

Shadow Inpainting and Removal Using Generative Adversarial Networks with Slice Convolutions

Jinjiang Wei¹, Chengjiang Long^{2†}, Hua Zou¹, Chunxia Xiao^{1†} ¹School of Computer Science, Wuhan University, Wuhan, Hubei, China ²Kitware Inc., Clifton Park, NY, USA {weijinjiang, cxxiao, zouhua}@whu.edu.cn, chengjiang.long@kitware.com

Problem

Shadow Image

Shadow-free Image ²

Problem

- dark shadow
 - Lost color and texture clue information
 - For human vision, the information in the black hole region is clearly speculated

Image Inpainting and global contextual features can handle this problem together!

3

Inpainting Motivation

- Dark shadow region without direct color and texture information
- Similar to non-shadow areas
- Global context understanding
- Unlimited inpainting images

Related Work

• Shadow removal by deep neural networks

ST-CGAN: WANG J., LI X., YANG J.: Stacked conditional generative adversarial networks for jointly learning shadow detection and shadow removal. In CVPR (2018)

DSC: HU X., FU C.-W., ZHU L.:Direction-aware spatial context features for shadow detection. In CVPR (2018)

Our work

- Two-stage GAN inpainting and removal to get coarse and fine removal images separately
- Slice convolutions module to extract long-range contextual spatial information
- Non-local block to explore the local and global contextual spatial information

Overview

PACIFIC GRAPHICS 2019

G2: Shadow Removal Network

Slice Convolution

- Decomposition and less parameters
- Long-range dependency
 information

Non-local block

 Global context information to explore both local and global inter-dependencies of pixels

Wang X, Girshick R, Gupta A, et al. Non-local neural networks.

Non-local visualization

PACIFIC GRAPHICS 2019

Input Output - 20 - 15 10 - 5

0

 $HW \times HW$

Input x

Residual feature

Output *z*

Loss Function

cGAN loss + perceptual loss

$$G^* = \arg\min_{G} \max_{D} \mathcal{L}_{cGAN}(G, D) + \mathcal{L}_{total},$$

$$\mathcal{L}_{cGAN}(G,D) = \mathbb{E}_{x,y \sim p_{data}(x,y)} [\log D(x,y)] + \mathbb{E}_{x \sim p_{data}(x)} [\log(1 - D(x,G(x)))],$$

$$\mathcal{L}_{total} = \lambda \mathcal{L}_{L1} + \alpha \mathcal{L}_{perc} + \beta \mathcal{L}_{style} + \gamma \mathcal{L}_{tv},$$

PACIFIC GRAPHICS 2019 **Perceptual Losses** $\mathcal{L}_{L1} = \frac{1}{C \times H \times W} \|I_{out} - I_{gt}\|_{1} \begin{cases} \text{Difference between output} \\ \text{and GT each pixel} \end{cases}$ $\mathcal{L}_{perc} = \frac{1}{C_p \times H_p \times W_p} \sum_{h=1}^{H_p} \sum_{w=1}^{w_p} \left\| \Psi_p^{I_{out}} - \Psi_p^{I_{gt}} \right\|_1$ Feature difference between generated image input to backbone network and GT input to backbone network $\mathcal{L}_{style} = \frac{1}{C_p \times H_p \times W_p} \sum_{h=1}^{H_p} \sum_{w=1}^{W_p} \left\| \left(\Psi_p^{I_{out}} \right)^T \left(\Psi_p^{I_{out}} \right) - \left(\Psi_p^{I_{gt}} \right)^T \left(\Psi_p^{I_{gt}} \right) \right\|_1 \quad \text{Same way, but Gram} \\ \text{matrix first computed} \quad \text{matrix first computed}$ $\mathcal{L}_{tv} = \frac{1}{C \times H \times W} \sum_{(i,j) \in R} \left\| I_{out}^{i,j+1} - I_{out}^{i,j} \right\|_1 + \frac{1}{C \times H \times W} \sum_{(i,j) \in R} \left\| I_{out}^{i+1,j} - I_{out}^{i,j} \right\|_1$ Difference between each pixel and neighbor pixel in generated image

12

Training and testing

- Datasets:
 - ISTD dataset triples of shadow images, shadow masks, shadow-free images. 135 different shadow environments.
 - Inpainting finetune dataset Places365.
- Evaluation index
 - Root Mean Square Error (RMSE) in Lab space
 - Statistic shadow area and non-shadow area separately

Results - RMSE

• Comparison in ISTD dataset

	Shadow	Non-shadow	All
Guo [GDH12]	18.95	7.46	9.3
Gong [GC14]	14.98	7.29	8.53
Global/Local-GAN [ISSI17]	13.46	7.67	8.82
Pix2Pix-HD [WLZ [*] 18]	10.63	6.73	7.37
Deshadow [QTH*17]	12.76	7.19	7.83
ST-CGAN [WLY18]	10.33	6.93	7.47
DSC [HFZ*18]	9.22	6.39	6.67
Two-stage TBGANs	10.14	5.91	6.70
Two-stage TBGANs+finetune	9.83	5.58	6.39

Visual Comparison Results

ST-CGAN Input DSC TBGAN(ours) **Ground Truth**

Ablation

	Shadow	Non-shadow	All
w/o TDBU&Inpainting	18.72	16.33	16.77
w/o TDBU	17.72	16.16	16.51
w/o Non-local block	10.33	5.89	6.79
1st-stage TBGAN	12.37	5.58	7.44
Two-stage TBGANs	10.14	5.91	6.70

Ablation

PACIFIC GRAPHICS 2019

17

(a) input images, (b) the results without slice convolution and the 1-stage TBGAN for shadow inpainting, (c) the results without slice convolution, (d) the results without Non-local block, (e) the results of the 1st-stage TBGAN, (f) the results of our proposed two-stage TBGANs, and (g) the corresponding ground-truth shadow-free images, respectively.

Limitations

• Failure cases

- Complex boundaries and complicated shapes
- Shadow area occupies a large proportion

Conclusion and Future work

- Video shadow detection and removal
- Shadow removal for complex scenes
- Explore more real-world applications with slice convolutions

Paper QR Code:

http://www.chengjianglong.com/publications/SCShadow_CGF.pdf

