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Abstract

The seamless illumination integration between a fore-
ground object and a background scene is an important but
challenging task in computer vision and augmented reality
community. However, to our knowledge, there is no publicly
available high-quality dataset that meets the illumination
seamless integration task, which greatly hinders the devel-
opment of this research direction. To this end, we apply a
physically-based rendering method to create a large-scale,
high-quality dataset, named IH dataset, which provides rich
illumination information for seamless illumination integra-
tion task. In addition, we propose a deep learning-based
SI-GAN method, a multi-task collaborative network, which
makes full use of the multi-scale attention mechanism and
adversarial learning strategy to directly infer mapping re-
lationship between the inserted foreground object and cor-
responding background environment, and edit object illu-
mination according to the proposed illumination exchange
mechanism in parallel network. By this means, we can
achieve the seamless illumination integration without ex-
plicit estimation of 3D geometric information. Comprehen-
sive experiments on both our dataset and real-world images
collected from the Internet show that our proposed SI-GAN
provides a practical and effective solution for image-based
object illumination editing, and validate the superiority of
our method against state-of-the-art methods.

1. Introduction

The task of image composition is to integrate an object
with the real-world scene to generate a synthesized image
with harmonious illumination. However, as the illumina-
tion of objects is usually inconsistent with the scene, the
quality of synthesized image would be significantly down-
graded. Although the existing retouching software, such as
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Figure 1. Illumination editing for an inserted object in a single im-
age. (a) 2D foreground object. (b) Background image. (c) Naive
composite image. (d) [llumination harmonized image.

photoshop, is relatively mature, it is difficult for an expe-
rienced retoucher to make an ideal synthesized image with
illumination harmonization. Especially for object shadow
generation in the scene, it requires precise matting skills, a
slight flaw will lead to very poor result. To this end, we
propose a SI-GAN for user-friendly automatic illumination
editing, even an inexperienced user can easily complete ob-
ject illumination editing, and achieve realistic and harmo-
nious illumination for the inserted object.

Automatically editing illumination for inserted object to
achieve scene illumination harmonization is a challenging
operation in computer vision and AR applications. Karsch
et al. [17] presented an image editing system that supports
drag-and-drop 3D object insertion, and Liao et al. [23, 24]
proposed an approximate shading model for image-based
object modeling and insertion. Although these methods
produce perceptually convincing results, their performances
highly depend on the quality of the estimated geometry,
shading, albedo and material properties. However, in some
cases, any errors or inaccurate estimation in either geom-
etry, illumination, or materials may result in unappealing
editing effects. Different from these methods, in this work,
we aim to explore a deep learning-based method to directly
learn mapping relationship between the inserted object il-
lumination and the real-world scene, and achieve scene il-
lumination harmonization without any explicit inverse ren-
dering (recovering 3D geometry, illumination, albedo and
material).

As deep learning-based method calls for a large num-

1,3,4%



ber of data. Especially in this task, a dataset with a lot
of training image pairs of synthesized images without il-
lumination harmonization and corresponding ground truth
with illumination harmonization is desired. Existing dataset
like iHarmony4 [3] by generates synthesized images based
on COCO, contains pairs of synthesized image and corre-
sponding harmonized image, but all these synthesized im-
ages lack shadow for inserted object. It does not provide
sufficient shadows and illumination information for aug-
mented reality applications. Although shadow-AR dataset
[25] with inserted object shadow information is conducive
to our task by providing sufficient shadow clues of object
and scene, it does not take into account the shading infor-
mation of the inserted object.

In this work, we construct a first large-scale, high-quality
synthesis image dataset named IH dataset for the object re-
lighting task. Our dataset contains 89,898 six-tuples, each
with one input triplet (i.e., a naive composite image, and the
corresponding object mask and background mask), and an-
other ground truth triplet (i.e., an object illumination map, a
background illumination map, and a final illumination har-
monization image). See Figure 2 for a six-tuples exam-
ple. To build our dataset, we collect many HDR images
from Laval’s HDR dataset [7, 6] and HDR panoramas from
the Internet taken in various indoor and outdoor real-world
scenes. Therefore, the scenes in our dataset are general and
challenging. In addition, we also collect 7 3D object models
with considerably different shapes and postures.

To produce harmonized illumination for the inserted ob-
ject, inspired by spatial attention learning [40, 12, 36, 35,

, 10, 30] and adversarial learning [8, 1], we propose a
novel learning-based scene inference algorithm named SI-
GAN. SI-GAN takes a naive composite image with shadow-
free object as well as inserted object mask as input, and
makes full use of multi-scale attention mechanisms and
adversarial learning to directly infer mapping relationship
between the inserted foreground object and corresponding
background environment.SI-GAN edits object illumination
according to the proposed illumination exchange mecha-
nism in parallel network, and can directly generate plau-
sible the object shadows, illumination to make the image
more harmonious and realistic. Compared with the previ-
ous methods [17, 23, 24], our work avoids explicit inverse
rendering, e.g. complicated geometry, illumination and re-
flectance estimation, and directly achieves high-quality har-
monized object illumination editing results. A visual ex-
ample is shown in Figure 1. Our main contributions are
summarized as follows:

* We construct the first large-scale, high-quality image
illumination harmonization dataset IH, which consists
of 89,898 image six-tuples with a diversity of real-
world background scenes and 3D object models.

* We propose a novel deep learning-based scene infer-
ence algorithm named SI-GAN, a multi-task collabo-
rative network, which can directly perform illumina-
tion harmonization editing for the inserted object with-
out explicit inverse rendering.

» Extensive experiments show that the proposed SI-
GAN can effectively achieve high-quality image illu-
mination harmonization and significantly outperforms
existing state-of-the-art methods.

2. Related work

In this section, we briefly review the related work on
object illumination editing, shadow generation, image-to-
image translation, respectively.

Object illumination editing. Traditional object illumi-
nation editing methods mainly concentrated on estimating
the scene geometry, illumination and surface reflectance
to edit the object. Previous methods [19, 16] have shown
that coarse estimates of scene geometry, reflectance prop-
erties, illumination, and camera parameters work well for
many image editing tasks. These methods require a user to
model the scene geometry and illumination. The method
[2] not only recovers shape, surface albedo and illumina-
tion for entire scenes, but also requires a coarse input depth
map, while this method is not directly suitable for illumi-
nating inserted object. Similar to these methods, Karsch et
al. [17] presented a fully automatic method for recovering
a comprehensive 3D scene model (geometry, illumination,
diffuse albedo and camera parameters) from a single low
dynamic range photograph. Liao ef al. [24] presented an
object relighting system that supports image-based relight-
ing, although this method achieves impressive result, it still
needs to reshape the object and model the scene.

These methods depend on the physical modeling of ob-
ject and scene information, and inaccurate reconstruction
results will lead to poor results. In contrast, our method au-
tomatically edits the object illumination, directly generates
the harmonized illumination results without complicated in-
verse rendering, and thus produces better visual effects.

Shadow generation. Recently, with the breakthrough in
adversarial learning, generative adversarial network(GAN)
[8, 1, 27] have been successfully applied to shadow detec-
tion, removal and generation [31, 32, 5, 38, 11, 39, 37, 25].
For shadow generation, Liu ef al. [25] proposed an AR-
ShadowGAN model, which is able to directly model the
mapping relation between the shadow of the virtual ob-
ject and the corresponding real-world environment based
on their constructed dataset. Similar to this method, our
method also aims to generate the object shadow without
explicit estimation of 3D geometric information. Besides
that, our method considers the shading of the object itself.
We not only realize reasonable object shadow generation
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Figure 2. The illustration of a synthesized illumination harmonization image generation process. Given a 3D object (a), we first apply
a panorama illumination (b) to render the 3D object and get an image-based object(d). Then we paste the image-based object into a
background image (e) directly without any illumination adjustment. In this way, along with an object mask (g) and a background mask (h),
we get an image (f) with illumination and shadow inconsistency between object and its surrounding. With the background illumination
map (c), we then use Blender to synthesize the illumination harmonization image (i) and take it as the ground-truth for supervised learning.
(j) is zoomed-in local details marked in (i). Note we consider (f), (g) and (h) as an input triplet, and (b), (c) and (i) as a ground truth triplet.
An input triplet and corresponding ground truth triplet are treated as a six-tuple in our dataset. Better view in electronic version.

with the same effect as Liu et al.’s algorithm, but also edit
the object illumination to achieve overall scene illumination
harmonization.

Image-to-image translation. Image-to-Image transla-
tion is to map an input image to a corresponding output im-
age. It has been widely used in various tasks, including
super-resolution[ | 8, 2 1], image quality restoration [26, 33],
image harmonization [14, 3], and so on. It is worth men-
tioning that Cong et al. [3] proposed a novel domain ver-
ification discriminator, with the insight that the foreground
needs to be translated to the same domain as the background
for image harmonization. But they focus on the illumina-
tion of foreground object and do not consider object shadow
generation task. Different from this work, our task takes
into account both illuminating the object and generating the
shadow of the object, and achieves illumination harmoniza-
tion for the whole scene.

3. Our IH Dataset
3.1. Dataset building

The construction process of our IH dataset includes four
steps: collecting images, filtering images, and rendering as
well as compositing. In the following, we will describe
these steps in detail.

Collecting images. We first choose all images from
the Laval’s HDR dataset [7, 6], and collect 2,686 HDR
panorama images from the Internet with a diversity of real-
world scenes. For each panorama map, we extract 8 limited
field-of-view crops to produce the background images, and
also use it as illumination to render ground truth results. We
initially obtain 22,256 background images in total. Also, we
collect 60 3D models as inserted objects, such as bunny and
lucy.

Filtering images. To ensure the quality of the dataset for
our object relighting task, we further filter out the follow-
ing three kinds of images: (i) without obvious or natural-
looking illumination, (ii) without a reasonable place to in-
sert virtual object, and (iii) with inconspicuous or no shad-
ows. In this way, we finally obtain 12,253 remaining back-
ground images.
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Figure 3. Statistics on the ratio of (a) virtual objects, (b) real object,
(c) real shadow, and (d) illumination. Note that x and y axes in (a)-
(c) have the same scale and meaning (i.e., x: ratio; y: count).

Rendering and compositing. With collected 3D mod-
els, background images, and the corresponding panorama
maps, the ground truth object relighting images (see Fig-
ure 2 (i)) are rendered using Blender. We first specify a
plane at the bottom of the inserted object for casting shad-
ows, then embed the 3D object into the cropped background
image, and finally use the corresponding environment map
to render the illumination of the object to produce the final
result. Note that we use Photoshop to manually annotate
each object in our dataset to produce their mask images.

We use 60 virtual models with different pose config-
ures using the pipeline shown in Figure 2 to construct our
dataset based on different background images and produce
169,672 synthesized ground truth illumination harmoniza-
tion images in total. Finally, to improve training efficiency,
we only use 89,898 six-tuples to train the our network. Each
six-tuple consists of two triplets. One triplet as input data
includes a synthetic image without any illumination adjust-
ment, and the corresponding object mask and background
mask. The other one as ground-truth data includes a syn-
thesized illumination harmonization image, one object il-
lumination and one background illumination ground-truths.
A visual six-tuple example is shown in Figure 2.

3.2. Dataset analysis

To provide a deeper understanding of our dataset, we
provide a series of the statistics on the ratio of real ob-
jects (i.e., occluders), real-world shadows, virtual objects,
and illumination, as illustrated in Figure 3. The area dis-
tribution is expressed as the ratio between the target (i.e.,
shadows, occluders or virtual objects) area and the whole
image area. We observe that the majority of occluders and
virtual objects fall in (0.1,0.4] and (0.1, 0.3] respectively,
as shown in Figure 3 (a)-(b). The ratio of shadow area falls
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Figure 4. The overview of our proposed SI-GAN. Given an input image with inserted object and the corresponding object mask and
background mask, the generator of our SI-GAN can generate the relighting image (R-Network) and predict both object illumination and
background illumination (I-Network), and the discriminator can distinguish whether the generated relighting image is real or fake. The
[lumination exchange mechanism between the R-Network and the I-Network realizes the conversion of illumination information between

the scene and the object.

in (0.08,0.3] (see Figure 3 (c)), which illustrates that large-
area non-shadow area is potentially suitable for inserting
object of interest.

Also, we analyze the spatial distribution of illumination
in the scene in our dataset by computing a probability map
to show how likely a pixel belongs to the illumination range.
Figure 3 shows that the illumination tends to cluster around
the lower center of the image, since inserted objects are of-
ten placed approximately around the human eyesight.

4. Proposed Method

Our goal is to train a GAN that takes a synthesis image
Y without illumination harmonization, corresponding the
object mask, background mask and corresponding target il-
lumination as input, and directly generate the correspond-
ing scene illumination harmonized image Y. To achieve
this goal, we propose a novel framework called SI-GAN, of
which the generator is a multi-task parallel network com-
posed of two networks, i.e., relighting network (R-Network)
and Illumination network (I-Network) to handle object and
illumination separately, as shown in Figure 4. In particular,
R-Network is used to estimate the overall input information
and achieve the synthetic image illumination harmony by
using multi-scale attention mechanism and illumination ex-
change mechanism, and I-Network is used to estimate the
background and object illumination information. Note that
there is an illumination exchange component to ensure the
inserted object obtain the harmonious illumination to gen-
erate a realistic synthetic image. Meanwhile, a discrimina-
tor is designed to verify whether the inserted object in the
generated relighting image has consistent illumination with
background.
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Figure 5. The structure of multi-scale attention mechanism.

4.1. Generator

As shown in Figure 4, the generator of our SI-GAN con-
tains two parallel branch networks, i.e., R-Network and I-
Network. R-Network learns the overall features of the input
image and I-network predicts the object and background il-
lumination. They work collaboratively to complete the task.
Relighting Encoder. For the U-Net [28] like R-Network,
there are five down-sampling blocks in encoder and each
down-sampling blcok consists of a residual block with 3
consecutive convolutions, batch normalization and ReLU
operation and halves the feature map with an average pool-
ing operation. Each down-sampling block is followed by
a multi-scale attention block which guides the network to
infer the object shadow and generates the refinement fea-
ture maps. Note that we design such a multi-scale attention
mechanism for two purposes: (1) to adaptively extract re-
liable multi-scale features and overcome the scale-variation
across the image to assign larger weights to areas of interest
for refinement purpose; and (2) to guide the generation of
shadows of the inserted objects by paying attention to real
shadows and correspond occluders in real-world image.

As shown in Figure 5, the multi-scale attention block has
three types convolution layers with three different kernel
sizes, 1 x 1, 3 x 3, 5 x 5, to extract features in different
scales. Specially, for the input feature map, the multi-scale
attention block first extracts features using two 1 x 1 convo-



lution layers with crossing channels and squeezing features,
two 3 x 3 convolution layers and two 5 X 5 convolution lay-
ers to generate feature maps. Note that for 3 x 3and 5 X 5
convolution, the feature map size of each channel has been
changed and therefore we apply an up-sampling layer to re-
cover the original size before feeding the feature map into
the Sigmoid function to produce attention map. We conduct
an element-wise multiplication on the input feature and the
attention map at each scale separately to produce attended
feature maps, which are then concatenated at channel-wise
together and fed into a 1 x 1 convolution layer to recover
the same channel number with the origin input feature. We
apply a residual structure [9] to combine it with the origin
input feature map together as final output. This residual
mechanism not only accelerates the convergence speed but
also correct image details such as border artifacts.

The final output features of the encoder include the
illumination features Fj;;,, and non-illumination features
Foi of global image. This feature separation is enforced
by the no-illumination loss £, (see Equation 3).
Illumination Encoder. For the I-Network, the encoder
structure is similar to the one of the R-Network and outputs
the illumination feature of the background image.
Illumination Exchange Mechanism. After obtaining the
features extracted by the two encoders, we exchange the ob-
ject illumination features in the R-Network with the back-
ground illumination features in the I-Network.

To specify, these two sub-networks work together
through the illumination exchange mechanism. It is worth
mentioning that at the bottleneck feature of the R-Network,
we performed the multiplication operation on it with the
object mask of the corresponding size and get the feature
F°b for foreground object. This treatment is able to bet-
ter realizes the exchange of object illumination and back-
ground illumination, and achieve the illumination harmo-
nization task.

The object feature F°% can be divided into two parts:
synthetic image feature F°/, which is independent of il-

noillu
lumination feature F 5% The illumination feature F ;ﬁi is
cropped by the resized object mask, rescaled to a larger size
and then fed into the object illumination decoder of the I-
Network to predict the object illumination. The background

illumination feature F%¢ extracted by the I-Network de-

illu
coder and Fllﬁu concatenated together and fed into the R-
Network decoder part to generate the realistic Illumination
harmony image. In the whole illumination harmony task,
we have supervised constraints on the relighting image, the
non-illuminated and illumination feature of the object, and
the background illumination feature, respectively, which
improves the harmony accuracy of the relighting image.
Relighting Decoder. The decoder in the R-Network con-
sists of five up-sampling layers. Each up-sampling layer
doubles the feature map by nearest interpolation followed

by consecutive dilated convolution, batch normalization and
ReLU operations. The last feature map is activated by a
sigmoid function. The R-network concatenates down-up
sampling layers by skip connections The final output of the
R-network is the harmonized image with plausible object
shadow and illumination.

Object/Background Illumination Decoders. Follow-
ing [34], the decoder of the I-Network is to predict the illu-
mination. In this paper, we use the shared structure for both
object illumination and background illumination decoders.

4.2. Discriminator

The discriminator of SI-GAN is designed to help the
R-network accelerate convergence and generate a plausi-
ble harmonized image. Following Patch-GAN [14], our
discriminator consists of six consecutive convolutional lay-
ers. Each convolutional layer contains convolution, instance
normalization and ReLLU operations. We use Sigmoid func-
tion to activate last feature map produced by a convolution,
and perform a global average pooling operation on the acti-
vated feature map to obtain the final output of the discrimi-
nator. The discriminator takes the concatenation of the gen-
erated relighted image and object, or the concatenation of
the ground-truth relighted image and the object mask, as
input to determine real or fake.

4.3. Loss functions

The total 1oss Liotq; is formulated with an illumination
loss L;i,,, a perceptual loss L, and an adversarial loss
L ,aqv as follows:

Etotal = /Blcillu + +62‘Cnoillu + 53»Cper + 64£adv7 (1)

where 31, B2 , B3, B4 are hyper-parameters which control
the influence of terms.

INlumination loss £;;;,, is the element-wise illumination
loss between the generated illumination and the correspond-
ing ground truth, i.e.,

Ly = |Yor — Yorl3 + |Ysr — Y13, 2

where Yo and Yp; represent the output virtual object il-
lumination image, and background illumination image, re-
spectively. Yr; and Yp; are their corresponding ground
truth image.

Non-illumination feature loss L., is further intro-
duced to enforce non-illumination feature matching to im-
prove the accuracy of the object relighting image. Accord-
ing to the lightness and Retinex theory [20], reflectance is
the inherent physical property of object, independent of il-
lumination. Therefore, we hope that the same object un-
der different illumination conditions have the same non-
illumination (i.e., reflectance) features, mathematically ex-
pressed as
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where Féom-”u and Fgonillu are non-illumination fea-

tures of a same insert object under two different illumina-
tion conditions, and NV,,oni1.. 1S the number of elements in
Froniltu-

Perceptual loss L., [15] is used to measure the se-
mantic difference between the generated image and the
ground truth. Following [25], we use a VGG-16 model [29]
pre-trained on ImageNet dataset [4] to extract feature and
choose the first 10 VGG16 layers to compute feature map.
Lper is defined as:

Lper =MSE(Vy,.,, Vy..) + MSE(Vy,,, Vi)

4
+ MSE(Vy,,, VYR) @

where MSE is the mean squared error, and V; = VGG(7) is
the extracted feature map.

Adversarial loss L, is utilized to describe the compe-
tition between the generator and the discriminator as:

Lagy = log(D(x,m,Y)) +log(l — D(z,m,Y)), (5

where D(-) is the probability that the image is “real”. x is
the input image and m is the corresponding mask, Y is the
output of the generator of SI-GAN, and Y is the ground-
truth. The discriminator tries to maximize L4, while the
generator tries to minimize it.

4.4. Implementation details

Our SI-GAN model is implemented by Tensorflow and
runs with NVIDIA GeForce GTX 1080Ti GPU. We ran-
domly select 80% of images as the training set, and take the
rest 20% images as the testing set. Our network is trained
for 80 epochs with bach size 1, and the resolution of all im-
ages for training and testing is 256 x 256. We set decay as
0.9 for batch normalization and all the batch normalization
share the same hyper parameters. The initial learning rate
is 1071, We set 81 = 25.0, B2 = 6.0, 33 = 0.04, 8, = 0.5
for loss item and adopt Adam optimizer to optimize the SI-
GAN and discriminator. It takes about 98 hours to complete
the entire training.

5. Experiments

In this section, we evaluate our proposed SI-GAN both
quantitatively and qualitatively, and compare it with state-
of-the-art methods on our constructed dataset IH.

5.1. Evaluation Metrics and Experimental Settings

Evaluation metrics. We use three evaluation metrics,
i.e., root mean square error (RMSE), peak signal to noise

Table 1. Quantitative comparison results on our testing set. The
best results are marked in bold.

Method RMSE | SSIM | PSNR
ASI3D [17] 0.024 | 0.827 | 35.247
ASMOR [24] 0.013 | 0914 | 39.64
ARShadowGAN [25] | 0.008 | 0.928 | 41.512
SI-GAN 0.005 | 0.964 | 43.107

ratio (PSNR) and structural similarity index (SSIM) be-
tween a generated harmonized image and the correspond-
ing ground truth on the test set. In general, with the smaller
RMSE, the larger SSIM and PSNR, the generated illumina-
tion harmonized image is better.

Compared methods. Our task is to edit the illumination
of the image-based object inserted into the real-world scene
image to achieve the illumination harmony between them
for augmented reality. To our best knowledge, there are
only a few traditional methods conducting the similar tasks
and no existing deep learning-based method. In this pa-
per, we choose two traditional methods similar to our task,
i.e., ASI3D [17] and ASMOR [24], and a deep learning-
based method ARShadowGAN [25] which we extend for
our task to compare with. For ASI3D and ASMOR, to en-
sure their relighting systems can generate harmonized im-
age directly, we strictly follow their input requirements and
feed them with the corresponding inputs. For ARShadow-
GAN method [25], we also use the same input as our SI-
GAN for fair comparison.

5.2. Comparison with Start-of-the-art Methods

We analyze the performance of our SI-GAN and state-of-
the-art methods for object illumination editing as follows:

Quantitative comparison. Table 1 reports the quantita-
tive comparison results on our testing set. As can be seen,
(1) although ASI3D and ASMOR are traditional methods,
ASMOR’s performance in terms of three evaluation metrics
is close to that of ARShadowGAN; (2) ARShadowGAN
is slightly better than ASMOR, but obviously outperforms
ASI3D; and (3) our SI-GAN achieves the best quantitative
results on all these three evaluation metrics.

This is mainly because the traditional methods ASI3D
and ASMOR rely on the estimation accuracy of 3D infor-
mation of objects and scenes. With no doubts, inaccurate
estimation of 3D information often leads to poor results.
As a deep learning based method, our SI-GAN does not
require complicated 3D information estimation and instead
it uses the attention mechanism to enhance the beneficial
features for a better result. The best performance of SI-
GAN is mainly attributed to the multi-scale attention mech-
anism, feature exchange mechanism and adversarial learn-
ing, which can better guide the illumination editing of in-
serted object, refine the features and bridge the illumination
gap between inserted object and background environment
to obtain results closer to the ground truth.
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Visual comparison. To compare the performance of the
methods more intuitively, we provide some visual compar-
ison results in Figure 6. As we can see, our SI-GAN not
only achieves the illumination transformation of different
scenes, but also gains the best visual results with plausible
object shadows and harmonious illumination.

Among these competing methods, ASID3D and AS-
MOR estimate the inaccurate or wrong information of ge-
ometry and illumination of the object and scene. Although
ARShadowGAN generates reasonable object shadows, it
has weak illumination processing and therefore cannot rea-
sonably edit the object illumination information.

In contrast, SI-GAN is able to achieve the better results
with plausible object shadow and harmonious illumination,
which mainly because our network makes full use of the
collaborative R-Network and I-Network parallel with the
multi-scale attention mechanism, the illumination feature
exchange mechanism, and the adversarial learning strat-
egy to automatically infer the shadow and illumination gen-
eration of the object. Our proposed multi-scale attention
mechanism plays a role in inferring scene and refining fea-
tures. Moreover, our feature exchange mechanism is able to
greatly achieve illumination features exchange between the
object and corresponding background for illumination har-
monization. Our SI-GAN avoids the complicated inverse
rendering process and directly generates reasonable illumi-
nation harmonized results.

5.3. Ablation Study

We conduct ablation study to investigate the effective-
ness of each main component of our loss function and net-
work architecture respectively. To this end, we perform
experiments to evaluate the performance of the proposed
multi-scale attention mechanism (MSA), illumination ex-
change mechanism (IEM) and perceptual loss L, non-
illumination feature 10ss L£,,oni1. and adversarial loss £, 4, .

The quantitative and visual comparison results are shown
in Table 2 and Figure 7, respectively. As we can see in Ta-
ble 2, our SI-GAN with all components is able to obtain bet-

(O] ® (€3]
Figure 6. Visual comparison of our method against other start-of-the-art methods on the testing set of our dataset. From left to right are:
(a) 3D object, (b) input image, the results of (c) ASI3D, (d) ASMOR, (¢) ARShadowGAN and (f) SI-GAN, (g) ground truth.

Table 2. Ablation study. “Basic” denotes our method without
multi-scale attention mechanism (MSA), IEM and the used per-
ceptual 10ss Lper, non-illumination feature loss Lyoniiiu, and ad-
versarial loss L44.. The best results are marked in bold.

Method RMSE | SSIM | PSNR

Basic 0.0174 | 0.927 | 37.824

Basic + MSA + IEM 0.0069 | 0.950 | 40.024
Basic + L4q, + IEM 0.0098 | 0.946 | 39.982
Basic + Lyer + IEM 0.0123 | 0.937 | 38.356

Basic + Lper + Lnonitiu + Ladv + IEM | 0.0072 | 0.950 | 41.204
Basic + MSA + Lyay + Lronitiw + IEM | 0.0057 | 0.968 | 43.316
Basic + MSA + L,er + Loyonitie + IEM | 0.0064 | 0.953 | 41.336
Basic + MSA + Lyqy + Lper + IEM 0.0053 | 0.973 | 43.407
Basic + MSA + Lyer + Lyonitiu + Lado | 0.0069 | 0.950 | 40.925
SI-GAN 0.0051 | 0.976 | 44.463

ter results than other methods with one or two components
in all three evaluation metrics. By comparing SI-GAN with
“Basic + MSA + L,oniiiw + Lade + IEM”, “Basic + MSA
+ Lyper + Lronitiu + IEM” and “Basic + Lper + Lyonitiu +
Ladav + IEM” respectively in Table 2, we find that our pro-
posed multi-scale attention mechanism and the used percep-
tual loss (Lper) and adversial loss (L4q4,) are all beneficial
to our final results.

From Figure 7 we observe that SI-GAN generates better
object shadow and illumination than “Basic + MSA + IEM
+ Lper + Lponin” With odd-looking object shadow and il-
lumination. The “Basic + MSA + IEM + Lyer + Loonitin”
yields this worse results mainly because the network has
not converged, which highlights the advantage of adversar-
ial learning to accelerate network convergence in the task.
Another observation is that “Basic + IEM + L¢, + Lyoniliu
+ L,4,” produces a relatively poor result with coarse object
shadow and unnatural illumination compared to SI-GAN,
which demonstrates that our proposed multi-scale attention
mechanism can make full use of important features to guide
the shadow generation of inserted object and refine the ex-
tracted useful features of different scales. In addition, we
find that the object obtained a poor illumination result from
(f), mainly because there is no IEM to exchange illumina-
tion information. Although result (g) is closer to the best
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Figure 7. Ablation study for our SI-GAN. (a) Input image without illumination harmonization. (b) mask. (c) Basic + MSA + IEM + Ly,
+ Lponitiu- (d) Basic + IEM + Lper + Lnonitiu + Ladw. (€) Basic + MSA + IEM + Ly, oniitw + Ladw. (f) Basic + MSA + Lyer + Lroniliu
+ Lagy. (g) Basic + MSA + IEM + La4y + Lper. (h) SI-GAN. (i) Ground truth. Please zoom in to observe the detailed difference.

R: 43.1%

U: 10.1%

U: 12.7%
F:44.2%

(a) Real images (b) Synthesis images

Figure 8. Perceptual study results on real and synthesis images.
“R” and “F” indicate the visually realistic and fake relighting re-
sults respectively, while “U” indicates that the result is uncertain

whether users result in an agreement.

one produced by our SI-GAN, the appearance of the object
of SI-GAN is more refined,

which indicates that the non-illumination feature loss
Lnonilin €an promote our network to generate a more ac-
curate illumination harmony image.

5.4. Perceptual User Study

To further evaluate the quality of illumination harmo-
nization images produced by our SI-GAN. We follow the
method [22] to conduct a simple perceptual study. We se-
lect the total of 100 images with different illumination. Fifty
images with illumination harmonization are from the real-
world and the others are generated by our SI-GAN. The res-
olution of all images is set to 512 x 512.

Then we recruited 100 participants from a school cam-
pus, including professional image processing researchers,
3D-Max and Photoshop users, and senior art scholars. We
divide each image into three visual levels: (1) Real: realis-
tic and harmonious illumination image, (2) Fake: unrealis-
tic illumination image with artifacts, (3) Uncertain: uncer-
tain image which they can’t make a decision, and ask them
to give their judgment results. The results of user study is
shown in Figure 8. As we can see, 52.4% of real images
are judged to be real images and the other real images are
judged to be fake image or uncertain image. At the same
time, 43.1% of the synthesis images from our SI-GAN are
judged to be real image, which has almost the same judg-
ment result as the real images. This fully proves that our
network has good performance in processing illumination
harmonization task.

5.5. Discussions

Generalization. To verify the generalization of our
method, we also test our SI-GAN on 200 real-world images
in the illumination controllable indoor environment. We

also adopt the same perceptual user study as done in Sec-
tion 5.4 to evaluate all results produced by our method on
the 200 testing images. Subjects agree that 62.1%, 21.3%
and 16.6% of all results are real, fake and uncertain, which
illustrates that SI-GAN has a strong generalization ability
on real-world images.

Limitations. Our SI-GAN has two limitations. Firstly,
SI-GAN generally works better in outdoor scenes than in-
door scenes, since indoor scenes are sometimes with rela-
tively dark lighting. Secondly, SI-GAN may fail to edit the
object illumination under multiple light sources. We left
this as our future work.

6. Conclusion and Feature Work

In this work, we have presented a large-scale and high-
quality dataset IH and proposed a novel deep learning-based
method SI-GAN to edit the image-based object illumination
and generate visually plausible illumination harmonized re-
sult without any intermediate inverse rendering process. In
the future, we will extend our SI-GAN to be used for object
illumination editing under multiple light sources, and han-
dle video illumination harmony.
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