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A Supplementary Material

A.1 wOCC Training Loss for other Employed OCC Models

We have discussed the wOCC training loss of STG-NF [1] in the paper. In what
follows, we discuss the wOCC training loss of other employed OCC models:
AE [6] and Jigsaw [5].

AE [6]. The basic building block for AE is the snippet feature X extracted
by I3D. For improving AE to wOCC, we define its wOCC training loss by:

Lwocc = (1− wX)∥X − fAE(X)∥22 (1)

where wX is the weight of X and fAE(X) returns the reconstructed X by AE.
Jigsaw [5]. As for Jigsaw, the basic building block is a jigsaw puzzle X. The

jigsaw puzzle is processed in two streams: shuffled in spatial and temporal. Spa-
tially, each frame is decomposed into n× n patches which are then shuffled. All
the frames share the same permutation meanwhile are kept in chronological or-
der. Temporally, Jigsaw shuffles the frame sequence containing l frames without
disorganizing the spatial content. Its wOCC training loss based on cross-entropy
(CE) loss is defined as:

LwOCC =

{
(1− wX) 1l

∑l
i=1 CE(ti, t̂i), X ∈ Qt

(1− wX) 1
n2

∑n2

j=1 CE(sj , ŝj), X ∈ Qs

, (2)

where wX is the weight of X, and Qs and Qt respectively denote the sets of
spatial and temporal jigsaw puzzles. What’s more, ti and t̂i are the ground-
truth and predicted positions of a frame in the original sequence respectively,
and sj and ŝj are the ground-truth and predicted locations of a patch in the
original spatial splitting grid, respectively.
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A.2 More Implementation Details

When incorporating different wOCC or WS models into our framework, they
are implemented slightly differently for fair comparison or better performance.

AE [6]. All other wOCC and WS models are optimized by Adam optimizer
with β1 = 0.9, β2 = 0.999, except AE. That is because in the work of [6], AE is
optimized using RMSprop optimizer with a learning rate of 0.00002 and momen-
tum of 0.60. To compare with [6] fairly, we follow this setting. The architecture
of AE is FC[2048,1024,512,256,512,1024,2048]. Due to the simple network, the
batch size of the AE is 8192, and we train the model for 15 epochs before swap-
ping to train the WS model.

Jigsaw [5]. For Jigsaw, the learning rate is 1e-4 and the batch size is 192,
following the setting in [5]. We train the network for 5 epochs in each wOCC
and WS swapping step.

Sultani et al. [2]. We train the model with a batch size of 32 and the
learning rate of 5e-5, following the setting in [2]. We train the model for one
epoch in each alternate training step.

Fig. S1: Bottom: training loss curve of the WS model during the whole repeating
procedure. Top: zoomed-in training loss curve in the third module.

A.3 Training Loss Curve of the Weakly-Supervised Model

In Figure S1, we show the training loss curve of the WS (RTFM) model in our
framework. Originally in RTFM [3], the loss increases as the training proceeds,
in contrast to the usual case where loss is minimized. As seen, our loss in each
interleaving training module follows this trend. Note that in each module, we
have multiple wOCC and WS alternate training steps. Please check the zoomed-
in curve showing the loss curve of the WS model in the third module. At the
time of swapping back to train the WS model (indicated by the vertical dash
lines in the top figure), the loss does not change abruptly. This shows that
though involved into the alternate training, the WS model can converge smoothly
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(similar to the wOCC model), not affected much by training abrupt swapping
of the training.

We also observe that the loss curves in all the modules look similar to each
other, and there is no increase in the peak value of the loss magnitude when
more modules are performed. This goes against the usual expectation that there
should be better (here higher) losses in later training modules. This is because 1
is the maximum loss the adopted WS model can achieve (according to the design
of the loss function in [4]). The WS models are trained to their best modes in
all the modules.

Table S1: The number of training steps in each interleaving training module with
different methods on different datasets.

wOCC Model WS Model Dataset Training Steps
Module 1 Module 2 Module 3 Module 4 Module 5

STG-NF RTFM ShanghaiTech 3 2 4 4 4
STG-NF RTFM UBnormal 5 4 5 5 5
STG-NF Sultani et al. [2] ShanghaiTech 2 2 3 3 3

AE RTFM ShanghaiTech 2 3 4 3 3
Jigsaw RTFM ShanghaiTech 3 4 3 3 3

A.4 The Number of Training Steps in Each Module

As shown in Table S1, we list the number of training steps in each interleav-
ing training module with different methods on different datasets in detail. The
number of training steps in each module depends on the module convergence
conditions we set. Once the change of the training loss between each training
step is lower than U = 0.1, interleaving training stops. Please check the first
and the second rows in Table S1. With the same wOCC and WS models, our
method shows different convergence speeds on different datasets due to the dif-
ferent compositions of the datasets. What is more, we also present the number
of training steps in each module on ShanghaiTech after replacing the wOCC or
WS model (See the third to fifth rows in Table S1). It is natural to have different
convergence speeds with different models.

There are some common trends for the number of training steps with dif-
ferent methods on different datasets. Please check the columns "Module 4" and
"Module 5" in Table S1. Take the first row as an example. The number of train-
ing steps in the fourth and fifth module are the same. The same phenomenon
exists in other rows as well. This indicates that as the training process progresses,
the convergence rate of our method can gradually stabilize within each module,
indicating the stability of our method.

A.5 More Convergence Analysis of Threshold Tws

In Figure S2, we conduct more experiments to demonstrate the convergence of
the threshold Tws given different R%. At the top, the dataset is UBnormal, the
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Fig. S2: Top: Using STG-NF as the wOCC model and RTFM as the WS model,
different R% converge to similar Tws on UBnormal. Bottom left: Using Jigsaw as the
wOCC model and RTFM as the WS model, different R% converge to similar Tws on
ShanghaiTech. Bottom right: Using STG-NF as the wOCC model and Sultani et al. [2]
as the WS model, different R% converge to similar Tws on ShanghaiTech.

Table S2: The comparison between our method and interleaving two homogeneous
models on ShanghaiTech. The framework starts from training Model 1 and Model 1
provides pseudo labels for supervising the training of Model 2. Then, trained Model
2 inversely generates pseudo annotations for Model 1, forming the interleaving train-
ing. First row: our method. Second row: interleaving two OCC models. Third row:
interleaving two WS models.

Interleaving Model Types Model 1 Model 2 Model 1
AUC%

Model 2
AUC%

OCC and WS STG-NF RTFM 82.57 88.18
two OCC STG-NF AE 80.45 61.23
two WS RTFM Sultani et al. [2] 67.23 57.26

wOCC model is STG-NF, and the WS model is RTFM. At the bottom-left,
the dataset is ShanghaiTech, the wOCC model is Jigsaw, and the WS model
is RTFM. At the bottom-right: the dataset is ShanghaiTech, the wOCC model
is STG-NF, and the WS model is [2]. As can be seen, despite variations in
convergence speed, different initializations of R% converge to similar Tws. These
experiments also demonstrate that the convergence of Tws is not dependent on
specific models or datasets.

A.6 Interleaving Training Two Homogeneous Models

Typically, a UVAD method is implemented by training two VAD models. We
choose to interleave OCC and WS methods, but there are potential options to
interleave two homogeneous models, e.g., two OCC models. How about inter-
leaving two homogeneous models for tackling UVAD?
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Fig. S3: Qualitative results on UBnormal. Left to right column: visual results
of the videos abnormal_scene_12_scenario_8, abnormal_scene_29_scenario_4,
abnormal_scene_3_scenario_6 and normal_scene_5_scenario_8. Middle row:
anomaly score curves performed by the WS (RTFM) model. Bottom row: anomaly
score curves performed by the wOCC (STG-NF) model. Red square area: the interval
where anomalies occur in the video. Blue curve: the computed anomaly score of video
frames.

We first discuss combining two OCC models (STG-NF and AE) into a uni-
fied training framework. The training framework starts from STG-NF, since
compared with AE, STG-NF is more robust and has stronger performance. As
shown in Table S2, the best AUC is 80.45% in such framework which is lower
than 88.18% in our method. We conjecture that interleaving two OCC methods
just models normal data but overlooks valuable anomalies, causing lower per-
formance. The situation is worse when interleaving two WS models (RTFM and
Sultani et al. [2]) compared with interleaving two wOCC models. The best AUC
of the framework is only 67.23% and what’s more, the training of the framework
cannot converge on the UVAD dataset, yielding the AUC of 64.12% on RTFM
after repeating the interleaving modules 5 times. WS models require relatively
reliable labels to supervise their training, while at the beginning of interleaving
two WS models, there is no reliable way to meet such requirements.

However, the aforementioned problems in interleaving two homogeneous mod-
els do not exist in our method thanks to the anomaly modeling of the WS model
and relatively reliable labels provided by the wOCC model at the start of train-
ing our framework. In conclusion, interleaving two homogeneous models is less
effective compared with our method.

A.7 More Visual Results

We further provide more visual results in Figure S3 and Figure S4. In both fig-
ures, the middle row is the anomaly score curves performed by the WS (RTFM)
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Fig. S4: Qualitative results on ShanghaiTech. Left to right column: visual results of
the videos 01_0139, 01_0053, 01_0141 and 11_003. Middle row: anomaly score curves
performed by the WS (RTFM) model. Bottom row: anomaly score curves performed
by the wOCC (STG-NF) model. Red square area: the interval where anomalies occur
in the video. Blue curve: the computed anomaly score of video frames.

model and the bottom row is the anomaly score curves performed by the wOCC
(STG-NF) model.

As seen in Figure S3, we show visual results on UBnormal. No matter anoma-
lies of a man running on the road (abnormal_scene_12_scenario_8), a car
knocking against the pedestrian (abnormal_scene_29_scenario_4) or a man
suddenly falling and convulsing on the ground (abnormal_scene_3_scenario_6),
both wOCC and WS models reach a consensus and detect the anomaly intervals
correctly. What is more, for the normal event of two women talking with each
other (normal_scene_5_scenario_8), both two models do not mistake normal
events for abnormal events.

We also show visual results on ShanghaitTech in Figure S4. For the anomaly
occurring on the sidewalk of a man riding (01_0139), a tricycle driving (01_0053)
and a woman skating on a skateboard (01_0141), wOCC and WS models in
our framework predict relatively accurate anomaly scores of high in abnor-
mal intervals and low in normal intervals. Meanwhile, both two models predict
low anomaly scores for the normal event of two men walking on the footwalk
(11_003).

A.8 Failure Cases

Figure S5 and Figure S6 show some failure cases. For both figures, the middle
row is the anomaly score curves performed by the WS (RTFM) model and the
bottom row is the anomaly score curves performed by the wOCC (STG-NF)
model, too.
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We show some failure cases on UBnormal in Figure S5. Sometimes, both
wOCC and WS models neglect the same anomaly events. In the left picture,
when a man runs across the corridor, both the wOCC and WS models neglect
the anomaly due to the man’s body being partially obstructed by the desk and
being too far from the camera. In contrast to this, both two models easily detect
the anomaly of a man twitching on the ground in the same video which is
not obstructed by anything and is close to the camera. We conjecture that both
occlusion and distance can reduce the extraction and tracking accuracy of human
pose features, leading to the failure of our anomaly detection method based on
these features. However, there are also cases where one model identifies anomalies
while the other does not. In the right picture, the wOCC model accurately
detects the anomaly of a man running at a slow speed from right to left at a
zebra crossing while the WS model fails. Later, when another man runs from
left to right at a zebra crossing at a fast pace, both models agree that this is an
anomaly event again. We speculate that the failure of the WS model is attributed
to its limited capability to distinguish between running with smaller movements
and walking. While for the wOCC model, it can overcome this issue because it
conducts a detailed analysis and tracking of body postures.

In Figure S6, we show some failure cases on ShanghaiTech. Similarly, we
present an anomaly case where both wOCC and WS models miss and another
case where one succeeded in judgment while the other failed. In the left of Fig-
ure S6, both models successfully detect the anomalous event where a woman
rides a bicycle on the sidewalk when it shows in the center of the frame. How-
ever, when she rides away from the camera, both models fail to find out it
is still abnormal. We suppose that anomalies occurring further away from the
camera exhibit smaller movement amplitudes and are more challenging to track
human poses. This results in suboptimal performance for both models. In the
right picture, when a car drives across the footway, the WS model detects it as
an abnormal event easily while the wOCC model does not. This is caused by
the limitation of STG-NF. STG-NF detects anomalies based on tracked human
poses, so it can not detect anomalies not related to humans.

In conclusion, our approach is limited by the wOCC and WS models we use.
How to better integrate the inference results of both models to complement each
other’s shortcomings will be investigated in our future work.

References
1. Hirschorn, O., Avidan, S.: Normalizing flows for human pose anomaly detection. In:

Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
13545–13554 (2023)

2. Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance
videos. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 6479–6488 (2018)

3. Tian, Y., Pang, G., Chen, Y., Singh, R., Verjans, J.W., Carneiro, G.: Weakly-
supervised video anomaly detection with robust temporal feature magnitude learn-
ing. In: Proceedings of the IEEE/CVF international conference on computer vision.
pp. 4975–4986 (2021)



8 Y. Nie et al.

4. Wan, B., Fang, Y., Xia, X., Mei, J.: Weakly supervised video anomaly detection
via center-guided discriminative learning. In: 2020 IEEE international conference
on multimedia and expo (ICME). pp. 1–6. IEEE (2020)

5. Wang, G., Wang, Y., Qin, J., Zhang, D., Bao, X., Huang, D.: Video anomaly detec-
tion by solving decoupled spatio-temporal jigsaw puzzles. In: European Conference
on Computer Vision. pp. 494–511. Springer (2022)

6. Zaheer, M.Z., Mahmood, A., Khan, M.H., Segu, M., Yu, F., Lee, S.I.: Generative
cooperative learning for unsupervised video anomaly detection. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. pp. 14744–
14754 (2022)

Fig. S5: Failure cases of our framework on UBnormal. Middle row: anomaly score
curves performed by the WS (RTFM) model. Bottom row: anomaly score curves per-
formed by the wOCC (STG-NF) model. Left: Both the wOCC and WS models find the
anomaly of a man twitching on the ground but fail to detect the anomaly of a running
man far from the camera in the video abnormal_scene_21_scenario_1. Right: The
wOCC model detects both anomaly intervals while the WS model neglects the first man
who runs at a smaller pace in the video abnormal_scene_11_scenario_2_fog. Red
square area: the interval where anomalies occur in the video. Blue curve: the computed
anomaly scores of video frames.
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Fig. S6: Failure cases of our framework on ShanghaiTech. Middle row: anomaly score
curves performed by the WS (RTFM) model. Bottom row: anomaly score curves per-
formed by the wOCC (STG-NF) model. Left: Both the wOCC and WS models notice
the anomaly of a woman riding on the sidewalk in the center of the frame but fail to
track the anomaly when the woman riding far from the camera progressively in the
video 12_0174. Right: When a car driving on the sidewalk in the video 01_035, the
WS model detects the anomaly easily while the wOCC model fails to detect it owing
to the limitation of the model. Red square area: the interval where anomalies occur in
the video. Blue curve: the computed anomaly scores of video frames.


