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Abstract

This paper presents a high-quality human motion pre-
diction method that accurately predicts future human poses
given observed ones. Our method is based on the observa-
tion that a good “initial guess” of the future poses is very
helpful in improving the forecasting accuracy. This mo-
tivates us to propose a novel two-stage prediction frame-
work, including an init-prediction network that just com-
putes the good guess and then a formal-prediction network
that predicts the target future poses based on the guess.
More importantly, we extend this idea further and design
a multi-stage prediction framework where each stage pre-
dicts initial guess for the next stage, which brings more
performance gain. To fulfill the prediction task at each
stage, we propose a network comprising Spatial Dense
Graph Convolutional Networks (S-DGCN) and Temporal
Dense Graph Convolutional Networks (T-DGCN). Alterna-
tively executing the two networks helps extract spatiotem-
poral features over the global receptive field of the whole
pose sequence. All the above design choices cooperating
together make our method outperform previous approaches
by large margins: 6%-7% on Human3.6M, 5%-10% on
CMU-MoCap, and 13%-16% on 3DPW. Code is available
at https://github.com/705062791/PGBIG.

1. Introduction
Human Motion Prediction (HMP) is a fundamental re-

search topic that benefits many other applications such as

intelligent security, autonomous driving, human-robot inter-

action and so on. Early works employed nonlinear Markov

models [24], Gaussian Process dynamical models [46], and

Restricted Boltzmann Machine [43] to tackle this problem,

while recently a large number of methods based on deep

*Corresponding author: nieyongwei@scut.edu.cn

(a)

Init-
Prediction 
Network

Formal 
Prediction 
Network

OutputInitial 
GuessInput

Intermediate Target

(b)
Figure 1. (a) Toy experiments. Given 10 poses, we predict 25

poses. The frame rate is 25fps, and 25 poses last 1000ms. We use

LTD [33] as the baseline which uses the last observed pose as the

initial guess. At test time, the average prediction error of LTD is

68.08. We conduct another 5 experiments training and testing LTD

with Mean-x as the initial guess. That is, Mean-x is duplicated

and appended to the past poses where “Mean-x” is the mean of

the first future x poses with x belonging to {5, 10, 15, 20, 25}. As

x increases, the average prediction error significantly decreases,

meaning that when used as initial guess, “Mean-x” is better than

the last observed pose, and the larger the x the better. The curves

in the figure plot the prediction error at every forecasting time. (b)

Our two-stage prediction framework comprising an init-prediction

network and a formal-prediction network. The init-prediction net-

work is supervised by an intermediate target.

learning have emerged, showing significant merits.

Due to the sequential nature of pose sequences, HMP

is mostly tackled with Recurrent Neural Networks (RNN)

[5, 6, 13–18, 22, 31, 34–36, 42]. However, RNN-based ap-

proaches usually yield problems of discontinuity and er-

ror accumulation which might be due to the training dif-

ficulty of RNNs. There are a few works that employ Con-
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volutional Neural Networks (CNN) to solve the HMP prob-

lem [3,8,26,39]. They treat a pose sequence as an image and

apply 2D convolutions to the pose sequence, but poses are

essentially not regular data which limits the effectiveness of

the 2D convolutions. Recently, lots of works demonstrate

that Graph Convolutional Networks (GCN) is very suitable

for HMP [2, 7, 9, 10, 23, 25, 27–29, 32, 33]. They treat a hu-

man pose as a graph by viewing each joint as a node of the

graph and constructing edges between any pair of joints.

GCNs are then used to learn spatial relations between joints

which benefit the pose prediction.

We observe that starting from the seminal work of

LTD [33], all recent GCN-based approaches [9, 10, 32, 40]

share the following preprocessing steps: (1) They duplicate

the last observed pose as many times as the length of the

future pose sequence, and append the duplicated poses to

the observed sequence to form an extended input sequence.

(2) Similarly, the ground truth future poses are appended

to the observed poses to obtain the extended ground truth

output sequence. Their proposed networks are used to pre-

dict from the extended input sequence to the extended out-

put sequence instead of from the original observed poses to

the future poses. Ablation comparisons show that the pre-

diction between the extended sequences is easier than be-

tween the original sequences, and the former achieves sig-

nificantly better prediction accuracy than the latter. Dang

et al. [10] ascribed this to the global residual connection

between the extended input and output, while in this paper

we interpret this phenomenon from another perspective: the

last observed pose provides an “initial guess” for the target

future poses. From the initial guess, the network just needs

to move slightly such that it can reach the target positions.

However, we argue that the last observed pose is not the best

initial guess. For example, the toy experiments in Figure 1

(a) show that the mean pose of future poses is better than

the last observed pose as the initial guess.

The problem is that we do not really know the mean pose

of the future poses. Thus as shown in Figure 1 (b), using the

mean of future poses as intermediate target, we propose to

predict the mean of the future poses firstly and then pre-

dict the final target future poses by viewing the predicted
mean as the initial guess. Although the predicted mean is

not as good as the ground truth mean when used as the ini-

tial guess, it is better than the last observed pose. Further,

for more accuracy gain, we extend the two-stage prediction

strategy to a multi-stage version. To this end, we recur-

sively smooth the ground truth output sequence, obtaining

a set of sequences at different smoothing levels. By treating

these smoothed results as intermediate targets at the mul-

tiple stages, our multi-stage prediction framework progres-

sively predicts better initial guesses towards the next stages

until the final target pose sequence obtained.

Any existing human motion prediction model such as

[26, 33, 34] can be used to accomplish the prediction task

at each of our stages. Among them, we choose GCN as

the buildingblock to construct our multi-stage framework.

Existing GCN-based approaches [9, 10, 33] only employ

GCN to extract spatial features. Instead of them, we pro-

pose to process both spatial and temporal features by GCNs.

Specifically, we propose S-DGCN and T-DGCN. S-DGCN

views each pose as a fully-connected graph and encodes

global spatial dependencies in human pose, while T-DGCN

views each joint trajectory as a fully-connected graph and

encodes global temporal dependencies in motion trajectory.

S-DGCN and T-DGCN together extract global spatiotempo-

ral features, which further improve our prediction accuracy.

In summary, the main contributions of this paper are

three-fold:

• We propose a novel multi-stage human motion predic-

tion framework utilizing recursively smoothed results

of the ground truth target sequence as the intermediate

targets, by which we progressively improve the initial

guess of the final target future poses for better predic-

tion accuracy.

• We propose a network based on S-DGCN and T-

DGCN that extracts global spatiotemporal features ef-

fectively to fulfill the prediction task at each stage.

• We conduct extensive experiments showing that our

method outperforms previous approaches by large

margins on three public datasets.

2. Related Work
Due to the serialized nature of human motion data, most

previous works adopt RNN as backbone [5,6,13–18,22,31,

34–36, 42]. For example, ERD [13] improves the recurrent

layer of LSTM [19] by placing an encoder before it and a

decoder after it. Jain et al. [22] organized RNNs accord-

ing to the spatiotemporal structure of human pose, propos-

ing the Structural-RNN. Martinez et al. [34] used sequence

to sequence architecture that is often adopted for language

processing to predict human motion. RNNs are hard to train

and cannot effectively capture spatial relationships between

joints, usually yielding problems of discontinuity and error

accumulation.

To enhance the ability of extracting spatial features

of human pose, Shu et al. [39] compensated RNN with

skeleton-joint co-attention mechanism. The works of [3,26,

30] use CNNs for this purpose but CNNs cannot directly

model the interaction between any pair of joints.

Viewing human pose as a graph, recent works have pop-

ularly adopted GCNs for human motion prediction [2, 7, 9,

10, 12, 23, 25, 27–29, 32, 33, 37, 38]. Aksan et al. [2] did not

use GCN, but they adopted a very similar idea that relies on
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Figure 2. Overview of our multi-stage human motion prediction framework containing T stages. Each stage takes the observed sequence

S1:Th and an initial guess as input. For the first stage, the initial guess is composed of the last observed pose. For all the other stages,

the initial guess is the future part of the output of previous stage. The last stage is guided by the ground truth, while all the other stages

are guided by the corresponding recursively smoothed results of the ground truth. All the stages use the same Encoder-Copy-Decoder

prediction network. Please refer to the main text for more details.

many small networks to exchange features between adja-

cent joints. The works of [23, 27, 28] use GCN either in the

encoder [27, 28] for feature encoding or in the decoder [23]

for better decoding. The works of [9, 10, 32, 33] are totally

based on GCN. Mao et al. [33] viewed a pose as a fully-

connected graph and used GCN to discover the relationship

between any pair of joints. In the temporal domain, they

represented the joint trajectories by Discrete Cosine Trans-

form coefficients. Dang et al. [10] extended [33] to a multi-

scale version across the abstraction levels of human pose.

We also use GCN as the basic buildingblock, but propose

S-DGCN and T-DGCN that extract global spatiotemporal

features, better than [10, 32, 33] that just extract spatial fea-

tures. Recently, Sofianos et al. [40] proposed a method that

can also extract spatiotemporal features by GCNs. The dif-

ference is that we achieve that by only two GCNs while [40]

uses much more GCNs.

Transformer [11, 44] has also been adapted to tackle the

problem of human motion prediction [1,4]. Similar to GCN,

the self-attention mechanism of Transformer can compute

pairwise relations of joints. In this paper, we choose GCN

as the buildingblock. We show that our proposed method

outperforms the existing Transformer-based approaches in

terms of both running time and accuracy.

3. Methodology
Let S1:Th

= {P1, P2, · · · , PTh
} denote an observed

pose sequence of length Th where Pi is a pose at time i,

and STh+1:Th+Tf
be the future pose sequence of length Tf .

Instead of directly mapping from S1:Th
to STh+1:Th+Tf

,

we follow [10, 32, 33] to repeat the last observed pose

PTh
, Tf times and append them to S1:Th

, obtaining the

padded input sequence [S1:Th
;PTh

, · · · , PTh
] of length L

with L = Th + Tf . Then our aim becomes to find a map-

ping from the padded sequence to its ground truth S1:L =
[S1:Th

;STh+1:Th+Tf
].

3.1. Multi-Stage Progressive Prediction Framework

For the above purpose, we design a multi-stage progres-

sive prediction framework as shown in Figure 2 (the two-

stage framework shown in Figure 1 (b) is a special case of

the multi-stage framework), which contains T stages repre-

sented by Φ1,Φ2, · · · ,ΦT respectively. These stages per-

form the following subtasks step by step:

Ŝ1
1:L = Φ1([S1:Th

;PTh
, · · · , PTh

]),

Ŝi
1:L = Φi([S1:Th

; Ŝi−1
Th+1:L]), i = 2, 3, · · · , T ,

(1)

in which Ŝi
1:L is the output of stage i. The input to every

stage is composed of two parts: the observed poses S1:Th

and the initial guess. For the first stage, the initial guess

is PTh
, · · · , PTh

. For stage i, the initial guess is Ŝi−1
Th+1:L

which is the future part of the output at the previous stage.

Recall that for the two-stage prediction framework as

shown in Figure 1 (b), the mean pose of future poses

is used as the intermediate target, while for the multi-
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stage framework we resort to smoothing ST
1:L (= S1:L) re-

cursively to obtain ST−1
1:L , ST−2

1:L , · · · , S1
1:L, and use them

as the intermediate targets of the corresponding stage

networks ΦT ,ΦT−1, · · · ,Φ1 to guide the generation of

ŜT
1:L, Ŝ

T−1
1:L , · · · , Ŝ1

1:L (in reverse order), respectively. The

adopted smoothing algorithm is Accumulated Average

Smoothing (AAS) which is introduced in the following.

Let each pose have M joints, and each joint be a point

in the D-dimensional space. For a pose sequence ST
1:L, we

have M × D trajectories: {Tj |j ∈ [1,M × D]}, and each

trajectory Tj is composed of the same coordinate across all

the poses: Tj = {xi
j |i ∈ [1, L]}. Since all of the trajectories

are smoothed by the same method, we omit the subscript j
in the following without loss of generality.

Note that the trajectory contains two parts: the historical

part {xi|i ∈ [1, Th]} and the future part {xi|i ∈ [Th +
1, Th + Tf ]}. We just need to smooth the future part and

keep the historical part unchanged. The AAS algorithm is

defined as:

x̄i =
1

i− Th

i∑

k=Th+1

xk, ∀i ∈ [Th + 1, Th + Tf ]. (2)

That is, the smoothed value of a point on a curve is the

average of all the previous points on the curve. We apply

AAS to ST
1:L recursively, obtaining ST−1

1:L , ST−2
1:L , · · · , S1

1:L.

Figure 3 shows results by AAS and compares them with

those by a Gaussian filter (standard normal distribution)

with filtering window size of 21. In each group of curves,

the gray curve represents a historical trajectory, the black is

the ground truth trajectory in the future, and the dash line

is obtained by padding the last observed data. From dark to

light blue are the recursively smoothed results. Compared

with Gaussian filter, AAS has two advantages. (1) AAS pre-

serves the continuity between the historical and future tra-

jectories, while Gaussian filter yields jumps at the junctions.

(2) AAS has stronger smoothing ability than Gaussian filter.

As can be seen, the results by AAS evenly and steadily ap-

proach the dash line. The dash line is a good guess of the

smoothest curve of AAS. Meanwhile, each curve by AAS is

a good guess of the curve at the previous smoothing level.

From this point, AAS is very suitable for preparing inter-

mediate targets for our multi-stage framework. In contrast,

the results of Gaussian filter are concentrated together, and

all of them are far from the dash line.

3.2. Encoder-Copy-Decoder Stage Prediction Net-
work Comprising S-DGCN and T-DGCN

In this section, we introduce our network that fulfills the

prediction task at each stage, the overview of which is illus-

trated at the bottom-left of Figure 2. Our network is totally

based on GCNs. Specifically, we propose S-DGCN and T-

DGCN that extract global spatial and temporal interactions

Gaussian AAS Gaussian AAS

Jump
Distance is Large

Smoothing ability

Low High

Smooth

Continuity

Figure 3. Comparisons between AAS and Gaussian filter on re-

cursively smoothing effects. In each figure, left shows results of

Gaussian filter, right shows results of AAS. The gray curve indi-

cates a historical trajectory, the black is the ground truth future

trajectory, and the curves from dark to light blue are recursively

smoothed results. The left figure shows that AAS keeps the con-

tinuity between the historical and smoothed curves while Gaus-

sian filter does not. The right figure shows that AAS has stronger

smoothing ability than Gaussian filter.

between joints. Based on S-DGCN and T-DGCN, we build

an Encoder-Copy-Decoder prediction network. In the fol-

lowing, we introduce them one by one.

S-DGCN. By Dense GCN, i.e. DGCN, we mean the pro-

cessed graph is fully connected. S-DGCN defines a spa-

tially dense graph convolution applied to a pose, and the

graph convolution is shared by all the poses of a pose se-

quence. Let X ∈ R
L×M×F be a pose sequence where L

is the length of the sequence, M is the number of joints of

a pose, and F indicates the number of features of a joint.

Defining a learnable adjacency matrix As ∈ R
M×M the

elements of which measure relationships between pairs of

joints of a pose, S-DGCN computes:

X ′ = S-DGCN(X) = AsXW s, (3)

where W s ∈ R
F×F ′

indicates the learnable parameters of

S-DGCN, and X ′ ∈ R
L×M×F ′

is the output of S-DGCN.

T-DGCN. T-DGCN defines a temporal graph convolu-

tion applied to a joint trajectory, and the graph convolution

is shared by all the trajectories. We first transpose the first

two dimensions of X ′ to obtain Y ∈ R
M×L×F ′

. Defining a

learnable adjacency matrix At ∈ R
L×L measuring weights

between pairs of joints of a trajectory, T-DGCN computes:

Y ′ = T-DGCN(Y ) = AtYW t, (4)

where W t ∈ R
F ′×F ′

is the learnable parameters of T-

DGCN, and Y ′ ∈ R
M×L×F ′

. Finally, we transpose the

first two dimensions back to make Y ′ ∈ R
L×M×F ′

.

GCL. As shown at the bottom-right of Figure 2, we de-

fine a Graph Convolutional Layer (GCL) as a unit that se-

quentially executes S-DGCN, T-DGCN, batch normaliza-

tion [20], tanh, and dropout [41]. GCL can extract spa-

tiotemporal features over the global receptive field of the

whole pose sequence.

Encoder. As shown in Figure 2, the encoder is a residual

block containing a GCL and multiple Graph Convolutional
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Blocks (GCB). The first GCL projects the input from the

pose space of RL×M×D to the feature space of RL×M×F .

We set F = 16 in this paper. Each GCB is a residual block

containing two GCLs. They always work in the feature

space. In order to add the global residual connection for

the encoder, we employ a 1 × 1 convolutional layer with

16 kernels that maps the input into the space of RL×M×F

which is then added to the output of the GCBs.

Copy. The encoder outputs a feature map in the space

of RL×M×F . We duplicate it and append the copy to the

original feature map along the trajectory direction, obtain-

ing a feature map of size R
2L×M×F which is used as the

input to the decoder. We find in practice that the “copy” op-

erator improves the prediction performance. The effective-

ness of “copy” can be intuitively explained by the fact that

the “copy” operator doubles the size of the latent space, en-

abling more parameters in the decoder to ensure more suf-

ficient feature fusing.

Decoder. The decoder is a residual block containing

multiple GCBs and a pair of S-DGCN and T-DGCN. The

GCBs work in the feature space of F = 16, while the fi-

nal S-DGCN and T-DGCN project the features back into

the pose space. Since the input to the decoder is of length

2L, the adjacency matrix At of all the T-DGCNs, including

those in the GCBs, are of size R
2L×2L. In order to add the

residual connection for the decoder, a 1 × 1 convolutional

layer with 3 kernels is applied to the input of the decoder.

The result of the decoder is of length 2L, while we just re-

tain the front L poses as the final result.

3.3. Loss Function

We apply L1 loss on all the outputs: L =
∑T

i=1 ‖Ŝi
1:L −

Si
1:L‖2.

4. Experiments

4.1. Datasets

Human3.6M1 [21] has 15 types of actions performed by

7 actors (S1, S5, S6, S7, S8, S9, and S11). Each pose has 32

joints in the format of exponential map. We convert them

to 3D coordinates and angle representations, and discard 10

redundant joints. The global rotations and translations of

poses are excluded. The frame rate is downsampled from

50fps to 25fps. S5 and S11 are used for testing and valida-

tion respectively, while the remaining are used for training.

CMU-MoCap has 8 human action categories. Each pose

contains 38 joints in the format of exponential map which

are also converted to 3D coordinates and angle representa-

tions. The global rotations and translations of the poses are

1The authors Tiezheng Ma and Yongwei Nie signed the license and pro-

duced all the experimental results in this paper. Meta did not have access

to the Human3.6M dataset.

excluded too. Following [10,33], we keep 25 joints and dis-

card the others. The division of training and testing datasets

is also the same as [10, 33].

3DPW [45] is a challenging dataset containing human

motion captured from both indoor and outdoor scenes. The

poses in this dataset are represented in the 3D space. Each

pose contains 26 joints and 23 of them are used (the other 3

are redundant).

4.2. Comparison Settings

Evaluation Metrics. We train and test on both coordi-

nate and angle representations. Due to the space limit, we

only show the results measured by 3D coordinates in this

paper. The results on angle can be found in the supple-

mental material. We use the Mean Per Joint Position Error

(MPJPE) as our evaluation metric for 3D errors, and use

Mean Angle Error (MAE) for angle errors.

Test Scope. We note that the works of [28, 33, 34] ran-

domly take 8 samples per action for test, Mao et al. [32]

randomly take 256 samples per action, and Dang et al. [10]

take all the samples for test. We follow Dang et al. [10] to

test on the whole test dataset in this paper. The comparison

results on the random 8 and 256 test sets are provided in the

supplemental material.

Lengths of Input and Output Sequences. Following

[10], the input length is 10 and the output is 25 for Hu-

man3.6M and CMU-MoCap, respectively. Following [33],

the input are 10 poses and the output are 30 poses for 3DPW.

Implementation Details Our multi-stage framework

contains T = 4 stages. In each Encoder-Copy-Decoder

prediction network, the encoder contains 1 GCB and the de-

coder contains 2 GCBs. The framework contains 12 GCBs

in total. We employ Adam as the solver. The learning rate

is initially 0.005 and multiplied by 0.96 after each epoch.

The model is trained for 50 epochs with batchsize of 16.

The devices we used are an NVIDIA RTX 2060 GPU and

an AMD Ryzen 5 3600 CPU. For more implementation de-

tails, please refer to the supplemental material.

4.3. Comparisons with previous approaches

We compare our method with Res. Sup. [34], DMGNN

[28], LTD [33], and MSR [10] on these three datasets 2.

Res. Sup. is an early RNN based approach. DMGNN uses

GCN to extract features and RNN for decoding. LTD relies

on GCN totally and performs the prediction in the frequency

domain. MSR is a recent method executing LTD in a mul-

tiscale fashion. All these methods are previous state-of-the-

arts which release their code publicly. For fair comparison,

we use their pre-trained models or re-train the models using

their default hyper-parameters.

2We strictly comply with the agreement of using all the datasets for

non-commercial research purpose only.
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Table 1. Comparisons of short-term prediction on Human3.6M. Results at 80ms, 160ms, 320ms, 400ms in the future are shown. The best

results are highlighted in bold, and the second best are marked by underline.

scenarios walking eating smoking discussion
millisecond 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms
Res. Sup. 29.4 50.8 76.0 81.5 16.8 30.6 56.9 68.7 23.0 42.6 70.1 82.7 32.9 61.2 90.9 96.2
DMGNN 17.3 30.7 54.6 65.2 11.0 21.4 36.2 43.9 9.0 17.6 32.1 40.3 17.3 34.8 61.0 69.8

LTD 12.3 23.0 39.8 46.1 8.4 16.9 33.2 40.7 7.9 16.2 31.9 38.9 12.5 27.4 58.5 71.7
MSR 12.2 22.7 38.6 45.2 8.4 17.1 33.0 40.4 8.0 16.3 31.3 38.2 12.0 26.8 57.1 69.7
Ours 10.2 19.8 34.5 40.3 7.0 15.1 30.6 38.1 6.6 14.1 28.2 34.7 10.0 23.8 53.6 66.7

scenarios directions greeting phoning posing
millisecond 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms
Res. Sup. 35.4 57.3 76.3 87.7 34.5 63.4 124.6 142.5 38.0 69.3 115.0 126.7 36.1 69.1 130.5 157.1
DMGNN 13.1 24.6 64.7 81.9 23.3 50.3 107.3 132.1 12.5 25.8 48.1 58.3 15.3 29.3 71.5 96.7

LTD 9.0 19.9 43.4 53.7 18.7 38.7 77.7 93.4 10.2 21.0 42.5 52.3 13.7 29.9 66.6 84.1
MSR 8.6 19.7 43.3 53.8 16.5 37.0 77.3 93.4 10.1 20.7 41.5 51.3 12.8 29.4 67.0 85.0
Ours 7.2 17.6 40.9 51.5 15.2 34.1 71.6 87.1 8.3 18.3 38.7 48.4 10.7 25.7 60.0 76.6

scenarios purchases sitting sittingdown takingphoto
millisecond 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms
Res. Sup. 36.3 60.3 86.5 95.9 42.6 81.4 134.7 151.8 47.3 86.0 145.8 168.9 26.1 47.6 81.4 94.7
DMGNN 21.4 38.7 75.7 92.7 11.9 25.1 44.6 50.2 15.0 32.9 77.1 93.0 13.6 29.0 46.0 58.8

LTD 15.6 32.8 65.7 79.3 10.6 21.9 46.3 57.9 16.1 31.1 61.5 75.5 9.9 20.9 45.0 56.6
MSR 14.8 32.4 66.1 79.6 10.5 22.0 46.3 57.8 16.1 31.6 62.5 76.8 9.9 21.0 44.6 56.3
Ours 12.5 28.7 60.1 73.3 8.8 19.2 42.4 53.8 13.9 27.9 57.4 71.5 8.4 18.9 42.0 53.3

scenarios waiting walkingdog walkingtogether average
millisecond 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms
Res. Sup. 30.6 57.8 106.2 121.5 64.2 102.1 141.1 164.4 26.8 50.1 80.2 92.2 34.7 62.0 101.1 115.5
DMGNN 12.2 24.2 59.6 77.5 47.1 93.3 160.1 171.2 14.3 26.7 50.1 63.2 17.0 33.6 65.9 79.7

LTD 11.4 24.0 50.1 61.5 23.4 46.2 83.5 96.0 10.5 21.0 38.5 45.2 12.7 26.1 52.3 63.5
MSR 10.7 23.1 48.3 59.2 20.7 42.9 80.4 93.3 10.6 20.9 37.4 43.9 12.1 25.6 51.6 62.9
Ours 8.9 20.1 43.6 54.3 18.8 39.3 73.7 86.4 8.7 18.6 34.4 41.0 10.3 22.7 47.4 58.5

Table 2. Comparisons of long-term prediction on Human3.6M. Results at 560ms and 1000ms in the future are shown.
scenarios walking eating smoking discussion directions greeting phoning posing

millisecond 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms
Res. Sup. 81.7 100.7 79.9 100.2 94.8 137.4 121.3 161.7 110.1 152.5 156.1 166.5 141.2 131.5 194.7 240.2
DMGNN 73.4 95.8 58.1 86.7 50.9 72.2 81.9 138.3 110.1 115.8 152.5 157.7 78.9 98.6 163.9 310.1

LTD 54.1 59.8 53.4 77.8 50.7 72.6 91.6 121.5 71.0 101.8 115.4 148.8 69.2 103.1 114.5 173.0
MSR 52.7 63.0 52.5 77.1 49.5 71.6 88.6 117.6 71.2 100.6 116.3 147.2 68.3 104.4 116.3 174.3
Ours 48.1 56.4 51.1 76.0 46.5 69.5 87.1 118.2 69.3 100.4 110.2 143.5 65.9 102.7 106.1 164.8

scenarios purchases sitting sittingdown takingphoto waiting walkingdog walkingtogether average
millisecond 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms
Res. Sup. 122.7 160.3 167.4 201.5 205.3 277.6 117.0 143.2 146.2 196.2 191.3 209.0 107.6 131.1 97.6 130.5
DMGNN 118.6 153.8 60.1 104.9 122.1 168.8 91.6 120.7 106.0 136.7 194.0 182.3 83.4 115.9 103.0 137.2

LTD 102.0 143.5 78.3 119.7 100.0 150.2 77.4 119.8 79.4 108.1 111.9 148.9 55.0 65.6 81.6 114.3
MSR 101.6 139.2 78.2 120.0 102.8 155.5 77.9 121.9 76.3 106.3 111.9 148.2 52.9 65.9 81.1 114.2
Ours 95.3 133.3 74.4 116.1 96.7 147.8 74.3 118.6 72.2 103.4 104.7 139.8 51.9 64.3 76.9 110.3
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Figure 4. Advantage analysis (Human3.6M). (a) The advantage of our method is most significant at 400ms. (b) The advantage of our

method is most significant for the action of “walking dog”. (c) The advantage per joint is illustrated. The darker the color, the greater the

advantage of our method.

Human3.6M. Table 1 shows the quantitative compar-

isons of short-term prediction (less than 400ms) on Hu-

man3.6M between our method and the above four ap-

proaches. Table 2 shows the comparisons of long-term pre-

diction (more than 400ms but less than 1000ms) on Hu-

man3.6M. In most cases, our results are better than those of

the compared methods. We show and compare the perfor-

mance of different methods by statistics in Figure 4. In Fig-

ure 4 (a) and (b), we treat LTD as the baseline, and subtract

the prediction errors of MSR and our method from those of

LTD. In (a), the relative average prediction errors with re-

spect to LTD at every future timestamp are plotted. As can

be seen, MSR is better than LTD, while our method is much

better than MSR. Our advantage is the most significant at
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Table 3. CMU-MoCap: comparisons of average prediction errors.

millisecond 80ms 160ms 320ms 400ms 560ms 1000ms

Res. Sup. 24.0 43.0 74.5 87.2 105.5 136.3

DMGNN 13.6 24.1 47.0 58.8 77.4 112.6

LTD 9.3 17.1 33.0 40.9 55.8 86.2

MSR 8.1 15.2 30.6 38.6 53.7 83.0

Ours 7.6 14.3 29 36.6 50.9 80.1

Table 4. 3DPW: comparisons of average prediction errors.

millisecond 200ms 400ms 600ms 800ms 1000ms

Res. Sup. 113.9 173.1 191.9 201.1 210.7

DMGNN 37.3 67.8 94.5 109.7 123.6

LTD 35.6 67.8 90.6 106.9 117.8

MSR 37.8 71.3 93.9 110.8 121.5

Ours 29.3 58.3 79.8 94.4 104.1

Table 5. Time and mode size comparisons.

Method Train(Per batch) Test(Per batch) Model Size

DMGNN [28] 473ms 85ms 46.90M

LTD [33] 114ms 30ms 2.55M

MSR [10] 191ms 57ms 6.30M

Our 145ms 43ms 1.74M

400ms. In (b), the relative average prediction errors with

respect to LTD for every action category are plotted. The

advantage of our method compared with LTD and MSR is

large, and for the action of “walking dog” the advantage is

the most significant. In (c), we plot the advantage per joint

of our method over LTD and MSR. The darker the color, the

higher the advantage. As can be seen, our method achieves

higher performance gain on limbs, especially on hands and

feet. In Figure 5, we show an example of the predicted poses

of different methods. With the increase of the forecast time,

the result of our method becomes more and more better than

those of the others.

CMU-MoCap and 3DPW. Table 3 and Table 4 show

the comparisons on CMU-MoCap and 3DPW respectively.

Due to space limit, we only show the average prediction

errors at every timestamp. More detailed tables are pro-

vided in the supplementary material. On the two datasets,

our method also outperforms the compared approaches. Es-

pecially, for the challenging dataset 3DPW, our advantage

is very significant.

Time and Model Size Comparisons. As seen in Table

5, our model size is smaller than LTD (both models having

12 GCN blocks) as we use a smaller latent feature dimen-

sion than LTD (16 vs. 256). Our model is slightly slower

than LTD due to the additional computations of intermedi-

ate losses and AAS, while faster than all the other methods.

4.4. Ablation Analysis

We conduct ablation studies to analyze our method

in depth. All experimental results are obtained on Hu-

man3.6M.

40 200 440 840 Time(ms)

GT

Ours

MSR

LTD

DMGNN

Res. Sup.

Figure 5. Visualization of predicted poses of different methods on

a sample of Human3.6M.

Architecture. Several design choices contribute to the

effectiveness of our method: (1) the multi-stage learn-

ing framework, (2) the intermediate supervisions, (2) the

Encoder-Copy-Decoder prediction network, and (4) the

“Copy” operator. Table 6 shows the ablation experiments

on different variants of the full model. The full model has

4 stages each containing 3 GCBs. There are 12 GCBs in

total. The average prediction error is 65.02. (1) To show

the effectiveness of “multi-stage”, we test the case when

T = 1, i.e., there is only one Encoder-Copy-Decoder net-

work which however has 12 GCBs with 6 GCBs in the en-

coder and 6 in the decoder. The prediction error becomes

67.48 which is a very large performance drop. (2) We use

T = 4 stages but remove the losses imposed on the interme-

diate outputs. The prediction error becomes 67.07, demon-

strating the necessity of the intermediate supervisions. (3)

In the third experiment, we use the ground truth (GT) to

supervise all the intermediate outputs, which yields the pre-

diction error of 66.11 on average. (4) We use LTD [33]

instead of the proposed Encoder-Copy-Decoder network to

fulfill the task at each stage. The prediction error increases

from 65.02 to 67.15. (5) We replace S-DGCN and T-DGCN

by ST-GCN [47]. The prediction error drastically increases

from 65.02 to 67.97. (6) Finally, we remove the “Copy” op-

erator in the middle of the Encoder-Copy-Decoder network,

while yields a slightly increase of the prediction error from

65.02 to 65.99.

Number of stages. In Figure 6 (a), we conduct ablations

about T from 1 to 6. For different T , the corresponding

frameworks all contain 12 GCBs distributed in each stage

network evenly. For example, if T = 3, there will be 4

GCBs in each stage network. The experiments tell that the

best performance is obtained when T = 4.

Direction and number of “Copy”. In the default set-

ting of the Encoder-Copy-Decoder network, we copy the

output of the encoder just one time and paste it along the

temporal direction. In Table 7, we conduct ablation studies

on the number of copying and the direction of pasting. As

can be seen, copying once or three times is better than not

copying. But copying three times does not bring more per-
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Table 6. Ablations on architecture. Due to the space limit, please refer to the main text for the detailed descriptions of the experiments.

80ms 160ms 320ms 400ms 560ms 720ms 880ms 1000ms average

Single stage prediction 11.95 24.47 49.69 60.94 79.56 93.93 105.86 113.41 67.48

Without intermediate loss 11.42 24.02 49.73 60.94 79.49 93.45 105.12 112.42 67.07

Supervised by GT at all stages 11.04 23.49 48.83 59.89 78.13 92.20 103.87 111.46 66.11

Replacing Encoder-Copy-Decoder by LTD [33] 11.11 24.01 49.48 60.67 79.34 93.91 105.55 113.10 67.15

Replacing S-DGCN, T-DGCN by ST-GCN [47] 11.84 25.78 51.87 62.73 80.23 93.61 105.00 112.72 67.97

Without “Copy” 10.53 23.25 48.89 59.99 78.16 92.34 103.70 111.04 65.99

Full model 10.33 22.74 47.45 58.46 76.91 91.20 102.77 110.31 65.02

Table 7. Ablations on “Copy” times and dimension.
Copy times Error Model size Copy dimension Error Model size

No copy 65.99 1.06M Copy in channel 65.75 1.67M

Copy once(Ours) 65.02 1.74M Copy in spatial 65.21 1.69M

Copy three times 65.35 3.28M Copy in temporal(Ours) 65.02 1.74M

Table 8. Comparisons between Gaussian filter and Accumulated

Average Smoothing (AAS).

80ms 160ms 320ms 400ms 560ms 1000ms average

Gaussian-15 12.0 24.4 49.8 60.9 78.7 111.0 66.6

Gaussian-21 11.5 23.7 48.8 60.0 78.5 112.2 66.5

AAS 10.3 22.7 47.4 58.5 76.9 110.3 65.0

formance gain than copying once. Copying once along the

spatial dimension, the channel dimension and the tempo-

ral dimension are all better than not copying, while copying

along the temporal dimension yields the best result.

AAS vs. Gaussian filter. In Table 8, we compare be-

tween Accumulated Average Smoothing (AAS) and Gaus-

sian filter. “Gaussian-x” means the filtering window size

is x. It can be seen that AAS performs better than the two

Gaussian filters.

AAS vs. Mean. Recall that for our two-stage framework,

i.e., the one shown in Figure 1 (b), we can use Mean-x
as the intermediate target. For the same framework, we

can also use SL−1
1:L as the intermediate target. We call the

two schemes “Our two-stage with Mean-x” and “Our multi-

stage when T = 2”, respectively, and compare between

them in Figure 6 (b). As can be seen, “Our multi-stage

when T = 2” is better than both “Our two-stage with Mean-

5” and “Our two-stage with Mean-25”, which demonstrate

that the smoothed result by AAS is better than the global

mean of the future poses when used as the intermediate tar-

get. “Our multi-stage full model” when T = 4 achieves

even better results.

4.5. Limitations and Future Works

Our method has two limitations: (1) The average predic-

tion of LTD [33] is 68.08. Ours is 65.02. In contrast, “LTD

with Mean-25” in Figure 1 (a) is 29.76. We still have much

room to reduce the absolute prediction error. In the future,

one can investigate more effective intermediate targets. (2)

Our method requires a set of poses as input, while in real

applications the poses may be occluded. How to deal with

(a) (b)
Figure 6. (a) Ablation on the number of stages. The best result is

achieved when T = 4. (b) Comparisons between using Mean and

AAS as intermediate target. LTD [33] is the baseline. We subtract

the prediction errors of LTD from those of the compared models.

“Our two-stage with Mean-x” means using “Mean-x” as the inter-

mediate target in the two-stage network. “Our multi-stage” means

using the smoothed results by AAS as the intermediate targets.

incomplete observations is worthy of further study.

5. Conclusion

We have presented a multi-stage human motion predic-

tion framework. The key to the effectiveness of the frame-

work is that we decompose the originally difficult predic-

tion task into many subtasks, and ensure each subtask is

simple enough. We achieve this by taking the recursively

smoothed versions of the target pose sequence as the pre-

diction targets of the subtasks. The adopted Accumulated

Average Smoothing strategy guarantees that the smoothest

intermediate target approaches to the last observed data, and

the intermediate target of the current stage is a good guess

of the next stage. Besides that, we have proposed the novel

Encoder-Copy-Decoder prediction network, the S-DGCN

and T-DGCN of which can extract spatiotemporal features

effectively while the “Copy” operator further enhances the

capability of the decoder. We have conducted extensive ex-

periments and analysis demonstrating the effectiveness and

advantages of our method.
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