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Abstract

It is challenging to annotate large-scale datasets for su-
pervised video shadow detection methods. Using a model
trained on labeled images to the video frames directly may
lead to high generalization error and temporal inconsis-
tent results. In this paper, we address these challenges
by proposing a Spatio-Temporal Interpolation Consistency
Training (STICT) framework to rationally feed the unla-
beled video frames together with the labeled images into
an image shadow detection network training. Specifically,
we propose the Spatial and Temporal ICT, in which we de-
fine two new interpolation schemes, i.e., the spatial interpo-
lation and the temporal interpolation. We then derive the
spatial and temporal interpolation consistency constraints
accordingly for enhancing generalization in the pixel-wise
classification task and for encouraging temporal consistent
predictions, respectively. In addition, we design a Scale-
Aware Network for multi-scale shadow knowledge learn-
ing in images, and propose a scale-consistency constraint
to minimize the discrepancy among the predictions at dif-
ferent scales. Our proposed approach is extensively val-
idated on the ViSha dataset and a self-annotated dataset.
Experimental results show that, even without video labels,
our approach is better than most state of the art supervised,
semi-supervised or unsupervised image/video shadow de-
tection methods and other methods in related tasks. Code
and dataset are available at https://github.com/
yihong-97/STICT.

*Corresponding author.
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Figure 1. Shadow maps produced by our image shadow detection
network SANet (a) trained on labeled images and (b) trained on
both labeled images and unlabeled videos with STICT.

1. Introduction

Shadow detection is an important problem for many com-
puter vision and graphics tasks, and has drawn interest in
a wide range of vision applications [4, 20, 40, 41], such as
object recognition [13, 23–25], virtual reality scene gen-
eration, light position estimation and object shape per-
ception. Recently, shadow detection has achieved signif-
icant progress [6, 7, 12, 19, 35, 43, 45] on image bench-
mark datasets [33, 35, 44] due to the development of deep
Convolutional Neural Networks (CNNs), while lacking of
large-scale annotated datasets is the main reason impending
the applications of deep learning-based methods in video
shadow detection (VSD).

How to rationally feed the unlabeled video samples into
the network training, and transfer knowledge from labeled
images to videos efficiently is critical for promoting the ca-
pability of deep learning-based methods on unsupervised
data. However, it is rare and challenging for existing semi-
supervised methods to transfer the shadow patterns in im-
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ages (supervised) to videos (unsupervised) with end-to-end
training, small generalization error, and temporal-consistent
predictions meanwhile.

In this paper, we propose a Spatio-Temporal Interpo-
lation Consistency Training (STICT) framework for the
image-to-video shadow knowledge transfer task, in which
the unlabeled video frames together with the labeled im-
ages can be rationally fed into a Scale-Aware shadow detec-
tion Network (SANet) for an end-to-end training. Accord-
ingly, we propose a spatial interpolation consistency con-
straint, a temporal interpolation consistency constraint, and
a scale consistency constraint to guide the network training
for improving generalization, producing temporal smooth
and scale consistent results. As seen from Fig.1, the detec-
tion results can be largely improved with the STICT.

To enhance the model generalization ability in our pixel-
wise classification task, we propose the Spatial ICT inspired
by the semi-supervised image classification method Inter-
polation Consistency Training (ICT) [34]. ICT encourages
the prediction at a random interpolation of two unlabeled
images to be consistent with the interpolation of the predic-
tions at those two images. As proved in [34], the samples
lying near the class boundary are beneficial to enforce the
decision boundary to traverse the low-density distribution
regions for better generalization. Unlike the random inter-
polation between images in RGB space that used in [34],
we propose the spatial interpolation that is the interpolation
of two uncorrelated pixels in the feature space. Our spatial
interpolation is motivated by the intuitions 1) the interpola-
tions of uncorrelated samples are more likely to locate near
the class boundary to smooth the decision boundaries; 2) the
interpolations of semantic pixels are more meaningful for
pixel-wise classification task. Then, we derive a spatial in-
terpolation consistency constraint accordingly to guide the
network training for generalization improvement.

To encourage the temporal consistent predictions, we
propose the Temporal ICT to track the prediction of the
same pixel among sequential frames, in which we propose
to use the temporal interpolation between two consecutive
frames along the time-axis via optical flow. Then, we de-
rive a temporal interpolation consistency constraint to guide
the network training for producing temporal smooth results.
Comparing with other methods that use multi-frame fea-
tures or correlations among frames for temporal consis-
tency, our method guides the network training by this ex-
tra constraint, and processes each frame independently for
inference without introducing computation overhead. We
would highlight that the spatial and temporal interpolations
are conducted during training process, which makes our
framework quite simple for inference.

Considering that the shadows in videos usually exhibit
large changes in scale, we design a Scale-Aware Network
(SANet) as the single-frame network for image shadow

knowledge learning in the STICT framework. Unlike the
traditional encoder-decoder network for shadow feature
learning, SANet is designed as a encoder-decoder-refiner
structure with a feature fusion module and a detail atten-
tive module, to learn image shadow knowledge at different
scales. We also propose a scale-consistency constraint ac-
cordingly to minimize the discrepancy among the predic-
tions at different scales.

We summarize our contributions as following:
(1) We propose a STICT framework for image-to-video

shadow detection task, which is rarely considered in the ex-
isting semi-supervised methods. All the labeled images and
unlabeled video frames can be rationally fed into an image
shadow detection network for an end-to-end training, which
guarantees a compact and real-time model for inference.

(2) We propose the Spatial and Temporal ICT, in which
we define two new interpolation schemes, the spatial inter-
polation and the temporal interpolation, for better general-
ization in the pixel-wise classification task and for tempo-
ral consistency, respectively. We design the SANet as the
single-frame network in STICT for multi-scale shadow fea-
ture learning, and propose a scale consistency constraint ac-
cordingly for obtaining accurate shadow maps.

(3) We annotate a challenging dataset for VSD task. Ex-
perimental results on ViSha and our self-annotated dataset
show that our approach performs better than most of the ex-
isting SOTA supervised/semi-supervised/unsupervised im-
age and video methods.

2. Related Work
Image Shadow Detection. Fully-supervised deep

learning-based image shadow detection [6, 12, 19, 43] has
recently achieved significant progress either by learning dis-
criminative features [17,43] or contextual information [12].
Le et al. [19] proposed to use GAN to generate exam-
ples with hard-to-predict cases to enhance the generaliza-
tion ability. Chen et al. [6] proposed a multi-task semi-
supervised network to leverage unlabeled data for better
generalization.

Video Shadow Detection (VSD). Traditional VSD
methods [14,18,22,26,31] tried to identify shadow regions
via statistical model [18, 26] by using hand-crafted fea-
tures, which are sensitive to illumination change. Recently,
Chen et al. [5] annotated the first large-scale dataset (ViSha)
and proposed the triple-cooperative network (TVSD-Net)
for fully-supervised VSD, which utilizes triple parallel net-
works to learn discriminative representations at intra- and
inter-video levels.

Semi-Supervised Learning (SSL). The assumption that
the decision boundary should traverse a low-density path
in the input distribution has inspired many consistency-
regularization SSL methods. They vary in how to choose
the data perturbation/augmentation method to encourage
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Figure 2. The overview of our method. The SANet (see Fig. 3) is used as the student and teacher network to learn accurate shadow
features. During the training phase, the labeled images are fed into the student to obtain the supervised loss Lsup. Before the unlabeled
frames fed into the student and teacher, temporal interpolation is conducted between two sequential frames xt−k

u and xt+k
u to generate

the middle frame xt
u. Then, each of them go through the spatial interpolation module obtaining the original feature map Fu, the locally

shuffled feature map F′
u, and the spatial interpolation feature map Fmix

u in the student and teacher, respectively. The three consistency loss
Lsic, Ltic and Lsc and the Lsup are used to update the student network, while the teacher network is updated via EMA.

the invariant predictions of the unlabeled sample and its per-
turbed one. Some methods augment the unlabeled samples
in the RGB space, e.g., ICT [34], Cutmix [39] and Grid-
Shuffle [3]. Ouali et al. [29] pointed out that the augmenta-
tions in RGB space is difficult to satisfy the cluster assump-
tion for the pixel-wise classification task, and proposed to
apply perturbations to the encoder’s output. Our Spatial ICT
is different from [29] in the perturbation method, as we use
the spatial interpolation to generate new samples lying near
the decision boundary for smoothing the decision boundary
more efficiently than the manual perturbations.

Temporal Consistency. To address the temporal con-
sistency problem, a few methods take the correlations in
the video sequence into account, e.g., by propagating the
features or results to the neighbouring frames using optical
flow [27] or recurrent unit [37], or by obtaining frame fea-
tures using multi-frame information [5], which may lead to
inaccurate results or unbalanced latency. Liu et al. [21] pro-
posed to consider the temporal consistency among frames
as extra constraints during training, and process each frame
independently for compact models and real-time execution.
In this paper, our temporal consistency constraint is derived
from the Temporal ICT, which is different from that in [21].

3. Proposed Method

In this work, we have access to the labeled image set
XL = {(xi

l, y
i
l)}Ni=1 and the unlabeled video frames XU =

{x1
u, · · · , xT

u }. Our method learns a VSD model by feeding

the images and video frames into an image network via a
Mean-Teacher learning scheme [32] (as seen in Fig.2). We
use the SANet as the student (parameterized by θ). The
teacher shares the same structure as that of the student but
is parameterized by θ′, θ′ is an Exponential Moving Av-
erage (EMA) of θ, i.e., θ′t = ηθ′t−1 + (1 − η)θt. During
training, the labeled images are fed into the student SANet
to compute the supervised loss Lsup (Eq.9). The unlabeled
video frames are fed into the teacher and student simulta-
neously for computing the spatial interpolation consistency
loss Lsic (Eq.5), the temporal interpolation consistency loss
Ltic (Eq.8) and the scale consistency loss Lsc (Eq.11).

The total loss for updating θ is the sum of the supervised
loss and the three consistency loss:

Ltotal =

N∑
i=1

Lsup(x
i
l) + β

T∑
t=1

Lcons(x
t
u), (1)

where Lcons(x
t
u) = η1Lsic(x

t
u)+η2Ltic(x

t
u)+η3Lsc(x

t
u),

β, η1, η2 and η3 are the weight parameters. The spatial and
temporal interpolations are only conducted in the training
phase. During the testing procedure, we only utilize the
student network to predict the shadow map for each input
frame independently, thus no computation overhead is in-
troduced for inference.

3.1. Spatial ICT

According to the cluster assumption [34]: the samples
belonging to the same cluster in the input distribution are
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likely to belong to the same class, then it is easy to infer
that comparing with the random interpolation used in [34],
the interpolations between two uncorrelated samples (pos-
sibly belonging to different classes) would be more likely to
locate near the class boundary and be more useful for push-
ing the decision boundary far away from the class bound-
aries. In addition, interpolations of two images in the RGB
space lacking of semantic information is meaningless for
our pixel-wise classification task. Therefore, we propose
the spatial interpolation, which is an interpolation of two
uncorrelated pixels in the feature space. However, it is com-
putational costly to find the most uncorrelated one for each
pixel in the whole feature map. To solve this issue, we
propose an easy plug-in module, called Local Correlation
Shuffle (LCS) as illustrated in Fig.2, to find the most uncor-
related pixel in the d× d local spatial area.

Let Fu ∈ RH×W×C be the feature map of xu, given
a location p in Fu and p′ a neighborhood of it, the LCS
module computes the semantic correlation by

c(p, p′) = Fu(p)Fu(p
′)T . (2)

The above operation will transverse the d× d area centered
on p, and outputs a d2-dimensional correlation vector. By
replacing the centering pixel by the one with the minimum
correlation with it, we can obtain the locally shuffled fea-
ture map F′

u, in which each pixel is the locally most uncor-
related one of the corresponding pixel in Fu.

Then, the spatial interpolation for all the pixels in Fu can
be calculated as the interpolation of Fu and F′

u:

Fmix
u = λs ⊙ Fu + (1− λs)⊙ F′

u, (3)

where λs ∈ RH×W with each element obeys the uniform
distribution in [0, 1], ⊙ is the Hadamard product on each
channel of the feature map. According to the interpolation
consistency constraint in ICT [34], we derive the spatial in-
terpolation consistent constraint as

fθ(F
mix
u ) ≈ λs ⊙ fθ′(Fu) + (1− λs)⊙ fθ′(F′

u). (4)

Accordingly, we get the spatial interpolation consistency
loss that penalizes the difference between the student’s and
the teacher’s predictions by

Lsic(xu) = Φmse(fθ(F
mix
u ),λs⊙fθ′(Fu)+(1−λs)⊙fθ′(F′

u)),
(5)

where Φmse is the mean squared error loss.

3.2. Temporal ICT

Considering the temporal changes between consecutive
frames, we interpolate two consecutive frames along the
time-axis and regularize the student learning to obtain tem-
poral consistent predictions. Specifically, we interpolate the

pixels in unlabeled frames xt−k
u and xt+k

u with optical flow
to generate the middle frame x̂t

u,

x̂t
u = Mixλt(x

t−k
u , xt+k

u )

≈ λtg
(
xt−k
u ,Ft→t−k

)
+ (1− λt)g

(
xt+k
u , Ft→t+k

)
,

(6)

where Ft→t−k and Ft→t+k are optical flow from the x̂t
u

to xt−k
u and xt+k

u respectively, g(·, ·) is the differentiable bi-
linear interpolation function for warping a frame along the
optical flow, λt is a parameter controlling the contribution
of two frames. Then, each pixel in x̂t

u can be seen as the
interpolation of the pixels in xt−k

u and xt+k
u along the time

axis. Note that the tth frame xt
u is already existed in our

problem, and it can be seen as the interpolation between
xt−k
u and xt+k

u naturally. Then, according to Eq.6, we reg-
ularize the student learning by enforcing the following tem-
poral interpolation consistent constraint

fθ(x
t
u) = fθ

(
Mixλt(x

t−k
u , xt+k

u )
)

≈ λtg
(
fθ′(xt−k

u ), Ft→t−k

)
+ (1− λt)g

(
fθ′(xt+k

u ), Ft→t+k

)
.

(7)

Accordingly, we get the temporal interpolation con-
sistency loss that penalizes the difference between the
student’s prediction fθ(x

t
u) and the teacher’s predictions

fθ′(xt−k
u ) and fθ′(xt+k

u ), which is computed as

Ltic(x
t
u) = Φmse

(
fθ(x

t
u), λtg

(
fθ′(xt−k

u ), Ft→t−k

)
+ (1− λt)g

(
fθ′(xt+k

u ), Ft→t+k

))
,

(8)

where λt is set to be 0.5 in this paper, and Ft→t−k and
Ft→t+k can be calculated via a pre-trained optical flow pre-
diction network (i.e., FlowNet2.0 [16]).

3.3. SANet and Scale Consistency Constraint

Scale-Aware Network (SANet). Traditional methods
use the Encoder-Decoder structure to aggregate multi-level
features to produce the final shadow map. However, fea-
tures of different level may have missing and distorted parts
due to downsamplings, upsamplings and noises. To main-
tain the semantic features, complement with the missing de-
tails and refine the distorted features, we design the SANet
with the Feature Fusion Module (FFM), the Detail Attentive
Module (DAM) and the Encoder-Decoder-Refiner (EDR)
structure to obtain accurate shadow maps at multi-scale.

The FFM is designed to keep the semantic information
and enrich the details meanwhile. As seen in Fig.3, FFM
firstly fuses the high-level semantic features (the blue in-
put branch) and low-level detail features (the green input
branch) by element-wise adding, then it takes the selec-
tive fusion strategy by element-wise multiplication to focus
on the semantic and detail features, at high and low level
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Figure 3. The architecture of our SANet.

respectively. Lastly, the high- and low-level features are
complemented with each other by an element-wise adding.
Compared with traditional fusion strategy, FFM can high-
light the semantic features with details.

Addressing the feature distortion and missing caused by
down/upsampling, we propose to add a refiner and feed
the features before the last convolution layer in the decoder
back to the refiner (the yellow branch) for features correct-
ing and refining. Therefore, comparing with the top-down
process in the decoder, the refiner has both the top-down
and bottom-up process. In the top-down process, multi-
level features are aggregated via FFM gradually, and in the
bottom-up process, the aggregated features are fed back to
each level for refining.

DAM firstly fuses the highest and lowest level features
selectively element-wise multiplication to highlight the de-
tails with semantic information, then the fused features are
complemented with the lowest level features, which are fur-
ther fed into the refiner for enhancing details.

We use the above three modules to get an accurate pre-
diction finally (or in Fig.3). With deep supervision at multi-
level, we obtain eight outputs at three scales for an image.
As shown in Fig.3, od,1 ∼ od,3 and or,1 ∼ or,3 are the
multi-scale outputs of decoder and refiner, respectively. od

and or are the final outputs of the decoder and refiner, re-
spectively. We use the pixel position aware loss Lppa [36],
which is the sum of the weighted binary cross entropy loss
and the weighted IoU loss, for supervising each output. The
whole supervised loss is defined as

Lsup =

3∑
i=1

1

2i
(
Ld,i
ppa + Lr,i

ppa

)
+

1

2

(
Ld
ppa + Lr

ppa

)
, (9)

where Ld,i
ppa and Lr,i

ppa are the loss on the ith scale of de-

coder and refiner, respectively, 1
2i is the weight of output at

different scales, and Ld
ppa and Lr

ppa are the loss on the final
output of decoder and refiner, respectively.

Scale consistency constraint. To reduce the influence
of noise on the output of each scale, we introduce the scale
consistency constraint by minimizing the discrepancy (i.e.,
variance) among the predictions at different scales. For each
unlabeled image xu, we use the refiner’s outputs or,1 ∼
or,3 as the multi-scale results, then we get the teacher’s
and student’s predictions {fs

θ′(xu)}3s=1 and {fs
θ (xu)}3s=1.

To reduce the variance among the predictions at different
scales, we propose to minimize the difference between the
teacher’s average prediction and that of the student at all
scales. The teacher’s average prediction is denoted by

fave
θ′ (xu) =

1

3

3∑
s=1

fs
θ′(xu). (10)

Then, the scale consistency loss is defined as

Lsc(xu) =
1

3

3∑
s=1

Φmse(f
s
θ (xu), f

ave
θ′ (xu)). (11)

3.4. Implementation Details

We initialize the backbone of SANet by ResNet-50 [10],
to accelerate the training procedure and reduce the over-
fitting risk, and other parameters in SANet are initialized
as random values. The Adam algorithm is used to optimize
the student network with maximum learning rate 0.0003 for
ResNet-50 backbone and 0.003 for other parts. We also
adopt a linear decay strategy to update learning rate. The
mini-batch size is set to be 4. Moreover, instead of mix-
ing labeled and unlabeled samples together in a mini-batch
as that in [6], we process mini-batches from the source
and target datasets separately so that batch normalization
uses different normalization statistics for each domain dur-
ing training. The decay parameter η in EMA is empirically
set as 0.999. For the consistency loss weight β, according
to [32], we use the Gaussian ramp-up function for updat-
ing: β(t) = βmaxe

−5(1−t/tmax)
2

, and tmax = 10, βmax

is set to be 1. The consistency loss parameters are set to
be η1 = η2 = η3 = 1, and the parameter k in Eq.8 is set
to be 1. Our implementation is developed using PyTorch
and all the experiments are conducted on a single NVIDIA
GTX 2080Ti GPU, and it takes about 15ms for our method
to predict the shadow map for a frame.

4. Experiments
Datasets. We use the training set in the image shadow

detection benchmark dataset SBU [35] as the labeled im-
ages, and transfer the shadow patterns to ViSha [5] and our
self-collected VIdeo ShAdow Detection dataset (VISAD)
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for evaluating our method1. The SBU dataset is the largest
annotated image shadow dataset with natural scenes, in-
cluding 4,089 training images and 638 testing images.
ViSha is the first dataset for VSD, which contains 120
videos with 11,685 frames, and we use the same data parti-
tioning as that in [5]. VISAD consists of 81 videos belong-
ing to the BDD-100K [38], DAVSOD [8], DAVIS [30] and
FBMS [1, 28], and we divide them into two parts according
to the scenes: the Driving Scenes (VISAD-DS) part and the
Moving Object Scenes (VISAD-MOS) part, denoted as DS
and MOS, respectively. We annotate the cast shadow manu-
ally in 33 videos densely with the LabelImg2. Some details
about DS and MOS are presented in Table 1.

SCD ♯ V / ♯AV ♯ F / ♯AF Resolution
DS BDD 47 / 17 7,953 / 2,881 1280 × 720

MOS
DAVIS 15 / 15 1,047 / 1,047 (540∼1920) × (394∼1080)

DAVSOD 9 / 0 1,134 / 0 640 × 360
FBMS 10 / 1 2,432 / 260 (530∼960) × (360∼540)

Table 1. Some details about our VISAD Dataset. SCD: source
dataset. ♯V: number of videos. ♯AV: number of annotated videos.
♯F: number of frames. ♯AF: number of annotated frames.

Evaluation Metric. Following recent works on shadow
detection, we employ the balance error rate (BER) which
considers both of the detection quality of shadow and non-
shadow regions, to quantitatively evaluate the shadow de-
tection performance. In addition, we follow [5] to employ
three other metric that commonly used in salient object de-
tection, the Mean Absolute Error (MAE), F-measure (Fβ)
and Intersection over Union (IoU), to evaluate the perfor-
mance. In general, a smaller BER and MAE, and a larger
Fβ and IoU indicate a better detection performance.

4.1. Ablation study

We start the ablation study on the important modules
to better understand their behavior and effectiveness on
shadow knowledge learning and transferring. Our ablation
study is conducted on DS as the scenes in DS are very dif-
ferent from that in the SBU, and it is more difficult to trans-
fer knowledge to DS than to the other two datasets.

Labeled Images
Labeled Videos  

(Fine-tuning set)

Labeled Videos  

(Evaluation set)
Unlabeled Videos Evaluation set

DS  / MOS ViShaSBU

A B C D G
Training set

E

Figure 4. Dataset partition in our experiments.

Ablation study on SANet. To evaluate the three pro-
posed modules, EDR, FFM and DAM in the SANet, we
consider three baseline networks. The first baseline is con-
structed by using only the encoder-decoder structure (ED),

1The authors Xiao Lu, Yihong Cao, and Sheng Liu signed the non-
commercial licenses, downloaded the datasets, and produced all the exper-
imental results in this paper. Meta didn’t have access to all these datasets.

2https://pypi.org/project/labelImg/

with a simple fusing structure (upsample+add+conv) re-
placing the FFM structure. The second is to add the FFM
structure in the decoder (ED+FFM), while the third is to
add the refiner structure in the network (ED+FFM+R). Fi-
nally, we consider our SANet with the DAM structure. As
seen the data partition in Fig.4, all the networks are trained
on A and fine-tuned on B, and are tested on C. The upper
part of Table 2 summarizes the results of our SANet and
three baseline networks. From the results, we can see that
FFM has the most effectiveness on promoting the IoU value,
while the refiner structure is most effective on Fβ . Although
DAM is very simple, it is very important and necessary for
learning accurate shadow knowledge in images. The visual-
ization results presented in the left part of Fig.5 demonstrate
the effectiveness of each module on the detection of details
and small scale shadow regions.

ED FFM R DAM MAE↓ Fβ ↑ IoU ↑ BER↓
✓ 0.035 0.569 0.433 15.29
✓ ✓ 0.031 0.616 0.492 13.48
✓ ✓ ✓ 0.029 0.660 0.514 13.21
✓ ✓ ✓ ✓ 0.028 0.706 0.514 13.14

SC TIC SIC MAE ↓ Fβ ↑ IoU ↑ BER ↓

B

0.093 0.501 0.304 17.01
✓ 0.092 0.518 0.311 16.78
✓ ✓ 0.079 0.587 0.320 16.29
✓ ✓ ✓ 0.065 0.646 0.370 14.17

Space Scheme MAE ↓ Fβ ↑ IoU ↑ BER ↓
RGB space RI 0.072 0.447 0.350 14.80

Feature space RI 0.068 0.557 0.356 15.24
SI 0.065 0.646 0.370 14.17

Table 2. The upper part: ablation results on SANet pretrained on
SBU and fine-tuned on DS, R: Refiner. The middle part: ablation
results on STICT, B: basic SANet trained on SBU without fine-
tuning on DS. The lower part: ablation results on interpolation
schemes, RI: random interpolation. SI: spatial interpolation.

Ablation study on three consistency constraints. We
consider four baseline methods, the first method is to ap-
ply the SANet trained on SBU to the target videos directly
(denoted as B). Then we train three models by adding the
three consistency constraints, scale consistency (SC), tem-
poral interpolation consistency (TIC) and spatial interpola-
tion consistency (SIC), to the basic model sequentially. As
seen the data partition in Fig.4, all the networks are trained
on A and D, and are tested on C. The results are reported in
the middle part of Table 2. As we can see, the temporal con-
sistency constraint has significant boosting performance on
reducing MAE and improving Fβ values, while the spatial
consistency constraint has positive effect on improving IoU
and reducing BER values. Visualization results presented
in the right part of Fig.5 also confirm with that of the quan-
titative results, which demonstrates that all components are
necessary for the proposed framework for accurate and tem-
poral consistent shadow maps.

Comparison with other interpolation schemes in Spa-
tial ICT. We also compare the performance of our spa-

3121



Image GT ED ED+FFM ED+FFM+R SANet Video GT B B+SC STICTB+SC+TIC

Figure 5. Visualization results of our ablation study. The left part: ablation results on SANet. The right part: ablation results on STICT.

Method ViSha DS MOS
MAE ↓ Fβ ↑ IoU ↑ BER ↓ MAE ↓ Fβ ↑ IoU ↑ BER ↓ MAE ↓ Fβ ↑ IoU ↑ BER ↓

I.S.

DSC [12] 0.096 0.514 0.434 17.91 0.096 0.507 0.315 18.24 0.070 0.573 0.385 24.18
BDRAR [45] 0.050 0.695 0.484 21.29 0.088 0.504 0.284 15.25 0.130 0.456 0.250 18.79
DSDNet [43] 0.044 0.702 0.518 19.88 0.068 0.408 0.301 18.42 0.083 0.595 0.365 19.62

MTMT-SSL [6] 0.080 0.664 0.500 18.11 0.106 0.521 0.298 19.49 0.085 0.575 0.402 25.61
ECANet [9] 0.032 0.741 0.539 20.06 0.037 0.583 0.379 23.67 0.078 0.565 0.336 28.68
FSDNet [11] 0.047 0.681 0.473 22.86 0.029 0.623 0.377 27.77 0.084 0.634 0.359 28.38
MagNet [15] 0.045 0.685 0.507 20.41 0.038 0.606 0.399 21.56 0.080 0.586 0.341 28.91
SANet(Ours) 0.036 0.752 0.596 13.26 0.028 0.708 0.514 13.14 0.091 0.601 0.341 25.93

I.U. MTMT-Uns. [6] 0.088 0.568 0.457 20.10 0.154 0.309 0.232 20.19 0.081 0.564 0.391 27.01

V.S.
TVSD-Net [5] 0.033 0.757 0.567 17.70 0.032 0.634 0.508 11.55 0.191 0.313 0.227 20.24

GRFP [27] 0.059 0.682 0.531 20.64 0.057 0.611 0.326 18.87 0.115 0.551 0.292 26.76
NS [2] 0.061 0.586 0.405 24.17 0.073 0.495 0.339 19.16 0.115 0.534 0.261 29.60

V.U. RCRNet [37] 0.093 0.490 0.346 26.89 0.067 0.377 0.236 28.76 0.088 0.596 0.356 20.13
STICT(Ours) 0.046 0.702 0.545 16.60 0.065 0.646 0.370 14.17 0.058 0.625 0.409 18.51

Table 3. Comparison results of our method with SOTA methods. I.S.: Image-based supervised methods. I.U.: Image-based method without
labels. V.S.: Video-based supervised methods. V.U.: Video-based method without labels. The best results are highlighted with bold.

tial interpolation (SI) in the feature space with that of the
random interpolation (RI) in the feature space and RGB
space, respectively. The results in the lower part of Table
2 show that interpolation in the feature space is more mean-
ingful than in the RGB space, and our spatial interpolation
is effective for the pixel-wise classification task, which also
demonstrates the effectiveness of our LCS module.

4.2. Comparison with SOTA Methods

We make comparison with several SOTA image/video
based methods on shadow detection and other relative tasks,
including six supervised image shadow detection methods
DSC [12], BDRAR [45], DSDNet [43], ECANet [9] and
FSDNet [11], a semi-supervised method MTMT [6], a su-
pervised VSD method TVSD-Net [5], two video semantic
segmentation methods GRFP [27], NS [2], an image seman-
tic segmentation method MagNet [15], and a video salient
object detection method RCRNet [37] to demonstrate the
effectiveness of our method.

To make the comparisons fair, the data partition is shown
in Fig.4. For the image- and video-based supervised meth-
ods (I.S./V.S.), we train the models on A, and fine-tune them
on B (or labeled E) by reducing the learning rates and it-

erations to 1/10 of those in their published papers. For
the image- and video-based methods without video labels
(I.U./V.U.), we train the models on A and D (or unlabeled
E). For training both of GRFP and NS, we use PSPNet [42]
as the backbone, and pre-train it on SBU to get the single-
frame prediction. Then, we follow the training procedure
as given in the published paper [27] and [2], and use the
training set and the fine-tuning set for training the whole
network while keep other settings unchanged. For training
RCRNet [37] in the unsupervised scenario, we use SBU for
training RCRNet, and the produced shadow maps are used
as the sparse labels to generate the pseudo labels, and then
train the RCRNet+NER model for results refinement.

Quantitative comparisons. Table 3 summarizes the
quantitative results of different methods on the three groups
of experiments. From the results on ViSha and DS, we
can see that the performance of STICT ranks third to our
supervised SANet and the supervised method TVSD-Net,
but it has better performance on BER value and Fβ value
than TVSD-Net on ViSha and DS, respectively. Moreover,
STICT performs much better than other methods in MOS,
and it has 29.3% and 10.3% lower MAE and BER score,
and 6.5% higher IoU score comparing to the second best-

3122



SANet STICTRCRNetECANetBDRAR DSCDSDGTImage MTMT-SSL GRFPMTMT-Uns. NSTVSD-NetFSDNet MagNet

Figure 6. Visual comparison of shadow maps produced by our method and other comparative methods.

performing method. The main reason for the performance
gap between the DS and MOS is that the scenes are very
similar to each other in DS, and a small number of labels can
make the supervised model fit to the whole test set. How-
ever, the scenes in MOS are different from each other, then
a large amount of unlabeled data can make our model gen-
eralize to the test set.

Although our method is not the best one in all the three
datasets, it has more stable performance compared with
other methods, because it has a good way to adapt to differ-
ent domains for improving generalization ability. Since we
train our model without annotations on the video datasets,
the competitive and even superior performance on these
three datasets validates the generalization capability of our
proposed algorithm. Besides, it should be noted that our
supervised SANet performs the best on DS and it beats all
other competitors on IoU and BER values on ViSha, which
demonstrates that our SANet is effective for detection the
shadows in multi-scales.

Qualitative comparisons. We further visually compare
the shadow maps produced by our method and the com-
petitors in Fig. 6. From the images and corresponding la-
bels, we can see some challenging cases are included: the
shadows in low illumination condition (the 1st row), the
small scale shadows (the 3rd row), shadows around com-
plex backgrounds (the 4th row), bright object in shadow re-
gions (the 2nd row) and the dark objects around shadows
(the 3rd row). It is obvious that our STICT and our super-
vised SANet can locate the various scale shadow regions
and discriminate the shadow details from its complex back-
ground accurately. While other methods tend to misrecog-
nize the dark non-shadow regions as shadows and neglect
the small scale regions. The results in the lower part of Fig.
6 also verify that our method can produce temporal con-
sistent predictions. All the visual comparisons demonstrate
the efficiency and generalization capability of our method.

Limitations. From the failure cases of our method pre-
sented in Fig. 7, we can see that our method has failed in
the scenes with large illumination contrast (the 1st row), it
sometimes misrecognize the self-shadow regions (the 2nd

row), and it can not detect the soft shadow effectively (the
3rd row). However, our supervised SANet performs much
better in the above cases. This performance gap results from
the difference between the source image dataset and the tar-
get video dataset: 1) it lacks of the shadow knowledge in
large illumination contrast scene and soft-shadow pattern in
SBU, 2) some of the self-shadow regions are annotated in
SBU, while they are not annotated in the video dataset.

Image GT STICT TVSD-NetSANet

Figure 7. Some failure cases of our method.

5. Conclusions
We have presented a novel VSD method by transferring

shadow knowledge from the labeled images to the unlabeled
videos. The key idea is to feed the labeled images and un-
labeled video frames into the SANet training via the STICT
framework, which enhances the generalization ability and
encourages the temporal and scale consistent predictions.
Experimental results of our method are better than those
of most supervised, semi-supervised or unsupervised im-
age/video methods.

Societal impact. VSD has a positive effect on computer
vision, but improper use of it may result in potential nega-
tive impacts, e.g., violation modification of evidence videos.
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