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Abstract—Recently, single-image SVBRDF capture is formu-
lated as a regression problem, which uses a network to infer four
SVBRDF maps from a flash-lit image. However, the accuracy is
still not satisfactory since previous approaches usually adopt end-
to-end inference strategies. To mitigate the challenge, we propose
“auxiliary renderings” as the intermediate regression targets,
through which we divide the original end-to-end regression task
into several easier sub-tasks, thus achieving better inference
accuracy. Our contributions are threefold. First, we design
three (or two pairs of) auxiliary renderings and summarize the
motivations behind the designs. By our design, the auxiliary
images are bumpiness-flattened or highlight-removed, containing
disentangled visual cues about the final SVBRDF maps and can
be easily transformed to the final maps. Second, to help estimate
the auxiliary targets from the input image, we propose two mask
images including a bumpiness mask and a highlight mask. Our
method thus first infers mask images, then with the help of the
mask images infers auxiliary renderings, and finally transforms
the auxiliary images to SVBRDF maps. Third, we propose
backbone UNets to infer mask images, and gated deformable
UNets for estimating auxiliary targets. Thanks to the well-
designed networks and intermediate images, our method outputs
better SVBRDF maps than previous approaches, validated by
the extensive comparisonal and ablation experiments.

Index Terms—SVBRDF, auxiliary rendering, bumpiness, high-
light.

I. INTRODUCTION

OBJECTS are comprised of diverse materials, such as
metal, plastic, stone, and wood, etc., exhibiting varying

appearances due to their distinctive reflectance properties.
For opaque materials, reflectance is typically modeled by
a 6D Spatially-Varying Bidirectional Reflection Distribution
Function (SVBRDF), e.g., Cook-Torrance model [1] which
characterizes materials by four SVBRDF maps: surface normal
N, diffuse albedo D, roughness R, and specular albedo S.
The Cook-Torrance SVBRDF model establishes a rendering
equation that can generate a visually-realistic image I given
the four SVBRDF maps in conjunction with a pair of lighting
and viewing directions:

I = R ((N,D,R,S), (l,v)) . (1)

where l and v are lighting and viewing directions respectively,
and R is the rendering function. However, despite the straight-
forward nature of the forward rendering in Eq. 1, the inverse
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problem of estimating the four SVBRDF maps from an image
has long been a challenging issue.

Previous research [2; 3; 4; 5] attempt to sample the re-
flectance function of material with physical equipments, suf-
fering from the time complexity of the sampling. Approaches
of [6; 7; 8; 9; 10; 11; 12] simplify the sampling procedure
by assuming strong priors, which may fail whenever the
assumptions are not satisfied. Recently, Ma et al. [13] proposed
a high-quality reflection acquisition system consisting of 2
cameras and 16,384 LEDs, which greatly reduces the time
of the physically capturing to 15 minutes per sample.

On the other hand, deep networks have been employed to
infer SVBRDF parameters from as few as a single image.
Many of these methods are regression-based, designing and
training neural networks to output the four SVBRDF maps
given an input image. For example, Deschaintre et al. [14]
augmented the UNet [15] with a global branch for single-
image SVBRDF capture. Li et al. [16] utilized an encoder-
decoder style network improved by incorporating a classifier in
the middle to process different material types separately. Guo
et al. [17] proposed a highlight-aware convolution operation
to effectively handle highlights within an image.

We observe that the aforementioned methods are end-to-
end approaches, i.e., they directly infer the target material
maps given the input image. Since the appearance of the target
images are very different from that of the input image (e.g., the
normal map looks very different from the corresponding input
image), we argue that it is beneficial to introduce guidance into
the end-to-end inference pipeline, providing regularization to
the challenging task. Let I → (N,D,R,S) represents the
end-to-end regression task that outputs (N,D,R,S) from the
input I. We adopt the intermediate-target-guided paradigm of:

I → A → (N,D,R,S), (2)

where A represents the intermediate targets. This idea was
originally exploited in the work of MaterIA [18] which first
estimates an irradiance map and then uses it to assist the
estimation of the normal map. We go further in this paper
to apply this strategy to all the four material components. The
main contribution of this paper is the proposition of a set of
meaningful and useful intermediate targets.

To make our method effective, the two sub-tasks of I → A
and A → (N,D,R,S) should be easier than the original
end-to-end task. That means, A should be similar to the
input I, while at the same time being able to be transformed
to (N,D,R,S) easily. To meet the two requirements, we
propose to rely on the forward rendering function R in Eq. 1 to
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render images of A, which we term as “auxiliary renderings”
(or “aux-renderings”). As the aux-renderings are generated by
the same rendering function as the input image and share some
material components with it, they tend to look similar to the
input image to a certain extent. We propose a total of three
aux-renderings. In conjunction with the input image, they form
two pairs of images that contain visual cues about the target
SVBRDF maps, such that they can be easily transformed to
the SVBRDF maps. The proposed aux-renderings are called
bumpiness-flattened and highlight-removed auxiliary images.
For more detailed information about them, as well as the
rationale and considerations behind our designs, please refer
to the main text.

Although the proposed aux-renderings show similar appear-
ance to the input image, the difference between them is still
prominent. For instance, the highlight-removed aux-renderings
do not have highlights while the input image does. To further
facilitate the inference of aux-renderings from the input image,
we propose two mask images, namely a bumpiness mask and a
highlight mask, achieved by modifying the rendering function
R. Ultimately, our method comprises three stages:

I → M → A → (N,D,R,S), (3)

i.e., inferring mask images from an input image, then inferring
aux-renderings with the aid of the mask images, and finally
inferring SVBRDF maps from the input and auxiliary images,
where M represents the mask images.

We design different networks to fulfill tasks at different
stages. For mask images, we design backbone UNets that
leverage EfficientNet-B3 [19] as the backbone network, which
owns the ability to recognize low/highlight regions in im-
ages due to its pre-training on extensive datasets. For aux-
renderings, we propose gated deformable UNets with higher
inpainting capabilities to remove bumpiness and highlight
effects in images. With the effort on the intermediate images
and networks design, we can finally rely on a simple UNet
from [15] to estimate SVBRDF maps from an input image.

In summary, the contributions of our paper are:
• We propose a multi-stage single-image SVBRDF estima-

tion method with aux-renderings as intermediate targets,
and we propose a total of three aux-renderings.

• To help infer the aux-renderings from an input image, we
further propose two mask images, including a bumpiness
mask and a highlight mask, obtained by modifying the
forward rendering function.

• We propose backbone-UNets for inferring the mask im-
ages, and gated deformable UNets for inferring the aux-
renderings, which output satisfactory inverse inference
results as validated by the experiments.

II. RELATED WORK

A. Material Models and Traditional Acquisition Methods

There are different kinds of materials in this world, for
which different representation models have been proposed,
e.g., BSSRDF [20], BTDF [21], and BRDF [22], etc. Among
them, BRDF assumes light hitting a surface point leaves

the surface at the same point, which is suitable for mod-
eling materials with nearly flat and opaque surfaces [23].
In this paper, we are interested in spatially-varying BRDF
(SVBRDF). Compared with BRDF that represents reflectance
characteristics of homogeneous materials, SVBRDF is an
extension of BRDF to non-homogeneous materials. One of
the most famous SVBRDF models is the Cook-Torrance
model [1], the reflection function of which is defined on four
material properties including surface normal, diffuse albedo,
roughness, and specular albedo. Our work is based on the
Cook-Torrance model and tries to estimate the four spatially-
varying reflectance parameters given only one image.

Traditional SVBRDF capture approaches usually require
hardware setups to spatially or angularly sample a material
from many different lighting and viewing directions [7; 12; 24;
25; 26; 27; 28; 29; 30; 31]. The cumbersome equipments pre-
vent novice users from using these sophisticated approaches,
hindering the widespread application of these methods. Many
approaches use affordable mobile phones or RGB-D cameras
for SVBRDF capture [8; 11; 32; 33; 34; 35; 36], but usually
assume priors on the target materials. For example, the work
of [8] assumes repetitive textures as input. The methods of
[10; 11; 12; 37; 38] simplify the measured BRDFs to be
approximately represented by a linear combination of basis
functions such as spherical harmonics or wavelets. These
assumptions limit the kinds of materials they can handle. This
line of research is constantly developing. For example, Ma
et al. [13] proposed a new capturing system consisting of
2 cameras and 16,384 LEDs which can capture high-quality
SVBRDF in less than 15 minutes. Using their system, they
collect a dataset of 1000 SVBRDFs from real images.

B. Deep Learning-based SVBRDF Capture

Probably Aittala et al. [39] were the first adopting neural
networks for texture SVBRDF capture, measuring the distance
between texture patches based on networks. Li et al. [40]
(further improved by [41]) proposed the first neural network
that directly regresses SVBRDF maps from an image with
a dataset self-augmenting strategy. Works of [14] and [16]
contribute to the community large-scale synthetic datasets.
Based on the datasets, Deschaintre et al. [14] augmented the
UNet [15] with a global branch for single-image SVBRDF
capture. Li et al. [16] adopted an encoder-decoder network
incorporating with a classifier. Guo et al. [17] proposed a
highlight-aware convolution operation to handle highlights in
input images. Henzler et al. [42] proposed a method first con-
verting photos into latent material codes and then generating
infinite BRDF model parameters conditioned on the codes.
Wang et al. [43] leveraged the assumption that a material is a
linear combination of a set of basis materials. They proposed
a nice two-level model for estimating the basis materials
and their corresponding weights. The mentioned approaches
perform end-to-end inverse SVBRDF estimation. Differently,
we design auxiliary renderings as intermediate targets in the
middle of the SVBRDF recovery process.

The above approaches admit a single image as input, while
there are methods requiring multiple images as input. In
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Fig. 1. Given an image I, our method estimates SVBRDF maps (i.e., N,D,R,S) in three stages. First, we generate two mask images Mb and Mh (denoting
bumpiness mask and highlight mask) from the input image I, using the proposed backbone UNets. Then with the help of the mask images, we generate three
auxiliary images Ibf , Ihr , and Ihr2 in the second stage by gated deformable UNets. Finally in the third stage, SVBRDF maps are inferred from combinations
of the input and auxiliary images, fulfilled by UNets in its original form [15]. Please see the main text for more detailed pipeline of the method.

[44], the single-image method of [14] is extended to handle
multiple images. In [45], the obtained SVBRDF parameters
are further transferred to large-scale objects of similar appear-
ance. Instead of regression, methods of [46; 47; 48] exploit
optimization-based approaches. They train latent SVBRDF
parameter spaces and optimize in the space to find a solution
that best reproduces observations. Zhou et al. [49] and Fischer
et al. [50] employ meta-learning to combine the advantages of
both regression and optimization approaches. Fan et al. [51]
proposed a reflection acquisition method from two images cap-
tured by a wide-angle lens and a zoom lens of a smartphone.

Besides the above image-to-image translation models, there
are also methods for conditional/unconditional general of
materials [52; 53; 54]. For example, Vecchio et al. [55] used
discriminators to minimize the distribution difference between
SVBRDF maps of real and synthetic images. Zhou et al. [56]
recovered SVBRDF maps of one real image, and the light
position of another real image. Then the re-rendered image
using SVBRDF maps of the first image and the light of the
second image was compared with the second real image by a
discriminator. Works of [57] and [58] recover SVBRDFs maps
in purely unsupervised ways, where Zhao et al. [57] recovered
and synthesized large SVBRDF maps jointly, while the method
of [58] was designed to process stationary materials using a
Fourier coefficient-based loss function.

There are emerging works [18; 58; 59; 60; 61; 62; 63]
on tileable and controllable material generation, on high-
resolution SVBRDF capture, and on material transfer. Among
them, MaterIA [18] observes that some material components
are easier to estimate than others. Therefore, the easier com-
ponents can be estimated at first and then be used to assist the
estimation of the other components. For example, MaterIA first
computes irradiance, and then computes the normal map from
the combination of the input and irradiance images. Different

from our approach, MaterIA only applies this strategy to the
estimation of the normal map, while we design two mask
images and three auxiliary maps to assist the estimation of
all kinds of material components. Besides, the recent work
[64] optimizes planar lighting pattern, while our method works
under point light source. Compared to our method that handle
nearly planar surfaces, works of [35; 36; 65; 66; 67] recover
both shape and SVBRDFs of more complex scenes (such as
shiny 3D cultural relics [67]).

III. OUR METHOD

A. Overview

Figure 1 shows the pipeline of our method. We recover four
SVBRDF maps (N,D,R,S) from a single flash image I that
captures a nearly planar surface lit by a flash, according to
the Cook-Torrance model [1]. Our method is composed of
three stages. First, we propose “backbone UNets” to extract
bumpiness and highlight masks (denoted as Mb and Mh )
from I. Second, we design gated deformable UNets to generate
three aux-renderings including bumpiness-flattened image Ibf ,
and highlight-removed images Ihr and Ihr2 . Third, the aux-
renderings together with the input image are transformed to
SVBRDF maps by UNets [15].

In the following, we first show how we prepare the in-
termediate images, and the motivations behind the designs.
Then, we describe the details of the backbone UNet and
gated deformable UNet that compose our network. Finally,
we introduce losses used to train our model.

B. Auxiliary Renderings

Our method assumes a dataset that is composed of tuples of
(I,N,D,R,S), where I is an input image, and N,D,R,S are
the ground-truth SVBRDF maps of the input image. We use
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N I Nu Ibf

Fig. 2. Examples of I and Ibf where I is rendered with normal map N while
Ibf is rendered with Nu. Visually, I exhibits bumpiness effect matching the
spatial variation in N. Since Nu is smooth, the corresponding image Ibf is
free of bumpiness effect.

the following ways to further generate three auxiliary images
used for training our method.

Bumpiness-Flattened Auxiliary Rendering. Ibf is pro-
duced by:

Ibf = R ((Nu,D,R,S), (l, v)) . (4)

Compared with Eq. 1, the only difference is that the original
normal map N is replaced with a uniform normal map Nu. In
our setup, every pixel of the uniform normal map Nu is filled
with (0.5, 0.5, 1). Figure 2 gives examples of I and Ibf . As
can be seen, I contains bumpiness effect caused by the normal
variation in N, while Ibf does not since Nu used to generate
it is smooth everywhere.

Highlight-Removed Auxiliary Rendering. Ihr is obtained
by computing the mean of a set of Ibf :

Ihr =
1

K

K∑
k=1

Ikbf . (5)

where K = 100 is the number of Ibf , and the kth one is
obtained by:

Ikbf = R ((Nu,D,R,S), (lk, v)) . (6)

All Ibf share the same Nu, D, R, S, and v, but are rendered
under different lighting conditions lk (please refer to the
supplemental material for the lighting scheme).

Figure 3 shows examples of Ibf and the corresponding
Ihr. It can be seen that in different Ibf , different regions
are illuminated. Thanks to the average operator in Eq. 5, the
highlight effect is removed from Ihr. That is why we call Ihr
a highlight-removed image.

Highlight-Removed Auxiliary Rendering with High
Roughness. The generation process of Ihr2 is very similar
to that of Ihr. First, we generate different temporary images:

Iktmp = R ((Nu,D,R1,S), (lk, v)) . (7)

Compared with Eq. 6, besides replacing N with Nu, we
further replace the roughness map R with R1 which is filled

Input Ibf under different lights Ihr

Itmp under different lights Ihr2

Input Ibf under different lights Ihr

Itmp under different lights Ihr2

Fig. 3. Top row of each example shows Ibf lit by different lightings and the
corresponding Ihr by averaging all Ibf , and bottom row shows Itmp lit by
different lightings and the corresponding Ihr2 by averaging all Itmp.

with the highest roughness 1.0 everywhere. Then, Ihr2 is
obtained by averaging all the temporary images:

Ihr2 =
1

K

K∑
k=1

Iktmp. (8)

Similarly, we show examples of Itmp and the corresponding
Ihr2 in the bottom row of Figure 3. Since the roughness is very
high in Itmp, the highlight effect in Itmp is weaker than that
in the corresponding Ibf . By averaging all Itmp, the highlight
effect is further removed from the obtained Ihr2 .

C. Motivations Behind the Designs

Now, we introduce the philosophy behind the design of the
above three auxiliary images.

Generating Auxiliary Renderings Computationally In-
stead of Physically. We generate all the auxiliary renderings
in computational manners rather than finding physically mean-
ingful renderings as intermediate targets. That is because it
is convenient to modify the input parameters of the forward
SVBRDF rendering function to obtain different rendered im-
ages, while finding a physically meaningful intermediate tar-
get requires professional material design and use experience.
In addition, since there are many alternatives for the input
parameters and their combinations, the design space of the
computational way is large, and there are more chances to
find qualified intermediate targets. In comparison, physically
meaningful renderings are rare and provide far fewer options.

Relying on the Forward Rendering Function for the
Generation. We always rely on the forward rendering function
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I Ibf Ihr Ihr2 D+ S

Fig. 4. From left to right: input image I, the corresponding bumpiness-
flattened image Ibf , highlight-removed images Ihr and Ihr2 , and the
visualization of the sum of diffuse (D) and specular (S) maps.

to generate aux-renderings, e.g., Ibf , Ihr and Ihr2 are obtained
based on the rendering functions in Eq. 4, Eq. 6 and Eq. 7,
respectively. Since both the input and aux-renderings are gen-
erated through the forward rendering equation, the differences
between them are only caused by the changed SVBRDF
parameters. The remaining material parameters and the shared
lighting and viewing directions allow the aux-renderings to
maintain similar appearance to the input image.

Figure 4 shows examples of input images I and the corre-
sponding Ibf , Ihr and Ihr2 . Taking I and Ibf as examples,
although the normals are flattened, Ibf exhibits similar object
structure and textures to I due to the remaining unchanged
material parameters. Since more parameters are changed when
rendering Ihr and Ihr2 , they are farther away from the input
image in appearance. However, we can still observe similar
elements between I and Ihr (or Ihr2 ). These connections
between the input and aux-renderings reduce the difficulty of
inferring the aux-renderings from the input image.

One may find that Ihr2 may be theoretically similar to the
sum of diffuse and specular maps (i.e., D+S), since they are
both computed based on the diffuse and specular maps (see
the top row of Figure 4). However, since Ihr2 is generated
through the forward rendering function, it is further affected by
the rendering process and the lighting and viewing directions.
Compared with D + S, Ihr2 has more similar light/shadow
effects as the input image (see the bottom row of Figure 4.
Ablation studies in Section IV-E5 also demonstrate that it is
easier to generate Ihr2 than D+ S given an input image.

Using Pairs of Renderings as Intermediate Targets
Instead of Only One. At first glance, one may be confused
by the too many auxiliary renderings we propose. In fact, we
just propose two pairs of renderings. They are (I, Ibf ) and
(Ihr, Ihr2), where I and Ibf are different in the parameter
of normal, while Ihr and Ihr2 differ in roughness. Our core
idea is to use a pair of renderings instead of only one as the
intermediate targets to infer SVBRDF maps, leveraging the
difference between the pair of renderings. We use (I, Ibf ) to
infer the normal map. I contains bumpiness effect caused by
the normal map while Ibf does not (see Figure 2). Feeding
them together to a neural network can help the network
identify the difference between them to output the normal map.

We use (Ihr, Ihr2) to infer the remaining diffuse, roughness
and specular maps. First, they are both rendered with the
uniform normal map. Using them as intermediate targets, we

I Ihr Ihr2 R

I Ihr Ihr2 S

Fig. 5. Top row shows an example where Ihr is highly correlated with the
roughness map R, while Ihr2 is not since it is rendered with the highest
roughness everywhere. Bottom row shows an example of how roughness
affects the rendering effect of specular albedo: high specular (see S) looks dark
(see Ihr), but becomes brighter (see Ihr2 ) after setting a higher roughness.

avoid the influence of normals when inferring the three maps.
Second, since Ihr is rendered using the original roughness
map, it contains appearance changes caused by spatially vary-
ing roughness (see the correlation between Ihr and R in the
top row of Figure 5), while Ihr2 does not because it is rendered
with the same roughness everywhere (see Ihr2 in the same
row). This allows the network to infer the roughness map from
the difference between Ihr and Ihr2 . Third, we find that the
roughness essentially influences the effect of specular albedo.
High specular material usually has low roughness and looks
dark when not viewing from the mirror reflection direction (see
the zoomed-in part of Ihr of the second example of Figure 5).
By setting the high-specular material with the roughness of
1.0, it is rendered to be brighter than before (see the same
part of Ihr2 ). This difference facilitates the network to infer
the specular map from (Ihr, Ihr2). Finally, we use (Ihr, Ihr2)
to infer the diffuse map too, for simplicity.

We have also attempted to use the way processing N to
estimate the other three maps, which however fails. Please
refer to the supplemental material for more interpretations.

Handling Highlights. If there is no highlight, Ibf and
Itmp suffice to infer the diffuse, specular and roughness
maps. However in our setting, the input image is lit by flash.
Highlights help reveal specular and roughness components
but make a part of pixels completely saturated. Previous
approaches attempt to repair the saturated region with im-
proved convolutional operators [17]. Differently, we employ
the highlight-free images Ihr and Ihr2 as intermediate targets
to explicitly guide the model to inpaint the highlight regions.

Toy Experiment. To validate the effectiveness of the
proposed auxiliary renderings, we conduct a toy experiment
that directly transforms the ground-truth aux-renderings to
SVBRDF maps using UNets [15]. Please see Section IV-E1
for the upper-bound accuracy our method can achieve.
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D. Bumpiness and Highlight Masks

We have proposed the aux-renderings and demonstrated
they can be conveniently transformed to SVBRDF maps.
The remaining question is how to estimate high-quality aux-
images from the input image. In fact, estimating Ibf from
I is easy as Ibf looks similar to I. The only difference
between them is the bumpiness to be removed. However,
it is much challenging to obtain Ihr and Ihr2 , as besides
the bumpiness effect we also need to remove the highlight
effect. Inspired by approaches in the field of shadow/highlight
removal [68; 69] which prove that taking shadow/highlight
mask can improve the shadow/highlight removal effect, we
propose bumpiness mask Mb and highlight mask Mh to help
remove the bumpiness and highlight effect from I.

Bumpiness mask can be approximated by lowlight mask, as
low light usually appears in concave regions. We generate both
lowlight (or bumpiness) and highlight masks by modifying
the Cook-Torrance forward rendering function. Recall that the
definition of the Cook-Torrance BRDF reflection model is:

ρ(nj ,dj , rj , sj , lj ,vj) =
dj(1− sj)

π
+

D(nj , rj)F (sj)G(nj , rj)

4(nj · vj)(nj · lj)
, (9)

where nj , dj , rj , and sj are the normal, diffuse, roughness and
specular values at the jth pixel of the four SVBRDF maps N,
D, R, and S, respectively; vj and lj are viewing and lighting
directions. The first term in the above equation defines diffuse
reflectance while the second term models specular reflectance.
We observe that among the three functions D(·), F (·) and G(·)
in the numerator of the second term, the normal distribution
function D(·) strongly controls the intensity of the reflected
light. If D(·) returns a large value, that means strong spec-
ularity occurs and highlight is observed. Otherwise, a small
amount of light is reflected, creating dark pixels. Although
F (·) and G(·) also affect the strength of the reflection, their
effect takes place more at grazing angles, while in our situation
the view angle is always 90◦ perpendicular to the captured
surface which suppresses the effects of both functions.

To generate highlight mask Mh, we thereby suppress the
high response of D(nj , rj) by:

Dh(nj , rj) =

{
D̄ , ifD(nj , rj) > δh,

D(nj , rj), otherwise,
(10)

where δh is a threshold which is 0.9 in this paper (please refer
to the supplemental material for more discussions about the
threshold selection process), and D̄ is the average of D(nj , rj)
of pixels whose D(nj , rj) is smaller than δh. This modified
normal distribution function Dh yields an image with less
strong highlight. We then subtract it from the input image
to get the highlight mask Mh. Similarly, to obtain bumpiness
mask Mb, we compensate the low-response of D(nj , rj) by:

Dl(nj , rj) =

{
δs , ifD(nj , rj) < δs,

D(nj , rj), otherwise,
(11)

where δs is 0.15. This normal distribution function Dl renders
an image without too lowlight pixels, from which we subtract
the input image to obtain the bumpiness mask Mb.

Fig. 6. From left to right: input image, lowlight-suppressed image, bumpiness
mask Mb, highlight-suppressed image, and highlight mask Mh.

Fig. 7. Left: Highlight-aware convolution (HA-Conv) from [17]. It contains
a gated convolution module and an inception module. The two modules
are placed in parallel. Right: GAted deformable convolution (GAD-Conv)
proposed in this paper consisting of a gated convolution module and a
deformable convolution module which are sequentially executed.

Figure 6 shows examples of the bumpiness and highlight
mask images. From left to right are input images, lowlight-
suppressed image, bumpiness mask, highlight-suppressed im-
age, and highlight mask. As can be seen, the two kinds of
mask images accurately indicate the bumpiness and highlight
regions of the input images.

E. Networks

Now, we introduce the networks implementing our method.
Detailed architectures are in the supplemental material.

Phase 1: Estimating Mask Images using “backbone”
UNets. In the first stage, we estimate bumpiness and highlight
masks from the input image. To fulfill this task, we employ
the paradigm of transfer learning. That is, we use EfficientNet-
B3 [19] as the backbone to extract features from the input
image. The extracted features are then transformed to the mask
images by a decoder network. During training, the backbone
network is only finetuned with a small learning rate.

EfficientNet-B3 has 9 stages that progressively extract fea-
tures with gradually decreasing spatial resolution but increas-
ing channel size. We consider the features at stage 2, 3,
4, 6, and 7, and use a sequence of standard convolution
blocks to parse these features and gradually upsample them
until the spatial and channel resolution of the mask image is
reached. EfficientNet-B3 can be viewed as an encoder. The
standard convolution blocks compose a decoder. We add skip
connections between them to obtain a UNet-shaped network.

Phase 2: Estimating Auxiliary Renderings by GAted
Deformable UNet (GAD-UNet). Next, with the mask images,
we estimate auxiliary renderings from the input image. We
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simply concatenate the input I and bumpiness mask Mb to
generate the bumpiness-flattened image Ibf , while for the two
highlight-removed images Ihr and Ihr2 , we concatenate I, Mb,
and Mh as input. We design a GAted Deformable Convolu-
tional module (GAD-Conv) to fulfill the above tasks, inspired
by the Highlight-Aware Convolution (HA-Conv) proposed in
[17]. Figure 7 (a) illustrates HA-Conv which consists of a
gated convolution branch and an inception branch. Let Xl

be the input, the gated convolution module uses one branch
to compute features Xl′ , and the other branch to output the
gating variable σ. The output of the gated convolution module
is σ · Xl′ , where the dot means element-wise multiplication.
By the gating variable, the gated convolution module learns
to ignore undesirable features of highlight (or bumpiness)
regions. However, the inception block of HA-Conv may re-
add the undesirable features back into the network (see the
ablation in Section IV-E4).

We improve HA-Conv by removing the inception branch
but appending a deformable convolution block after the gated
convolution block, proposing GAD-Conv as shown in Figure 7
(b). In GAD-Conv, the output of the gated convolution, i.e.,
(σ · Xl′), is further processed by a deformable convolution
block [70]. Denote the output of the deformable convolution
block by Xl

′′

. The final output of the GAD-Conv is:

Xl+1 = σ ·Xl′ + (1− σ) ·Xl
′′

. (12)

In short, by GAD-Conv, we first remove unwanted features
of bumpiness and highlight regions by the gated convolution,
then inpaint these regions by the deformable convolution.
Since the deformable convolution has larger receptive field,
it can leverage content far away from the bumpiness/highlight
regions to inpaint the saturated information.

Finally, we propose the GAD-UNet used to generate the
auxiliary renderings. GAD-UNet is similar to the original
UNet model of [15], except that we adopt GAD-Conv instead
of the standard convolution module in the encoder.

Phase 3: Estimating SVBRDF maps by UNets. Finally,
we use the original UNet of [15] to estimate SVBRDF maps
from the input image and the aux-renderings, except for dif-
ferences in hyperparameters (see the supplemental material).
For the normal map, instead of directly concatenating I and
Ibf as input, we first compute the difference between I and
Ibf , and then use the concatenation of I and (I−Ibf ) as input.
For the other three maps, we directly concatenate I, Ihr and
Ihr2 as input. We infer the diffuse map D and specular map S
simultaneously, as they are more closely related to each other.
We use a separate UNet to estimate the roughness map R.

Discriminator. For each of the auxiliary renderings, we
apply the WGAN loss [71]. The adopted discriminator network
is also borrowed from [71].

F. Training Losses

Loss for Mask Images. For mask images, we only apply
the following L2 reconstruction loss:

LMask = ∥M− M̂∥2, (13)

where M and M̂ stand for the ground-truth and estimated
mask images, respectively.

Losses for Auxiliary Renderings. Let X be one of Ibf ,
Ihr, Ihr2 . Each auxiliary rendering is supervised by a L1 loss,
a WGAN loss, and a perceptual loss. The L1 loss is:

LRec = ∥X− X̂∥1, (14)

where X̂ denotes the estimated auxiliary rendering. The
WGAN loss is:

LAdv =min
G

max
D

E
X∼Ps

[D(X)]− E
X̂∼Pg

[D(X̂)]

+λ E
X̃∼PX̃

[(
∥∥∥∇X̃D(X̃)

∥∥∥
2
− 1)2],

(15)

where G represents the network producing X̂, and D repre-
sents the discriminator network, Ps is the distribution of X,
and Pg stands for the distribution of the estimated images, X̃
is an interpolation between X and X̂. Finally, λ is a weight to
balance the two terms. We use λ = 10 during training. Finally,
the perceptual loss is defined as:

LPercep =
1

N

N∑
i=0

∥Φi(X)− Φi(X̂)∥1, (16)

where Φi(·) stands for the feature maps of the i-th pooling
layer of the pre-trained VGG16 network. We use N = 3 layers
here, which are pool-1, pool-2, and pool-3 of VGG16. The
total loss for an auxiliary rendering is:

LA = λA
RecLRec + λA

AdvLAdv + λA
PercepLPercep, (17)

where λA
Rec = 1, λA

Adv = 10−3 and λA
Percep = 0.1.

Losses for SVBRDF Maps. Let X be one of N,D,R,S,
and X̂ be the estimated map. SVBRDF maps are constrained
by the above L1 and a rendering loss [14]. Taking N as an
example, let X̂ be the estimated surface normal map N̂, the
rendering loss for N̂ is:

LRender =

L∑
i

∥R ((N,D,R,S), (li, v))−

R((N̂,D,R,S, (li, v))∥1,

(18)

where L = 9 is the number of renderings under different
lighting conditions. The total loss of N is:

LM = λM
RecLRec + λM

RenderLRender, (19)

where λM
Rec = 1 and λM

Render = 0.5. The training objective
for other SVBRDF maps is defined in the same way.

IV. EXPERIMENTS

In the following, we introduce the experimental settings
and compare our method with state-of-the-art approaches. We
also provide extensive ablations to validate the effectiveness
of the design strategies. More information can be found in the
supplemental material.
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TABLE I
COMPARISON ON TEST DATASET OF [14] WITH 84 SAMPLES. AVERAGE

RMSE OF SVBRDF MAPS ARE PROVIDED. FOLLOWING [17; 47], 9
IMAGES ARE RE-RENDERED FROM SVBRDF MAPS, BASED ON WHICH

AVERAGE RMSE AND LPIPS OF RE-RENDERINGS (REN) ARE COMPUTED.

Method RMSE LPIPS
N D R S Ren Ren

Des18 0.063 0.034 0.134 0.044 0.157 0.313
Zhou21 0.059 0.030 0.089 0.027 0.130 0.222
Guo21 0.061 0.028 0.083 0.031 0.137 0.241
Gao19 0.066 0.031 0.095 0.034 0.121 0.194
Zhou22 0.062 0.029 0.106 0.036 0.110 0.210
Our 0.050 0.016 0.055 0.021 0.101 0.159

A. Experimental Settings

1) Training Dataset: For comparison and ablation study,
we use the training dataset provided by [14] which con-
tains 194,068 tuples of (I,N,D,R,S), where (N,D,R,S)
are artist-created ground-truth SVBRDF maps, and I is the
rendered image based on the (N,D,R,S) according to
Eq. 1. Following [17; 47], we choose a half of the dataset
for the training by removing similar samples with slightly
different viewing and lighting directions. We extend this
dataset with mask images (Mb,Mh) and auxiliary renderings
(Ibf , Ihr, Ihr2), computed by Equations from 4 to 11. The data
generation of the mask and aux-rendering images is efficient.
We implement the data preparation algorithm in parallel. On an
NVIDIA GeForce RTX 3090 GPU, we need 0.029s to render
a batch of bumpiness-flatten images Ibf with the batch size
of 16. We need 0.164s to render a batch of 16 highlight-
removed images Ihr or I2hr. We need 0.03s to compute a
batch of 16 mask images Mb or Mh. Instead of generating
the intermediate images on-the-fly, we choose to prepare them
beforehand for saving the training time.

2) Test Datasets: We test our method on both synthetic and
real images. The synthetic test datasets include those from [14]
containing 84 test samples and from [44] with 29 test samples.
We test on real images from [14], [47] and [49].

3) Evaluation Metrics: We adopt two evaluation metrics of
Root Mean Squared Error (RMSE) and Learned Perceptual
Image Patch Similarity (LPIPS). RMSE evaluates both the
estimated SVBRDF maps and the re-rendered images, while
LPIPS evaluates the re-rendered images perceptually.

4) Implementation Details: We implement our model using
PyTorch, training it on an NVIDIA GeForce RTX 3090 GPU
step by step. First, we train the backbone UNets that generate
mask images. Second, we fix the backbone UNets and train
the GAD-UNets that generate auxiliary images. Finally, we
fix both backbone and GAD-UNets, and train the UNets that
output SVBRDF maps. All the models are optimized with the
Adam optimizer with β1 = 0.5 and β2 = 0.9. The learning
rate is 2e-4, multiplied by 0.5 after every 60,000 iterations.
The backbone UNets and GAD-UNets are trained for 200,000
iterations, while the UNets in the third stage are trained for
300,000 iterations, all with the batch size of 16.

5) Compared Approaches: We compare our method against
state-of-the-art flash-based single-image SVBRDF recovery
approaches. Specifically, we compare with regression-based
approaches [14], [56], [17] and optimization-based approaches

TABLE II
COMPARISON ON TEST DATASET OF [44] WITH 29 SAMPLES. AVERAGE

RMSE OF SVBRDF MAPS ARE PROVIDED. FOLLOWING [17; 47], 9
IMAGES ARE RE-RENDERED FROM SVBRDF MAPS, BASED ON WHICH

AVERAGE RMSE AND LPIPS OF RE-RENDERINGS (REN) ARE COMPUTED.

Method RMSE LPIPS
N D R S Ren Ren

Des18 0.055 0.036 0.202 0.057 0.165 0.353
Zhou21 0.050 0.033 0.115 0.035 0.138 0.227
Guo21 0.052 0.031 0.106 0.036 0.145 0.292
Gao19 0.061 0.029 0.159 0.048 0.122 0.271
Zhou22 0.050 0.015 0.076 0.048 0.086 0.209
Our 0.041 0.018 0.072 0.022 0.101 0.180

[46] and [49]. For [14] and [56], we retrain their models
based on the public source code. For the two optimization
methods [46] and [49], we directly use their provided pre-
trained models. The results of [17] are obtained with the help
of the authors of the paper.

B. Results on Synthetic Data

Table I and II show the quantitative comparisons on
synthetic data between our method and state-of-the-art ap-
proaches. The results in Table I are obtained on the test dataset
of [14], and Table II are obtained on the test dataset of [44].

Since ground-truth SVBRDF maps are available, we are
able to compute the average RMSE of the estimated results
with respect the ground truth. Following [17], we re-render
9 images under different point light sources, and report the
average RMSE of the re-rendered images (see “Ren” columns
in both tables). Besides, we provide the comparisons in terms
of LPIPS of re-rendered images.

In Table I, our method outperforms all the compared
approaches in predicting SVBRDF maps. Accordingly, our
re-rendered images from the estimated SVBRDF maps are
better. In Table. II, our method outperforms regression-based
approaches and the optimization-based method [46]. When
compared with the latest optimization approach [49], we
are better in predicting the normal, roughness and specular
maps. In particular, our method is better at predicting the
specular component, with an RMSE of 0.022, less than half
of 0.048 of [49]. However, our method is slightly worse for
the diffuse map (0.018 (our) vs 0.015 ([49])), but note that
the method of [49] further optimizes the network parameters
at test time, while our method relies purely on regression. For
the re-rendered images, our method is perceptually better as
measured by the LPIPS metric.

Besides the above numerical comparisons, we also provide
qualitative comparisons with previous approaches. The full
list of results are provided at weiyintime.github.io/svbrdfdes18
and weiyintime.github.io/svbrdfdes19. In the following, we
take several typical examples to perform analysis.

In Figure 8, we provide examples that compare our method
against regression-based approaches. For each input image,
the ground-truth SVBRDF maps and re-rendered images are
presented in the first row. The other rows show the SVBRDF
maps estimated by different methods and the corresponding re-
renderings. By the first example on the left side of the figure,
we show that our method produces better normal maps than

https://weiyintime.github.io/svbrdfdes18/
https://weiyintime.github.io/svbrdfdes19/
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Fig. 8. Comparison with regression-based approaches Des18 [14], Zhou21 [56] and Guo21 [17]. Our method produces more accurate normals (left example),
and the color tone of the re-renderings are more similar to the ground truths (right example). See weiyintime.github.io/svbrdfdes18 for more results.
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Fig. 9. Comparison with optimization-based approaches Gao19 [46] and Zhou22 [49]. Our method produces more accurate normals (left example), and the
metal block shows shinier luster (right example). See weiyintime.github.io/svbrdfdes19 for more results.

the other approaches, as can be seen in the “zoom-in” images.
Our estimated normals exhibit clear brick boundaries due to
the introduction of the bumpiness-flattened auxiliary image
Ibf , while the normals of other methods are blurry. On the
right side we show an example for which our method outputs
perfect SVBRDF maps, while other approaches suffer from
artifacts in the diffuse map (Guo21 [17]) or the roughness
map (Des18 [14]). The re-renderings of our method resemble
the ground truths more, as illustrated in the “zoom-in” images
on the right side of the figure.

In Figure 9, we show examples comparing against
optimization-based approaches. The two examples further val-
idate that our method outputs better normal maps. For the
example on the left side, the method of [49] fails to recognize
the tiny protrusions of the metal material, and the method

of [46] incorrectly treats the protrusions as concave holes. In
contrast, our method recovers most of the normals correctly.
For the example on the right side, please pay attention to
the specular map containing scattered yellow metallic blocks,
which in our experience are challenging to regress. Thanks
to the introduction of the pair of (Ihr, Ihr2), our method
disentangles the metallic material from the gray background
better than the two optimization approaches. As a result, in our
re-rendered images, the metallic block shows shinier metallic
luster, as shown in the “zoom-in” images.

C. Results on Real Data

In Figure 10, we compare with regression-based approaches
on real images qualitatively (more results can be found at
weiyintime.github.io/svbrdfreal). For the two examples, since

https://weiyintime.github.io/svbrdfdes18/
https://weiyintime.github.io/svbrdfdes19/
https://weiyintime.github.io/svbrdfreal/
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Fig. 10. Comparison with regression-based approaches Des18 [14], Zhou21 [56] and Guo21 [17] qualitatively on real images. Left: previous approaches
suffer from highlight artifacts, while our method does not. Right: our roughness map is more reasonable and accordingly the re-renderings are more vivid.
See weiyintime.github.io/svbrdfreal for more results.
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Fig. 11. Comparison with Zhou22 [49] on real images. Consistent with synthetic results, our method recovers prominent normals for real inputs (see the first
example). In the re-renderings, our produced highlights own slightly weaker intensity (we provide more analysis in the supplemental material), but the shape
of our highlights resembles that of ground truths more.

there are no ground-truth SVBRDF maps, expertise is required
to compare the estimated results of different approaches. Over-
all in both examples, our method produces more vivid normal
maps and re-rendered images. Please see the diffuse maps
of the left example. We observe that the highlight remains
in the diffuse maps estimated by [14] and [56]. The method
of [17] attempts to remove the highlight, but fails, as shown
by the shadows in the original highlight region. In contrast,

our method avoids the above artifacts in the diffuse map, and
accordingly avoids artifacts in the re-renderings under novel
lightings. For the second example, the input image exhibits
highlight in the blue background but not in the yellow area,
which means the yellow region should have higher roughness.
The roughness map estimated by our method is consistent with
this finding, while other roughness maps are not.

We also conduct comparisons on real images against

https://weiyintime.github.io/svbrdfreal/
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Fig. 12. Intermediate mask and auxiliary images generated by our method. The two examples are very challenging, but our method can still output visually
similar results to the ground truths. Please refer to the supplemental material for more examples.

TABLE III
COMPARISON WITH OPTIMIZATION-BASED APPROACHES ON THE REAL

TEST IMAGES OF [47] (CONTAINING 33 SCENES) AND [49] (76 SCENES)
QUANTITATIVELY. BOLD NUMBERS ARE THE BEST, AND UNDERLINED

NUMBERS ARE THE SECOND BEST.

Method Dataset of [47] Dataset of [49]
LPIPS RMSE LPIPS RMSE

Gao19 0.361 0.158 0.290 0.110
Zhou22 0.286 0.133 0.216 0.093
Our 0.282 0.143 0.222 0.098

optimization-based approaches. Guo et al. [47] and Zhou et
al. [49] collect test datasets consisting of 33 and 76 scenes,
respectively. For each scene, they capture a set of 9 images
illuminated with known lightings. Using one of them as
the input image to estimate SVBRDF maps, the re-rendered
images under the other 8 lightings can be compared with the
ground truths to output numerical values measuring the effec-
tiveness of an approach. To compare with the optimization-
based approaches fairly, we design a scheme that optimizes
our results too. We use the same loss function as [49] used in
the test-time optimizations, and the same optimizer of Adam
with parameters of (β1 = 0.5, β2 = 0.5). Starting from the
initial SVBRDF maps by our model, we further optimize the
UNets in the third stage of our method 100 times (please see
the supplemental material for the influence of the optimization
times) using the learning rate of 1e-5. The numerical results
are shown in Table III. Figure 11 shows some examples of
[49] and our method. As can be seen, our method is better
than [46], and is on par with [49]. However, although [49]
is better than our method numerically, it has the shortcoming
that the lighting position of the test image must be known in
advance or the input image must be captured with centered
lighting, while our method is not subject to this limitation.

D. Intermediate Results
In Figure 12, we show examples of the mask and auxiliary

images generated by our method. As can be seen, the generated
mask images (including Mb and Mh) look very similar to the
corresponding ground-truth mask images, validating the effec-
tiveness of the backbone UNets incorporating EfficientNet-B3

TABLE IV
STEP-BY-STEP ERROR ANALYSIS. 1⃝ GIVES THE RESULTS OF OUR FINAL

MODEL. 2⃝ IS SIMILAR TO ABLATION 1⃝ EXCEPT THAT GT MASK IMAGES
ARE USED. 3⃝ DIRECTLY MAPS GT AUX-RENDERINGS TO SVBRDF MAPS,
WHICH GIVES THE UPPER-BOUND ACCURACY OF OUR METHOD. 4⃝ ONLY

USES AUX-RENDERINGS AS THE INTERMEDIATE TARGETS, WHILE
ABANDONING THE MASK IMAGES. 5⃝ DIRECTLY MAPS AN INPUT IMAGE

TO SVBRDF MAPS.

Ablation Scheme N D R S

1⃝Input→Mask→Aux→SVBRDF (Our) 0.050 0.016 0.055 0.021
2⃝Input→GT Mask→Aux→SVBRDF 0.044 0.012 0.046 0.018
3⃝GT Aux→SVBRDF (Upper-bound accuracy) 0.035 0.010 0.032 0.015
4⃝Input→Aux→SVBRDF 0.052 0.024 0.071 0.026
5⃝Input→SVBRDF 0.066 0.035 0.154 0.045

to extract basic features from the test images. Our method
also generates satisfactory Ibf , which effectively reduces the
bumpiness effect in the input images. For the other two
auxiliary images Ihr and Ihr2 , note that they are more different
from the input image than Ibf , thus we are not able to produce
results very similar to the ground truths, but our method
still outputs results that successfully get rid of highlights
and remove bumpiness as much as possible. In fact, the two
examples are very challenging to extract intermediate images.
Due to space limit, please refer to the supplemental material
for more intermediate results of both synthetic and real images
with more discussions.

E. Ablation Studies

We conduct ablation studies to validate the necessity of
every component of the proposed method. All the following
ablation results are obtained on the test dataset of [14],
measured by RMSE.

1) Step-by-Step Error Analysis.: Our method contains mul-
tiple steps containing networks trained step-by-step. Each
phase may produce errors and the errors may propagate to
the final predictions. In this section, we analyze these errors
step-by-step by a group of 5 ablation experiments in Table IV.
Ablation 1⃝ gives results of our final model which first
infers mask images, then the aux-renderings, and finally the
SVBRDF maps. Ablation 2⃝ is similar to 1⃝, except that GT
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TABLE V
ABLATION ON TRAINING STRATEGIES. “W/O INTERMEDIATE LOSSES”

MEANS NOT APPLYING LOSSES TO BOTH MASK AND AUX-RENDERINGS.

Ablation Scheme N D R S
End-to-end w/o intermediate losses 0.057 0.029 0.091 0.033
End-to-end w/ intermediate losses 0.052 0.022 0.073 0.024
Our final model 0.050 0.016 0.055 0.021

mask images are adopted. From the comparison between 1⃝
and 2⃝, we see that the errors in masks reduce the accuracy
of (N,D,R,S) by (0.006,0.004,0.009,0.003) respectively. In 3⃝,
we directly map GT aux-renderings to SVBRDF maps. In this
case, there is no error in the intermediate images by which
we can theoretically obtain the upper-bound accuracy of our
method which is (0.035,0.010,0.032,0.015) respectively.

Ablation 2⃝ and 3⃝ increase the accuracy of the intermediate
images, thus obtaining better final predictions. On the contrary
in ablation 4⃝, we decrease the accuracy of the aux-renderings
by not using the mask images. The accuracy of the final
predictions decreases too, demonstrating the usefulness of the
mask images. In ablation 5⃝, we directly map input images
to SVBRDF maps without any intermediate target, producing
the worst results among the 5 ablations.

2) Ablations on Training Strategies and Intermediate
Losses: We train our final model stage-by-stage. Another way
is to train the model end-to-end. If end-to-end, we can either
apply losses to the intermediate results or not. In Table V, we
perform ablations on different training strategies, and find that
end-to-end training is more likely to get stuck in local minima,
while stage-by-stage training is easier to control, converging
faster and outputting better results.

3) Ablations on Inputting Alternative Combinations of In-
termediate Results for SVBRDF Inference: In Table VI, we
test alternative input combinations for estimating SVBRDF
maps. As shown on the left side, the last line shows our
finally adopted input which is composed of I and I − Ibf
for inferring N. We test only using I as input which yields
large accuracy drop. We test (I,I−Ibf ,Mb) as input and obtain
similar result as inputting (I,I−Ibf ), possibly because I−Ibf
already conveys information about Mb. On the right side, we
test different kinds of input combinations for inferring the
diffuse map. Similarly, using I as input yields worst result.
We then experiment with additionally inputting either Ihr or
Ihr2 besides I, which are also inferior to using all the three
elements as input. Finally, we test (I,Ibf ,Ihr,Ihr2 ), which is
inferior too, possibly due to the highlights in Ibf .

4) Ablations on UNets Used in Each Stage: We use back-
bone UNets in the first stage, aiming at relying on the large
pre-trained backbone model for identifying mask edges. We
employ gated deformable UNets in the second stage, as it can
better remove and inpaint highlights. We use the original form
of UNet in the third stage because this simple network can
fulfill the tasks in this stage as demonstrated in Section IV-E1.

We conduct ablations to validate our choices of UNets in
Table VII. As seen on the top part of the table, we use different
kinds of UNets to infer the bumpiness mask Mb from the
input image I. It is the backbone UNet outputs the lowest
RMSE. From the part at the bottom of the table, we see that

TABLE VI
ABLATION ON ALTERNATIVE INPUT COMBINATIONS FOR ESTIMATING

SVBRDF MAPS. ROWS WITH GRAY BACKGROUND PROVIDE THE
ADOPTED SCHEME.

Input Target RMSE Input Target RMSE
I N 0.066 I D 0.035
(I,I-Ibf ,Mb) N 0.051 (I,Ibf ,Ihr ,Ihr2 ) D 0.019
(I,I-Ibf ) N 0.050 (I,Ihr) D 0.025

(I,Ihr2 ) D 0.028
(I,Ihr ,Ihr2 ) D 0.016

TABLE VII
ABLATION ON APPLYING OTHER UNETS FOR INFERRING MASK IMAGES

AND AUX-RENDERINGS. “ORI. UNET”: ORIGINAL UNET, “GAD-UNET”:
GATED DEFORMABLE UNET, “BB-UNET”: BACKBONE UNET, AND
“HA-UNET”: THE HIGHLIGHT-AWARE UNET PROPOSED IN [17].

Task Model RMSE
I → Mb Ori. UNet 0.030
I → Mb GAD-UNet 0.028
I → Mb BB-UNet 0.023
(I,Mb,Mh)− > Ihr Ori. UNet 0.033
(I,Mb,Mh)− > Ihr BB-UNet 0.031
(I,Mb,Mh)− > Ihr HA-UNet 0.029
(I,Mb,Mh)− > Ihr GAD-UNet 0.025

the gated deformable UNet generates better Ihr than other
kinds of UNets including the HA-UNet proposed in [17].

5) Ihr2 vs. D+S: As mentioned above, Ihr2 is potentially
equal to the sum of diffuse and specular (i.e., D + S), as
they are both mainly determined by the diffuse and specular
components. However, the formation of Ihr2 is essentially
influenced by the lighting conditions, and since Ihr2 share
similar lighting conditions as the input image I, we expect it
is easier to infer Ihr2 than D + S from I. To prove this, we
conduct the following experiment: we generate D+S using the
same way generating Ihr2 . After testing, we obtain an average
RMSE of 0.054 for D+S, and 0.030 for Ihr2 , which validate
our expectation and therefore we prefer using Ihr2 to D+ S.

F. Discussions and Limitations

1) Model Size: In our model, the size of a backbone UNet
is 7.4M, the size of a gated deformable UNet is 25M, and the
size of a UNet in the third stage is 15M. The total size of
our model is around 135M. In comparison, the model size of
[14] is 81M. Our model size is not much larger than that of
[14] even we have multiple UNets whereas [14] has only one.
This is because we use a small base channel size of 48 in our
UNets, while that of [14] is 64.

2) Training and Running Time: Training a backbone UNet
costs around 1.5 days. Training a UNet in the second or third
stages costs about 2.5 to 3 days. At test phase, we take about
0.107 seconds to output four SVBRDF maps. The running
time for Des18 [14] is 0.086s, Zhou21 [56] is 0.065s, Guo21
[17] is 0.038s, Gao19 [46] is 57.298s, and Zhou22 [49] is
around 5.26s.

3) Extension to BRDF models Other Than Cook-Torrance:
We believe the philosophy that guides us to design the
three auxiliary renderings can be also used to design aux-
iliary renderings for other parametric material models like
BSDF/BTDF. For example, we can change the refractive
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Fig. 13. (a) Producing smoother results with fewer details than GT. (b) Cannot
perfectly inpaint highlight when it is strong and large in size. (c) Sometimes
predicting contrary normal directions for different parts of the same objects.

index to generate different images, from which we can infer
the index of refraction. But with no doubt, finding effective
designs of intermediate maps requires a lot of trial and error.

4) Limitations and Future Works: A problem with our
method is that it is composed of many stages, and it is
better to train our model stage-by-stage than end-to-end, as
demonstrated by experiments in Table V. This makes the
training of our model inconvenient and also increases the
training time. In the future, we would like to investigate more
about why end-to-end training is inferior in our situation.

We find that compared with the ground-truth re-rendered
images, our re-renderings are sometimes smoother and lose
details (see Figure 13 (a)). We ascribe this to the use of
the L1 loss in Eq. 14. Due to the higher regression power
of our method, the L1 loss may force our network to learn
SVBRDF maps that look like ground truths on average but
fail to regress local details. We have ever applied GAN losses
to SVBRDF maps to alleviate this problem which however
hurt the numerical accuracy of the maps. How to solve this
problem deserves future research.

Besides, when the highlight is too strong and large in size
(see Figure 13 (b)), our method may fail to perfectly inpaint
the highlight region. This is a problem in the field of large-
hole inpainting, and may be solved if drawing on the latest
inspiration in that field.

We also find that our method cannot predict completely
correct normals for the example (and some similar ones (see
the full list of results on website)) in Figure 13 (c). It seems our
method is susceptible to local features. For example, for the
area in the yellow box, the darker half (see the input image) is
predicted as green normals, while the lighter half is predicted
as red normals, unable to treat the two parts as a single object.
Maybe, it is necessary to introduce a module into our model
that can model long-range relationships between features.

For more discussions about limitations and future research
directions, and results of high-resolution images can be found
in the supplemental material.

V. CONCLUSION

This paper presents a novel three-stage SVBRDF estimation
method from a single image lit by a flash. We contributed to

the community a new paradigm for solving this problem: infer-
ring intermediate targets from the input image at first, and then
inferring the SVBRDF maps from the intermediate targets.
We proposed three auxiliary renderings and two mask images.
The pipeline preparing these intermediate and auxiliary images
is novel, achieved by modifying the original normal and
roughness maps during the forward rendering process (for
the auxiliary renderings), or even modifying the rendering
function itself (for the mask images). Based on the five
intermediate images, we proposed a single-image SVBRDF
estimation framework composed of three well-designed UNet-
based networks to generate mask, auxiliary and the final
SVBRDF images, respectively. We have conducted extensive
experiments on both synthetic and real datasets to validate the
effectiveness of the proposed method.
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