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Abstract. Video Anomaly Detection (VAD) has been extensively stud-
ied under the settings of One-Class Classification (OCC) and Weakly-
Supervised learning (WS), which however both require laborious human-
annotated normal/abnormal labels. In this paper, we study Unsupervised
VAD (UVAD) that does not need any label by combining OCC and
WS into a unified training framework. Specifically, we extend OCC to
weighted OCC (wOCC) and propose a wOCC-WS interleaving training
module, where the two models automatically generate pseudo-labels for
each other. We face two challenges to make the combination effective: (1)
Models’ performance fluctuates occasionally during the training process
due to the inevitable randomness of the pseudo labels. (2) Thresholds are
needed to divide pseudo labels, making the training depend on the accu-
racy of user intervention. For the first problem, we propose to use wOCC
requiring soft labels instead of OCC trained with hard zero/one labels, as
soft labels exhibit high consistency throughout different training cycles
while hard labels are prone to sudden changes. For the second problem,
we repeat the interleaving training module multiple times, during which
we propose an adaptive thresholding strategy that can progressively re-
fine a rough threshold to a relatively optimal threshold, which reduces
the influence of user interaction. A benefit of employing OCC and WS
methods to compose a UVAD method is that we can incorporate the most
recent OCC or WS model into our framework. Experiments demonstrate
the effectiveness of the proposed UVAD framework. Our code is available
at https://github.com/benedictstar/Joint-VAD.

Keywords: Video anomaly detection · One-class classification · Weakly-
supervised learning · Unsupervised learning

1 Introduction

Video Anomaly Detection (VAD) is a task that identifies abnormal events in
a video, where the abnormal event could be a fire alarm, a flaw in an indus-
⋆ Corresponding author (ORCID: 0000-0002-2747-7234).
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trial product, or a traffic accident, etc. Most previous VAD methods fall in two
categories: One-Class Classification (OCC) methods [12, 13, 18, 19, 33, 39] and
Weakly-Supervised (WS) approaches [21, 32, 34, 38, 43, 49]. However, both kinds
of approaches require human-annotated labels for training. Note that OCC mod-
els are trained on normal data only, but it still requires human labor to exclude
abnormal events in preparing the training dataset. For VAD, supervised meth-
ods have two prominent problems. First, abnormal events are sparse and difficult
to recognize, making the annotation of a VAD training dataset a highly labor-
intensive task. Second and more importantly, the categories of abnormal events
are actually unbounded, while human can only collect a limited scope of them,
yielding the risk that the trained VAD methods cannot handle unobserved ab-
normal events.

Considering the above problems, this paper studies Unsupervised VAD (UVAD)
that does not rely on labels. Despite the importance of UVAD, few methods have
been developed except [47] and its subsequent works [2, 37] to the best of our
knowledge, probably because VAD is inherently a binary classification prob-
lem which naturally requires binary label’s supervision. To achieve unsupervised
learning, the method of [47] adversarially trains a generator and a discrimina-
tor, where the generator is an autoencoder-based reconstruction model and the
discriminator is a fully-connected (FC) binary classifier. While the proposed net-
work architecture is sophisticated, the adopted autoencoder and FC networks
are relatively weak which limit the performance of the approach.

In this paper, we propose a new UVAD framework. Our key idea is that the
techniques of OCC and WS approaches are rapidly developed, while a UVAD
method is usually implemented by training two VAD models alternately gen-
erating pseudo labels for each other. This motivates us to propose a UVAD
framework that directly interleaves the training of a pair of OCC and WS mod-
els. In this way, we are flexible to incorporate the recent advances in the two hot
research fields to implement a UVAD method. Note that we have also attempted
to combine two OCC or two WS models, but found two homogeneous models
are less effective.

While combining OCC and WS methods, we encounter two problems pre-
venting it from effective. First, we observe the OCC or WS model’s performance
fluctuates occasionally during the training process, which affects the final ac-
curacy they can achieve. This is partly because the pseudo labels generated by
each other are changed frequently, making the training not stable. To solve this
problem, we extend OCC to weighted OCC (wOCC), and propose a wOCC-WS
interleaving training module. Previous OCC model is trained on normal data,
while our wOCC model is trained with soft labels in the range of [0, 1]. The
soft labels are more consistent across adjacent training cycles, making the per-
formance of wOCC more stable than OCC under changing pseudo labels, thus
suppressing the fluctuation effect. Second, we still have to set a threshold to
partition normal and abnormal pseudo labels for the WS model, making our
method susceptible to a user-provided hyperparameter. To reduce the influence
of user interaction, we repeat the interleaving training module multiple times,
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during which we propose an adaptive threshold mechanism that finds an optimal
threshold given just a rough initial value from the user.

To conclude, the contributions of this work include:

– We propose a new UVAD framework that interleaves the training of a pair
of OCC and WS models.

– We improve OCC to wOCC which stabilizes the training of the UVAD frame-
work, and also propose an adaptive thresholding strategy to alleviate the
influence of user interaction.

– Our UVAD framework is flexible to employ different pairs of OCC and WS
models. Experiments on three OCC and two WS models demonstrate the
effectiveness of our method.

2 Related Work

Unsupervised VAD (UVAD). Unsupervised VAD requires identifying anoma-
lies from data containing both normal and abnormal samples without any anno-
tation. This is a challenging new task that is almost unexplored in the literature.
Although significant progress has been made in OCC and WS VAD, directly ap-
plying them independently to address UVAD does not yield good results. Zaheer
et al. [47] firstly raise this task and propose to solve UVAD by generative co-
operative learning (GCL). Differently, our proposed method modifies both the
OCC and WS VAD models and combines the modified two models together to
learn from unmarked training data.

One-Class Classification VAD (OCC). OCC-based VAD approaches
only have access to normal data and try to model normal data to identify behav-
iors that are significantly different from normal behaviors as anomalies. Early
works use hand-crafted features to help detect anomalies [5,23,40,51]. With the
rapid development of deep learning, recent methods turn to normal representa-
tions extracted by using a deep neural network [26, 30, 36, 41]. Some methods
identify normal patterns by using the reconstruction/prediction model to recon-
struct the representations [6,12,14,18,19,24,25,27,31,33,45,46,52]. These models
may lead to well-reconstructed anomalies, thereby limiting the performance of
the OCC-based methods. Other OCC-based methods turn to identify normal
representations by using proxy tasks [4, 11, 20, 29, 39]. What’s more, recently,
Hirschorn and Avidan [13] propose to build a multivariate Gaussian distribu-
tion for normal data and detect instances deviating from this distribution as
anomalies. However, the above methods treat all samples equally, ignoring the
potential differences in importance between normal samples.

Weakly-Supervised VAD (WS). In weakly-supervised VAD, video-level
annotations are available in the training stage. Sultani et al [32] first propose
to use the video-level labels and solve WS VAD based on multi-instance learn-
ing (MIL) framework [3, 7]. Since then, many works [21, 28, 38, 43, 49, 50] have
viewed the WS VAD task as a MIL problem. Tian et al. [34] develop to extend
MIL to Top-k MIL method by training with a robust temporal feature magnitude
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Fig. 1: Pipeline of our proposed interleaved framework. The wOCC-WS interleaving
training module comprises a weighted OCC (wOCC) model and a WS model, using
the output of each model as the pseudo-labels to supervise the other model. Further,
the training module is repeated multiple times with the adaptive threshold until the
stopping criterion we set. To start the first training module, we randomly sample wX

to train the wOCC model and assign a large value as the threshold for the WS model.
Once a training module converges, the last WS model of it supplies wX to start the
next training module and adaptive thresholding takes the outputs of all previous wOCC
models into consideration for updating the threshold.

(RTFM) loss function. The methods mentioned above directly train in the super-
vision of video-level labels and the coarse-grained supervision limits the accuracy
of WS models. Recently, two-stage self-training methods [8, 17, 44, 53] adopt a
two-stage pipeline to use more fine-grained labels to supervise the networks more
strictly. The WS model in our framework shares a similar idea with [8] and is
tailored to use finer-grained snippet-level labels.

3 Method

3.1 Overview

Our proposed UVAD framework interleaves the training of a pair of OCC and WS
models. In theory, any OCC or WS methods can be incorporated into our frame-
work. Without loss of generality, we take STG-NF [13] (a recent OCC model)
and RTFM [34] (a recent WS model) as examples to introduce our method in
the following sections. We test many other OCC/WS models in Section 4.5.

Figure 1 shows an overview of our framework. The basic buildingblock of
our method is the wOCC-WS interleaving training module. In the module, the
outputs of each model are used as pseudo labels for defining the loss function
training the other model. After one module converges, we re-initialize another
module to run the interleaving training again with a difference that the threshold
of the WS model is updated by an adaptive threshold adjustment mechanism
based on wOCC models trained in previous modules. Since wOCC has more
stable behaviors than WS, we always initialize the wOCC model to start the
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training of a module. For the first module, we use a random initialization based
on Beta distribution sampling. For other modules, we use the results of WS of
the preceding module for the initialization.

3.2 wOCC-WS Interleaving Training Module

We first introduce the wOCC-WS interleaving training module which comprises
a wOCC model and a WS model. At the very beginning, we initialize the wOCC
model to start the interleaving training. Then, pseudo labels created using wOCC
are used to train the WS model. Next, pseudo labels created by the WS model
are used to improve the wOCC model. The whole training does not use human
annotations.

wOCC Model (STG-NF). Typically, OCC models are trained only on
normal data. Directly using OCC in our UVAD framework may make the training
fluctuate, i.e., the performance of the trained models sometimes gets better, but
sometimes worse, finally converging to an inferior point. We use 0 to indicate
normal samples, and 1 abnormal samples, where 0, 1 are hard binary labels.
During training, we need to identify 0-labelled samples to train the OCC model.
The hard partitioned labels may be suddenly changed from 0 to 1 or from 1 to
0, yielding the frequent change of the normal samples used to train the OCC
model which is the source of the unstable training. To this end, we propose
wOCC which relies on soft labels instead of hard binary labels. Soft labels are in
the range of [0, 1]. For example, the soft label 0.7 may be changed to 0.6 but not
0 suddenly. This consistency reduces the fluctuation of the interleaving training.

Next, taking STG-NF [13] (an OCC model) as an example, we introduce how
to improve it to wOCC. STG-NF extracts a set of objects X = {X1, · · · , Xi, · · · }
from the training videos, where Xi is a sequence of poses of a person. Each
object Xi is the basic building block processed by STG-NF. Originally, STG-NF
minimizes the negative log-likelihood across the normal data:

Locc = −log(pZ(fSTG−NF (X
+
i ))), (1)

where X+
i ∈ X+ is sampled from normal data, Z = fSTG−NF (X

+
i ) is the

feature extracted from X+
i by the STG-NF, pZ is the established distribution

of the normal data. We upgrade STG-NF by introducing the soft labels wX =
{wX1

, · · · , wXi
, · · · } as the weight to supervise its training on both normal and

abnormal data. Formally, for the wOCC model improved from STG-NF, we
minimize the following weighted negative log-likelihood across all the data :

Lwocc = −(1− wXi
)log(pZ(fSTG−NF (Xi))), (2)

where Xi ∈ X is sampled from the whole training dataset rather than the normal
part and wXi ∈ [0, 1] is the weight of the object Xi indicating the anomaly degree
of the object which serves as the soft label. The object with smaller wXi means
more normal which is better captured by the learned distribution of wOCC.

Pseudo Labels lS from wOCC. Now we use the trained wOCC model
to generate pseudo labels lS = {lS1

, · · · , lSi
, · · · } for training the WS model.
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“Snippet” is the basic element processed by WS models. We first split the training
videos into snippets, obtaining a set of snippets S = {S1, · · · , Si, · · · }. Our aim is
to compute the label lSi ∈ {0, 1} for each snippet Si. Let xi be the anomaly score
of the object Xi computed by the trained wOCC model. The anomaly score ŝi
of a video snippet Si is computed by averaging all the anomaly scores of objects
in the snippet. To generate pseudo label lSi

, one way is to check whether ŝi is
larger than a threshold (lSi

= 1) or not (lSi
= 0). However, as the training goes,

the anomaly scores of snippets may vary in a large range, making the absolute
threshold invalid. Instead, we sort the snippets according to their anomaly scores
in descending order, and get the index of the snippet Si by Rank(ŝi) in the sorted
list. Finally, the label lSi

of snippet Si is computed by

lSi =

{
1, if Rank(ŝi) < Tws,

0, otherwise,
(3)

where Tws is the relative threshold not affected by concrete anomaly scores.
WS Model (RTFM). With snippet-level pseudo annotations lS (obtained

in Eq. 3), we now define positive and negative bags and use them to train a WS
model. Previously, approaches [32,34] usually treat snippets of the same video as
a bag based on video-level labels. Differently, thanks to the snippet-level labels
provided by the wOCC model, we can compose positive and negative bags more
flexibly. In our method, a positive bag B+ = {S+

i }Ci=1 is composed of randomly
selected C = 16 abnormal snippets. Similarly, a negative bag B− = {S−

j }Cj=1

is composed of randomly selected C normal snippets. Taking RTFM [34] as
an example, the WS method employs multiple instance learning, requiring the
average Top-k maximum magnitudes of features in positive bags exceeds that in
negative bags:

Lws = max(0,m− dRTFM (B+) + dRTFM (B−))+

LBCE(B
+) + LBCE(B

−),
(4)

where m is the margin, and dRTFM (B) (where B can be B+ or B−) returns
the average of the Top-k maximum magnitudes of features. Finally, LBCE is the
binary cross-entropy-based classification loss:

LBCE(B) = −Y log(fRTFM (B)) + (1− Y ) log(1− fRTFM (B)), (5)

where Y is the label of the bag B and fRTFM (B) returns the average of the Top-
k maximum anomaly scores. Note that fRTFM (B) is different from dRTFM (B),
where fRTFM (B) returns the anomaly scores while dRTFM (B) returns the mag-
nitude of the features.

Pseudo Labels wX from WS. wOCC model needs soft labels wX . With
the trained WS model, we compute the anomaly score x̂i of object Xi by simply
setting it as the anomaly score of the snippet containing the object Xi. Then,
the soft label wXi

is directly set as:

wXi
= x̂i. (6)
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x̂i is already in the range of [0, 1], so we do not need to normalize wXi
.

Initializing the Interleaving Training Module. As discussed above, in
our proposed interleaving training module, wOCC training relies on pseudo la-
bels generated by the WS model, and conversely, WS training requires pseudo
labels derived from the wOCC. This egg and chicken problem needs to be solved
at the very beginning. Our solution is to provide the wOCC model with ran-
domly generated soft labels to start the interleaving training. Usually, the train-
ing dataset contains much more normal samples than abnormal ones, which
means most soft labels are around 0 while a small portion of them are near 1.
Therefore, we randomly sample the weight wX from the Beta distribution, i.e.,
wX ∼ Beta(α, β), where α = 1 and β = 5. The sampled weights wX are mostly
around 0, and a small portion of them is close to 1, satisfying the prior about
the distribution of normal and abnormal data.

Convergence Analysis. We have discussed the mechanism and the way to
start the interleaving training module above. Then, in the following, we empiri-
cally analyze its convergence, which is validated by the experiment in Figure 6.
At the very beginning, we randomly initialize the weight wX to train our wOCC
model. Although the random initialization is not precise, the wOCC model can
still learn normal patterns from the training data, as we assume there is more
normal data than abnormal data in the training dataset. Therefore, the wOCC
model can produce relatively reliable pseudo labels for the WS model. This is
very important as the WS model has a high requirement on the quality of the
pseudo labels. In turn, with the trained WS model, we can provide better pseudo
supervision to train a stronger wOCC model than the random initialization. In
this way, we achieve mutual improvement between two models until convergence.

The above analysis implies the reason why we do not choose to interleave the
training of two OCC models or two WS models. The OCC model can provide
reliable initialization, while the WS model explicitly enlarges the gap between
normal and abnormal samples which better exploits the utilization of both the
normal and abnormal data. Two OCC models fail to utilize the abnormal data.
For two WS models, it is not known how to provide a reliable initialization to
start the training.

3.3 Repeating Procedure with Adaptive Thresholding

In our proposed interleaving training module, the wOCC and WS models need
to provide pseudo labels to supervise the other. As the wOCC model relies on
soft labels wX as defined in Eq. 6, its pseudo labels can be directly provided by
the WS model without thresholding. However, as defined in Eq. 3, we need to
specify a threshold for the WS model since it requires binary hard partition la-
bels to construct positive and negative bags. To alleviate the influence of human
interaction, we propose a repeating procedure of the interleaving training mod-
ule which can adaptively refine a user-specified rough threshold to a relatively
optimal one.

Starting and running the next interleaving training module. As
shown in Figure 1, we run several interleaving training modules one after another.
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Recall that we provide wX by random initialization to start the first interleaving
training module as discussed in Section 3.2. To start the next module, we use
the final WS model in the last module to provide the labels wX . Note that for
the wOCC and WS models in a new interleaving training module, we train them
from scratch, not inheriting parameters from the last module.

Adaptive Thresholding. The threshold is fixed in each module. Between
two modules, we employ an adaptive thresholding mechanism to refine the
threshold. As the repeating procedure runs, we obtain a series of thresholds
{T 1

ws, T
2
ws, · · · , T i

ws, · · · } corresponding to the interleaving training modules. The
key idea of adaptive thresholding is to ensure:

T 1
ws ≥ T 2

ws ≥ · · · ≥ T i
ws ≥ · · · . (7)

Starting from a sufficiently large (larger than the optimal threshold) value of T 1
ws,

there must be one threshold T ∗
ws ∈ {T 1

ws, T
2
ws, · · · , T i

ws, · · · } that is closest to the
optimal threshold. The problem is how to enforce the monotonically decreasing
of the threshold and how to stop the repeating procedure at the optimal point.

First, we initialize T 1
ws = R%×N , where R is a user-specific hyper-parameter,

e.g. R = 30, and N is the total number of snippets in the training dataset. This
setting makes T 1

ws a large enough threshold, since generally the ratio of abnormal
data in the training dataset is less than 30%. We test different R (e.g., 35%) in
the experimental section and find that it does not influence our final results
much, demonstrating the robustness of our method to the user interaction.

Then, to ensure Eq. 7, our adaptive thresholding method determines the
threshold used in the current module based on wOCC models trained in all
previous modules. Each training module produces multiple wOCC models, ob-
taining one after each loop between wOCC and WS. Let Mi be the number of
wOCC models trained from module 1 to module i. When computing T i+1

ws for
module i + 1 with i ≥ 1, we take all the Mi wOCC models into consideration.
Specifically, for each wOCC, e.g., the jth one where j ∈ [1,Mi], we use it to iden-
tify R% of snippets in the training dataset that have high anomaly scores, and
denote the resulting set of snippets as Aj . We then compute intersection between
all sets and count the number of the resulting intersection as the threshold:

T i+1
ws = Num(A1 ∩A2 ∩ · · · ∩AMi), (8)

where Num(·) counts the number of elements in the intersection. The operation
of computing intersection ensures that the obtained threshold is monotonically
decreased. In essence, the threshold computed in this way means the number
of snippets viewed as abnormal by all wOCC models. At the early stages, the
number of wOCC models is small, therefore the size of the intersection is large,
yielding large thresholds. As more wOCC models involved, it is more difficult to
form a consensus, thus producing smaller thresholds.

To elucidate the effect of the adaptive thresholding, we visualize how WS
models are gradually improved as the repeating procedure runs in Figure 2. In
the figure, we show two examples. Taking the one on the left as an example, it
shows a video with an abnormal event in the middle. At the beginning when
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Fig. 2: As the repeating procedure goes, Tws becomes smaller and smaller, while the
WS model is improved gradually. Left: an example from ShanghaiTech dataset. Right:
an example from UBnormal dataset.

Tws = 1643, the WS model wrongly identifies the abnormal event as normal. As
the repeating procedure runs, Tws becomes smaller and smaller, which is finally
reduced to 834 after repeating 5 times, and the WS model begins to identify the
anomaly event progressively.

Stopping Criterion. As our goal is to find the threshold T ∗
ws close to the

optimal threshold, we need to stop the repeating procedure at the right time.
Experimentally, we find that Tws drops fast at the first few interleaving training
modules, then the rate of change of Tws becomes smaller which indicates that
the wOCCs achieve a consensus about anomalies. The size of the consensus set is
probably the actual number of abnormal snippets in the dataset. Based on this
observation, once change rate of Tws between two consecutive training modules is
less than Q% of the first change rate at the very beginning, we stop the repeating
procedure. Please see the high correlation between the change rate of Tws and
the accuracy of the WS model in Figure 4.

Training Time Analysis. Though we need to repeat the interleaving train-
ing module multiple times, our training is as fast as the original wOCC or WS
method. First, the repeating procedure usually stops with fewer than 6 modules
thanks to the stopping criterion. Furthermore, we train wOCC (or WS) for just
one epoch, and then exchange to train WS (or wOCC) for another epoch, which
greatly saves the training time. If we have 6 modules, each running an average
of 5 loops of interleaving training, the wOCC and WS models are trained for
just 30 epochs each. The original wOCC or WS models are also trained for the
similar number of epochs in their default experimental settings. The detailed
experiments are in Section 4.5.

3.4 Inference

At the inference stage, both wOCC and WS models can be used to detect anoma-
lies. We provide results of both models when compared with previous methods.
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4 Experiments

4.1 Datasets and Evaluation Metrics1

ShanghaiTech.The ShanghaiTech dataset [18] contains 437 videos and was cre-
ated as a benchmark for OCC with only normal videos available in the training
set. Zhong et al. [53] reorganized the dataset to enable the training of WS sys-
tems. The new split contains 63 abnormal videos and 175 normal videos, while
there are 44 anomalous and 155 normal videos in the new testing split. In our
unsupervised setting, we follow the split for WS approaches but do not provide
video-level annotations in the training stage.

UBnormal.The UBnormal dataset [1] is a synthetic open-set benchmark,
containing 268 training videos, 64 validation videos and 211 test videos. Normal
and abnormal videos are mixed in the three subsets. The dataset is challenging
because of disjoint sets of anomaly types in training and testing sets. We follow
its original organization but train our proposed UVAD without any annotations.

Evaluation Metrics. Following prior VAD arts [13, 34], we use the frame-
level area under ROC curve (AUC) to measure VAD’s accuracy for both datasets.

4.2 wOCC and WS models Employed

As stated, our method is a flexible UVAD framework that can use different
wOCC and WS models. We test improving three OCC models to wOCC, in-
cluding the AE model used in [47], Jigsaw [39], and STG-NF [13]. The wOCC
losses for AE and Jigsaw are put into supplemental material.

(1) AE. GCL [47] proposes to use an AutoEncoder that reconstructs the
features extracted from videos as their OCC model. We use it here too.

(2) Jigsaw. The OCC model Jigsaw [39] addresses VAD by solving a pretext
task: spatio-temporal jigsaw puzzles. It divides the spatio-temporal space of a
video into smaller cubes, then shuffles the positions of the cubes, and finally tries
to restore the original positions of the cubes.

(3) STG-NF. STG-NF [13] extracts people’s pose sequences, and extends
Glow [16] to build multivariate Gaussian distribution of normal action sequences.

For WS, we test the method proposed in Sultani et al. [32] and RTFM [34].
(1) Sultani et al. [32]. Sultani et al. [32] propose the first MIL VAD model

that maximizes the separability between a positive bag containing snippets of
an abnormal video and a negative bag with snippets of a normal video.

(2) RTFM. RTFM [34] extends Sultani et al. [32] to compare the Top-k
largest-magnitude snippets between positive and negative bags.

1 The authors Hao Huang and Yongwei Nie signed the license and produced all the
experimental results in this paper. Meta and Meta employees did not have access to
the datasets.
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Table 1: Comparison with previous approaches. For wOCC, we use STG-NF [13].
For WS, we use RTFM [34]. We test using C3D [35] and I3D [15] to extract features
for RTFM. OurwOCC gives the AUC of the wOCC model. OurWS gives the AUC of
the WS model. The methods split by the dashed line are trained as a whole in our
framework. * means we reimplement the method by taking I3D as the feature. **
means our method degenerated to the supervised OCC or WS method. *** means the
results on UBnormal are reproduced by us using the official code.

Unsupervised

Method Features STech
AUC %

UB
AUC %

AEAllData I3D 60.51 -

STG-NFAllData [13] - 80.29 70.48

GCL∗ [47] I3D 76.14 -

OurwOCC - 81.50 71.67

OurWS C3D 85.43 59.05

OurwOCC - 82.57 74.76

OurWS I3D 88.18 63.10

One-Class Classification

Method STech
AUC %

UB
AUC %

MemAE [12] 71.20 -
Frame Prediction [18] 73.40 -
Markovitz et al. [22] 76.10 52.00
HF2-VAD [19] 76.20 -
CT-D2GAN [9] 77.70 -
CAC [42] 79.30 -
SSMTL [10] 82.40 -
Georgescu et al. [11] 82.70 59.30
SSMTL++ [4] 83.80 62.10
Jigsaw [39] 84.30 56.40
STG-NF [13] 85.90 71.80
Our∗∗wOCC (STG-NF) 86.37 72.81

Weakly Supervised

Method Features STech
AUC %

UB
AUC %

GCN [53] C3D 76.44 -
GCN [53] TSN 84.44 -
Zhang et al. [50] C3D 82.50 -
Sultani et al.∗∗∗ [32] I3D 84.53 54.12
AR-Net [38] I3D 85.38 -
CLAWS [48] C3D 89.67 -
MIST [8] I3D 94.83 -
Li et al. [17] I3D 96.08 -
RTFM∗∗∗ [34] C3D 91.51 62.30
RTFM∗∗∗ [34] I3D 97.21 66.83
S3R [43] I3D 97.48 -
Our∗∗WS (RTFM) I3D 97.53 67.42

Table 2: Ablation study on wOCC im-
proved from different OCC models, always
with RTFM as the WS model.

OCC Model OurwOCC OurWS(RTFM) GCLClassifier

AE 70.99 78.90 76.14
Jigsaw [39] 81.23 85.35 -

STG-NF [13] 82.57 88.18 -

Table 3: Ablation study on using dif-
ferent WS models in our method, always
with STG-NF as the wOCC model.

WS Model OurwOCC (STG-NF) OurWS

Sultani et al. [32] 81.92 77.41

RTFM [13] 82.57 88.18

4.3 Implementation Details

We implement our method in PyTorch. For STG-NF and RTFM (implementa-
tion details of other wOCC/WS models are put in supplemental material), they
are optimized by Adam optimizer with β1 = 0.9, β2 = 0.999, and a weight decay
of 0.0005. The batch size of STG-NF is 256, and that of RTFM is 32. The learn-
ing rate is 5e − 4 and 1e − 3 for STG-NF and RTFM respectively. For RTFM,
the margin m is set to 100. During interleaving training, we train a model for
one epoch and then exchange to train the other model for another epoch.

Our method has two hyperparameters shared by all types of wOCC or WS
models. One is R% which determines the initial threshold T 1

ws. By default, we set
it to 15% for the ShanghaiTech dataset which contains a small ratio of abnormal
data. The UBnormal dataset contains relatively more abnormal data and we set
R% to 30%. The other parameter is Q% used to stop the repeating procedure.
For both datasets, we set Q% to 10%. Analysis of Q% is put into Supp.

4.4 Comparison with Previous Approaches

From left to right, Table 1 shows the comparison between our and previous ap-
proaches under Unsupervised, One-Class Classification and Weakly-Supervised.
Since the unsupervised methods are scarce, besides GCL [47], we compare with
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AEAllData which means training the AE model on the whole training dataset con-
taining both normal and abnormal data. We also compare with STG-NFAllData.
For our method, we adopt STG-NF [13] as wOCC, and RTFM [34] as WS.

First, OurwOCC (trained along with RTFM (I3D)) outperforms STG-NFAllData

(see the table on the left). This validates the benefit of using our method to
distinguish the normal from abnormal data in the training dataset. On Shang-
haiTech, our proposed wOCC improves STG-NF from 80.29% to 82.57%. In
contrast, the improvement is from 70.48% to 74.76% on UBnormal. The im-
provement on UBnormal is larger as there is more abnormal data in UBnormal
which causes STG-NFAllData to perform worse.

Second, please compare our method with GCL. OurWS achieves an AUC of
88.18%, while that of GCL is 76.14% (this score is reported by the classifier
of GCL, thus we use our WS model for the comparison). This significant im-
provement is partly due to the reason that we use a stronger OCC model, i.e.,
STG-NF, than GCL. If using the same OCC model, our method outperforms
GCL by 2.76%, as shown in Table 2.

Our UVAD method can be degenerated into a supervised OCC method. For
example, we can perform our interleaving training on the normal data only. The
obtained wOCC model in this setting is denoted by Our∗∗wOCC which outper-
forms existing supervised OCC approaches (see the table in the middle). This
validates the effectiveness of the proposed wOCC with weighted importance, as
even among the normal data there is data that is more normal than other data,
and the wOCC model can better identify their difference.

To degenerate our method into a supervised WS method, we allow our WS
model to know video-level labels. Specifically, snippets of normal videos are
treated as normal. Since snippets of abnormal videos can be either normal or
abnormal, they are processed by our adaptive thresholding approach. As seen in
Table 1 on the right, Our∗∗WS (RTFM) outperforms the baseline RTFM [34]. On
UBnormal, our method performs best among all the compared WS methods.

4.5 Ablation Study and Discussions

Next, we perform ablation studies on our method. Without extra explanations,
experiments are conducted by taking STG-NF as wOCC and RTFM as WS.

Comparison between OCC over wOCC. In Figure 3, we compare the
performance fluctuation of using wOCC or OCC (STG-NF) in our framework
in the first two interleaving training modules’ training. As shown, directly using
OCC leads to performance fluctuation of both OCC and WS models and con-
verges to an unsatisfactory point. In comparison, our proposed wOCC stabilizes
the training and improves the performance of both models.

Using Different OCC/WS Models. In Table 2, we conduct experiments
of upgrading different types of OCC models to wOCC in our method. We test
AE [47], Jigsaw [39], and STG-NF [13], while always using RTFM [34] as the WS
model. As seen, the effectiveness of our method is essentially affected by wOCC
model. Similarly in Table 3, the same wOCC model is used but with different
WS models. Overall, a better wOCC or WS model yields better results.
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Fig. 3: Top: performance fluctuation in
the first module. Bottom: performance
fluctuation in the second module. Red line:
AUC of wOCC (or WS) when interleaving
wOCC and WS. Blue line: AUC of OCC
(or WS) when interleaving OCC and WS.

Fig. 4: Left: ShanghaiTech. Right: UBnor-
mal. Top: Tws in each interleaving train-
ing module. Bottom: The AUC of the WS
model in each module. Stars in top figures:
position where achieves stopping criterion.

Table 4: Comparison with fixed thresholding.

Weighted OCC WS with Adaptive Threshold RTFM (AUC %) STG-NF (AUC %)
✗ ✗ 82.06 80.52
✓ ✗ 83.48 81.78
✗ ✓ 85.86 81.94
✓ ✓ 88.18 82.57

Comparison with Fixed Thresholding. In Table 4, the first row shows
results of using fixed thresholding for both OCC and WS models. The second and
third rows use fixed thresholding for either OCC or WS models. The fourth row
shows our method with wOCC and adaptive thresholding. As seen, our method
outperforms all the other variants.

Effectiveness of the Stopping Criterion. In Figure 4, we show that with
the current stopping criterion, our method can stop when it achieves the best
AUC (i.e., the best VAD accuracy). As the repeating procedure runs, Tws drops
and AUC increases. Tws drops very fast at the very beginning, and then the drop
rate becomes slower. Simultaneously, AUC first increases and then decreases. We
stop our method when the change rate of Tws is about 10% of its original change
rate, which finds the best stopping positions indicated by the stars in top figures.

Robustness to R%. Our method is robust to the parameter R%, as demon-
strated in Figure 5. On the top, we show that the threshold Tws converges to
similar values after 6 interleaving training modules when using different R%.
At the bottom, we show that different R% yield similar AUC on both training
datasets. The experiments demonstrate that our method is not influenced much
by this parameter for each dataset. For different datasets, we need to set different
R% that roughly match with the ratio of anomaly data in the datasets.

Training Loss Curve. In Figure 6, we show training loss curves of the
wOCC (STG-NF) model in our framework. As seen, the loss drops smoothly
within each interleaving training module. Since we re-train the wOCC model
from scratch in the next module, the loss suddenly increases at the beginning of
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Fig. 5: Left: different R% converge to
similar Tws (on STech). Middle: different
R% yield similar AUC (on STech). Right:
different R% yield similar AUC (on UB).

Fig. 6: Bottom: training loss curve of the
wOCC model during the whole repeating
procedure. Top: zoomed-in training loss
curve in the third module.

Table 5: Training time on ShanghaiTech.

Model Epoch
Each Step

Training
Steps

Training
Epochs

Training
Time

STG-NF
AUC %

RTFM
AUC %

Our UVAD
1 17 2×1×17 2h28m 82.57 88.18
2 12 2×2×12 2h42m 82.53 87.95
3 11 2×3×11 3h31m 82.27 86.36

STG-NF [13] - - 8 10m 85.90 -
RTFM [34] - - 50 2h32m - 97.21

the next module, but the peak magnitude of the loss is lower than that of the
previous module. Please check the zoomed-in curve showing the loss curve of the
wOCC model in the third module. Even though the model is trained alternately
with another model, its loss can still decrease smoothly, not affected by the other
model. The WS model’s training loss curve is put into the supplemental material.

Training Time. As mentioned in Section 3.3, although we need to train the
wOCC and WS models alternately many times in multiple modules, our method
is fast in training. That is because, we just train a model for one epoch and
then exchange to train the other model for another epoch, which form a training
step of our method. Our interleaving training converges very fast. As shown in
Table 5, there are only 17 training steps during the whole training, yielding a
total of 34=2(wOCC and WS)×1(epoch)×17(all training steps) epochs. It takes
around 2.5 hours to train our method on ShanghaiTech. We have also trained
the wOCC or WS model for 2 or 3 epochs in each training step, but obtained
worse results, probably because training with more epochs would enhance the
supervision of wrong pseudo labels in early training modules.

5 Conclusion

In this paper, we interleave the One-Classification and Weakly-Supervised mod-
els with adaptive thresholding to tackle unsupervised video anomaly detection
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without any human annotations. We face the challenges of performance fluctua-
tion and require of accurate threshold when designing the framework. To allevi-
ate performance fluctuation, We propose the wOCC model which requires soft
labels but not binary labels. To obtain a relative optimal threshold, we repeat
our proposed interleaving training module, during which we propose adaptive
thresholding to refine a rough threshold progressively. Extensive experiments
demonstrate the effectiveness of our method. Remarkably, our method can be
upgraded with the most recent development in OCC and WS VAD fields.
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