ൈ 𝐻𝑊

𝐻𝑊 ൈ 𝐶

Output: y
𝐻 ൈ 𝑊 ൈ 𝐶

Output：z
𝐻 ൈ 𝑊 ൈ 2𝐶

 1 ൈ 1 Conv

Softmax

reshape

Iutput：x
𝐻 ൈ 𝑊 ൈ 2𝐶

𝐻 ൈ 𝑊 ൈ 2𝐶

reshape

reshapereshape

Figure 5: The non-local block to explore both global and local
spatial information for recovering shadow-free images. “

⊗
” and

“
⊕

” represent the matrix multiply and the element-wise addition
operations, respectively.

As shown in Figure 5, we apply another 1×1 convolution on the
final output y to get another feature map with the same size as x and
then apply an element-wise addition operation to formulate the final
feature map z to recovery the shadow-removal image with a 1×1
convolution.

We observe that our 2nd-stage TBGAN can further adjust the
texture and illumination information in the shadow area to obtain
more accurate shadow-removal results. The two-stage TBGAN can
complement the complete frequency domain information of the
shadow area for shadow removal. As we can see in Figure 6, for
some bad shadow inpainting results, our 2nd-stage TBGAN can
correct and recover better shadow-removal images.

3.4. Loss Functions

Our objective function combines the high-dimensional feature loss
of the generative network with the loss function of the discriminative
network to optimize the generative network, while the discriminative
network is optimized using only the correct and wrong classification
loss. Ultimately, the optimization function is a combination of high-
dimensional feature loss of the generative network and the loss of
GAN,

G∗ = argmin
G

max
D
LcGAN(G,D)+Ltotal , (3)

LcGAN(G,D) = Ex,y∼pdata(x,y)[logD(x,y)]

+Ex∼pdata(x)[log(1−D(x,G(x)))],
(4)
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Figure 6: Illustration of three bad shadow inpainting results. From
left to right are input shadow images, the results of shadow in-
painting with our 1st-stage TBGAN, the results of shadow removal
with our 2nd-stage TBGAN, and the corresponding ground-truth
shadow-free images, respectively.

Ltotal = λLL1 +αLperc +βLstyle + γLtv, (5)

where we set λ = 20, α = 0.05, β = 100, γ = 0.1 in the paper and
each loss term is defined in the following description. In the 2nd-
stage GAN, we adjust the parameter to λ = 50, α = 0.01, β = 50,
γ = 0.01.

We define L1 loss LL1 as

LL1 =
1

C×H×W
‖Iout − Igt‖1 , (6)

where Iin is the input image, Iout is the output of the generative
network, Igt is the ground truth image, and the shape of the output
tensor is C×W ×H.

Perceptual loss Lperc can be defined as

Lperc =
1

Cp×Hp×Wp

Hp

∑
h=1

wp

∑
w=1

∥∥∥Ψ
Iout
p −Ψ

Igt
p

∥∥∥
1
, (7)

where Ψ
Iout
p and Ψ

Igt
p are feature maps of the generated image Iout

and the ground truth image Igt respectively output by p-th layer in
the pre-trained Convolutional Neural Network. Cp×Hp×Wp is the
number of output feature map shape, Ψ

Iout
p and Ψ

Igt
p at the p-th layer

in the CNN.

The style loss Lstyle is calculated based on two Gram matrices
measuring the correlation of features as covariance matrix of the
feature maps

Lstyle =
1

Cp×Hp×Wp

Hp

∑
h=1

Wp

∑
w=1

∥∥∥∥(Ψ
Iout
p

)T (
Ψ

Iout
p

)
−
(

Ψ
Igt
p

)T (
Ψ

Igt
p

)∥∥∥∥
1

(8)
where we use the output feature maps of maxpooling1, maxpooling2,

maxpooling3 of the pre-trained VGG-16 model to calculate the
perceptual loss and style loss.

The total variation loss Ltv (Mahendran et al. [MV15]) is a
smooth penalty term for the output image of the generative net-
work and defined as

Ltv =
1

C×H×W ∑
(i, j)∈R

∥∥∥Ii, j+1
out − Ii, j

out

∥∥∥
1

+
1

C×H×W ∑
(i, j)∈R

∥∥∥Ii+1, j
out − Ii, j

out

∥∥∥
1

(9)

3.5. Implementation details

The input image size for our two-stage TBGANs is 256×256. The
network is implemented in PyTorch and trained using the Adam
optimizer [KB14] with parameters of beta1=0.9 and beta2=0.999.
Note that the weights for our model are initialized from a Gaussian
distribution with mean 0 and standard deviation 0.02. The learning
rate for both the 1st-stage TBGAN and the 2nd-stage TBGAN is
set as 10−4 initially and then gradually decayed linearly every 20
epochs to 10−6. To make it simple, we use the same learning rate
for both generators and the corresponding discriminators. We train
250 epochs for these two TBGANs.

Generators. The input of the inpainting generator G1 is a 3-
channel image, and the input of the removal generator G2 is two
3-channel images. The size of the top-down slice convolution ker-
nel is initially 128, halved each time until the slice convolution
of minimum length 2. The size of the slice convolution kernel of
the corresponding bottom-up module is doubled each time, with a
maximum length of 128. The number of first convolution output
channels is 64. The number of channels is doubled or halved after
each top-down or bottom-up module. The maximum number of
channels is 512. The slice convolution is no longer halved when
it is at least 2. Each layer of convolution performs the following
operations: convolution, batch normalization, and activation func-
tion. The activation function used in the top-down encoder for both
G1 and G2 is Leaky ReLU [HZRS15] with slope 0.2. Except the
final output of the generative network G1 followed by a tanh func-
tion, the activation function used in the bottom-up decoder is ReLU.
Skip-connection is performed between the encoder and the decoder
with the same size as the output tensor. The final output of the gen-
erative network G1 is followed by a tanh function. The final output
is a 3-channel image, this changes the number of channels in the
generators are as follows:

For G1, encoder: 3 or 6 -> 64 -> 128 -> 256 -> 512 -> 512 ->
512 -> 512 -> 512, decoder: 512+512 -> 512+512 -> 512+512 ->
512+512 -> 256+256 -> 128+128 -> 64+64 -> 3.

For G2, encoder: 3 or 6 -> 64 -> 128 -> 256 -> 512 -> 512 ->
512 -> 512 -> 512, decoder: 512+512 -> 512+512 -> 512+512 ->
512+512 -> 256+256 -> 128+128 -> 64+64 -> 6 -> 3.

Discriminators. Note that both the two-stage TBGANs share the
same two-branch discirminative network architecture. The input
for the two-branch discriminative network is a 3-channel image
with the size of 256× 256 for both the inpainting image from G1
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and the shadow-removal image from G2. The first branch is a fully
convolutional network with 4 slice convolutions and each slice
convolution has a batch normalization and a Leaky ReLU with
slope 0.2. The final layer of the first branch is a sigmoid function
to produce a probability to judge as a real or fake inpainting or
shadow-free image. The final output of this branch is 16×16. Note
that the number of channels in the first branch are 3 -> 64 -> 128 ->
256 -> 512 -> 1. The 2nd branch is VGG16 which we use to derive
perceptual loss and style loss to improve the performance of the
generated network [JAFF16].

4. Experiments

In this section, we perform experiments on the ISTD
dataset [WLY18] to verify the effectiveness of our proposed
two-stage TBGANs. The ISTD dataset contains 1870 triples of
shadow images, shadow masks, and shadow-free images. Such a
dataset includes 135 different simulated shadow environments and
the scenes are more diverse. We compare our proposed two-stage
TBGANs against the current state-of-the-art methods including
the traditional methods and the deep learning methods both
qualitatively and quantitatively. To measure the shadow removal
performance, we use the metric of root mean square error (RMSE)
calculated in Lab space between the shadow-remova image and the
corresponding ground-truth shadow-free images. To qualitatively
and quantitatively measure the multifaceted factors of experimental
results, we compare the RMSE on the shadow regions, non-shadow
regions, and the full image, respectively.

4.1. Comparisons with the state-of-the-art methods

We compare our proposed two-stage TBGANs mehtod with five
state-of-art methods including tradition methods, i.e., Gong [GC14]
and Guo [GDH12], the latest deep learning based methods, i.e., De-
shadowNet [QTH∗17], ST-CGAN [WLY18], and DSC [HFZ∗18].
To make the fair comparison, we use the same 1330 training triplets
as DSC [HFZ∗18] without any outsider dataset to train our propsoed
two-stage TBGANs method and evaluate the shadow-removal perfor-
mance on the same 540 testing triplets. And we have transferred the
two frameworks of image inpainting Global/Local-GAN [ISSI17]
and image translation Pix2Pix-HD [WLZ∗18] for shadow removal.
As mentioned in Seciton 3.2, we also incorporate the outsider in-
painting dataset obtained from Places365 dataset with the Irregular
Mask dataset to train an initial 1st-stage TBGAN model and then
finetune it with the ISTD dataset. We denote the finetune verison of
our proposed method as “two-stage TBGANs+finetune". The results
are summarized in Table 1 and Figure 7. We also conduct a user
study to further evaluate the comparison results.

Quantitative comparisons. Table 1 shows the results of the quan-
titative comparisons on the ISTD dataset. As we can see, (1) all deep
learning methods perform better than the traditional methods; (2)
among the deep learning methods, our proposed two-stage TBGANs
method achieves the smallest values of RMSE, 5.91 on non-shadow
area and 6.70 on the entire images; (3) The RMSE of our proposed
two-stage TBGANs on the shadow area is also comparable to that
of DSC; (4) Through the transfer learning, both Global/Local-GAN
and Pix2Pix-HD are able to be extended for shadow removal, but

Table 1: Comparison of shadow removal results of different methods
on the ISTD dataset in term of RMSE. The metric of RMSE directly
measures the per-pixel error between the shadow removal images
and the ground truth shadow-free images, and the smaller value of
RMSE is better.

Shadow Non-shadow All

Guo [GDH12] 18.95 7.46 9.3
Gong [GC14] 14.98 7.29 8.53

Global/Local-GAN [ISSI17] 13.46 7.67 8.82
Pix2Pix-HD [WLZ∗18] 10.63 6.73 7.37

Deshadow [QTH∗17] 12.76 7.19 7.83
ST-CGAN [WLY18] 10.33 6.93 7.47
DSC [HFZ∗18] 9.22 6.39 6.67

Two-stage TBGANs 10.14 5.91 6.70
Two-stage TBGANs+finetune 9.83 5.58 6.39

their performances are still worse than our proposed two-stage TB-
GANs; and (5) with the initial 1st-stage TBGAN model trained on
the outsider inpainting dataset, our “two-stage TBGANs+finetue"
achieves RMSE improvement from 10.14 to 9.83 on shadow areas,
from 5.91 to 5.58 on non-shadow areas, and from 6.70 to 6.39 on the
entire images, which experimentally proves our assumption that we
can view shadow removal as a special case of image inpainting. All
these observations strongly demonstrate the efficacy of the proposed
two-stage TBGANs method for shadow inpainting and removal.

Qualitative comparisons. Figure 7 illustrates the results of the
qualitative comparisons on the ISTD dataset. Apparently, compared
with the state-of-the-art methods, our proposed two-stage TBGANs
method is able to recover a higher quality and more photo-realistic
shadow-free images in which the shadow area are more consistent
with the non-shadow area in term of color and texture, and pretty
closer to the ground-truth shadow-free images.

We observe that dark shadows exit in scenes with bright colors
and excessive texture changes. For this kind of dark shadow images,
our 1st-stage TBGAN is able to add the informative color and
texture information as inpainting in shadow area, and then the 2nd-
stage TBGAN continues to correct the color and texture information
smoothly to reach high quality and photo-realistic images.

User study. We conduct a user-study by asking a total of 37 people
to participate in a survey and check whether the shadow-removal
images generated by our proposed method and DSC are shadow-free
images without artifacts or not. We randomly sample one tenth of
the images in the test set and ensure that at least one of the different
scenes is included. Counting all the votes, the survey received a
total of 1,155 valid votes. The survey shows 60.95% of the shadow-
removal images generated by our proposed method are chosen as
shadow-free images without artifacts, while only 39.05% of the
shadow-removal images by DSC are chosen.
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(a) (b) (c) (d) (e) (f) (g) (h)
Figure 7: Comparison of shadow removal results of different methods on the ISTD dataset. From left to right are: (a) input images, (b)
Guo et al. [GDH12]’s results, (c) Gong et al. [GC14]’s results, (d) DeshadowNet [QTH∗17]’s results, (e) ST-CGAN [WLY18]’s results,
(f) DSC [HFZ∗18]’s results, (g) our proposed tow-stage TBGANs’ results, and (h) the corresponding ground-truth shadow-free images,
respectively.

4.2. Ablation Study

To further evaluate the network design, we conduct the ablation
study to evaulate some components in our two-stage TBGANs. We
denote the top-down encoder and bottom-up decoder as TDBU, and
indicate the four variants of our proposed method as follows:

• w/o TDBU & Inpainting: no 1st-stage TBGAN and replace G2 in
the 2nd-stage TBGAN in Figure 2 with a U-Net [RFB15].
• w/o TDBU: replace G1 and G2 in Figure 2 with a U-Net.
• w/o Non-local block: remove the non-local block from the 2nd-

stage TBGAN.
• 1st-stage TBGAN: only use the 1st-stage TBGAN, without apply

the 2nd-stage TBGAN for further refinement.

For the fair comparison, we use the same 1330 training triplets
without any outsider dataset to train the above four methods and

evaluate the shadow-removal performance on the same 540 testing
triplets. The results are summarized in Table 2 and Figure 8.

Table 2: Quantitative shadow removal results of ablation analysis
on the ISTD dataset in term of RMSE.

Shadow Non-shadow All

w/o TDBU&Inpainting 18.72 16.33 16.77
w/o TDBU 17.72 16.16 16.51
w/o Non-local block 10.33 5.89 6.79
1st-stage TBGAN 12.37 5.58 7.44

Two-stage TBGANs 10.14 5.91 6.70

Quantitative comparisons. Table 2 shows the quantitative abla-
tion analysis for the four variants. From this table we can observe:
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(a) (b) (c) (d) (e) (f) (g)
Figure 8: The visualization of ablation study. From left to right are: (a) input images, (b) the results without TDBU and the 1-stage TBGAN
for shadow inpainting, (c) the results without TDBU, (d) the results without Non-local block, (e) the results of the 1st-stage TBGAN, (f) the
results of our proposed two-stage TBGANs, and (g) the corresponding ground-truth shadow-free images, respectively.

(1) the design of TDBU structure with slice convolutions is able to
enhance the receptive field of convolution in term of feature extrac-
tion for improving the performance of shadow removal; (2) with
the non-local block, the quality of shadow-removal images can be
further improved, which suggests that the non-local spatial informa-
tion is beneficial to recover a higher quality shadow-free images;
and (3) and although the 1st-stage TBGAN has achieved a good
performance, our 2nd-stage TBGAN with non-local block is still
able to further improve its performance. It is worth noting that the
1st-stage TBGAN only focues on inpainting the shadow area, which
can explain why its recovery performance on the non-shadow area is

better than both “w/o Non-local block" and our proposed two-stage
TBGANs. All these observations demonstrate the reasonable design
of our proposed two-stage TBGANs approach.

Qualitative comparisons. Figure 8 provides the visualization of
the shadow-removal results on the ISTD dataset. As we can see,
without TDBU modules and the non-local blocks, the recovered
shadow-removal images look unrealistic and cause color and texture
inconsistency between shadow and non-shadow areas. The 1st-stage
TBGAN is able to recover coarse results without affecting the non-
shadow area too much, which guarantees a low RMSE value in the
non-shadow area, and then our 2nd-stage TBGAN with non-local
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block is able to correct the coarse shadow area and ensure color
and texture consistency between shadow and non-shadow areas.
Compared with these four variants, our proposed two-stage TB-
GANs methods is able to generate a high-quality and photo-realistic
shadow-removal image which is much closer to the corresponding
ground-truth shadow-free image.

To better explain why the non-local block works for shadow
removal, we visualize the input feature map x (H×W × 2C), the
residual feature map (H×W ×2C) obtained after applying a 1×1
Convolution on the output y (H×W ×C), and the output feature
map z (H×W ×2C) as shown in Figure 5. For the purpose of visu-
alization, we apply a channel-wise average pooling on each feature
map, as illustrated in Figure 9. We can observe that the residual
feature map obtained from the non-local block is complementary to
the input feature map, which leads to a much smoother feature map
between the shadow region and the non-shadow region. In Figure 9,
we also visualize the effect of the affinity matrix (HW ×HW ) by
reshaping to a tensor H ×W ×HW , extracting the channel-wise
top K = 5 to get a tensor H ×W ×K, and then apply a channel-
wise average pooling to get a matrix H×W in which the locations
with high values indicate they are very similar to some other loca-
tions. Such observations can well explain why the non-local block is
able to make the shadow regions and the non-shadow regions more
consistent, which directly leads to better shadow-removal results.

Figure 9: The visualization of effect with the non-local block. On the
top row, from left to right are the input shadow image, the shadow-
removal image, and the effect of HW ×HW, respectively. On the
bottom row, from left to right are the average feature map of input x,
the average residual feature map, and the average feature map of
output z in Figure 5, respectively.

4.3. Discussion

To better explore the potential of our proposed two-stage TBGANs,
we also visualize the shadow detection masks, extend the current
approach for video shadow removal, as well as discuss the failure
cases and its limitations.

Visualization of detection results. Although we focus on shadow
removal rather than detection, we also can get the shadow detection
mask by subtracting an input shadow image from the corresponding
shadow-removal image. From the visualization of shadow detection
results in Figure 10, we can see our proposed two-stage TBGANs is
able to achieve reasonable detection results.

Figure 10: The visualization of shadow detection masks (bottom) by
subtracting the input shadow images (top) from the corresponding
shadow-removal images (middle).

Extension to video. We also apply the proposed two-stage TB-
GANs to handle shadow videos by processing each frame in order.
As shown in Figure 12, it is suitable to insert videos in this paper.
Instead, we show the shadow-removal results for frames every 100
milliseconds. From this figure we can observe that the video shadow-
removal results by applying image-level shadow removal approach
to video directly are not good enough and there is still room for
better improvement.

Figure 11: The visualization of some failed examples. From top
to down are input images and the shadow-removal results of our
proposed two-stage TBGANs, respectively.

Failure cases and limitation. To clarify, our proposed method is
able to handle both soft and hard shadow in the current available
shadow datasets. For shadow images with complex boundaries and
complicated shapes in a forest environment, our proposed method
may fail as most of the existing data-driving shadow removal meth-
ods. We observe that our proposed method will fail when the shadow
area occupies a large proportion because the contextual information
provided in the non-shadow area is limited. It also fails when there
is inconsistency between shadow region and non-shadow region in
complicated scene. The failure examples are visualized in Figure 11,
from which we can observe the black skirt is recognized as shadow
and the shadow in the other three complicated scenes cannot be
removed completely.
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Figure 12: The visualization of shadow-removal results in two videos. From top to bottom are frames of the first input video, the shadow-
removal result for the first video, frames of the second input video, and the shadow-removal result for the second video, respectively. Note the
frames are extracted every 100 milliseconds from these two videos.

5. Conclusion

In this paper, we propose a two-sage top-down and bottom-up Gen-
erative Adversarial Networks (TBGANs) for shadow inpainting and
removal using a novel top-down encoder and a bottom-up decoder
with slice convolutions. The slice convolutions can effectively ex-
tract and restore the long-range spatial information. Shadow regions
are first inpainted to get a coarse shadow-removal results by the 1st-
stage TBGAN at the first stage and then the coarse shadow-removal
results are further refined by the 2nd-stage TBGAN with a non-local
block to achieve a better quality and photo-realistic shadow-removal
results. With such a coarse-to-fine fashion, the overall effect of
shadow removal is greatly improved, and the effect of color reten-
tion in non-shaded areas is significant. By comparing with a variety
of mainstream shadow removal methods, it is found that our method
is superior to the state-of-the-art methods.

In future, we plan to further explore top-down encoder and
bottom-up decoder with slice convolutions and apply them to solve
more real-world applications in the field of computer vision. We also
plan to explore a more efficient shadow removal approach to handle
videos [ZZLX17]. To obtain satisfying Illumination decomposition
[ZYL∗17] and image recoloring [ZXST17] results, effective shadow
detection and removal is critical. Thus, in the future, we will exploit
our method in these research directions.
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