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Abstract—We present a self-supervised spatiotemporal learn-
ing approach by exploring the temporal coherence of videos.
The chronological order of shuffled clips from the video is
used as the supervisory signal to guide the 3D Convolutional
Neural Networks (CNNs) to learn meaningful visual knowledge.
Unlike the existing approaches which use frames, we utilize
dynamic video clips to reduce the uncertainty of order. We test
three types of representative 3D CNNs, all of which benefit
from the proposed approach. The learned 3D CNNs can be
used either as a feature extractor or a pre-trained model for
further fine-tuning on downstream tasks. We also propose two
curriculum learning strategies to make the 3D CNNs easier to
train and get the state-of-the-art results in nearest neighbor
retrieval and action recognition tasks compared with other self-
supervised learning methods. Meanwhile, it is further extended
to the field of visual question answering application and has
achieved promising results. Besides, comprehensive and extensive
experimental results and analyses are provided for readers to
better understand the video clip order we explore with self-
supervised and curriculum learning for video application.

Index Terms—Self-supervised learning, curriculum learning,
nearest neighbor retrieval, action recognition, video question
answering.

I. INTRODUCTION

N the field of computer vision, Convolutional Neural Net-

works (CNNs) [1], [2] have been in a hegemonic position
recently. Nonetheless, the burgeoning of CNNs is mainly
dependent on manually annotated large-scale datasets, such
as ImageNet [3] and PASCAL VOC [4]. As a typical kind
of CNNs, 3D CNNs have been explored primarily in action
recognition [5]-[7] for a long time. In particular, many video
applications such as action recognition [8], video retrieval
[9] and video question answering [10], are always of great
significance for their applicability. In the field of videos, due
to the lack of similar large-scale manually annotated datasets,
the parameters of 3D CNNs cannot be fully optimized like
2D CNNs, so that 2D CNNs which take both the RGB
and flow streams [11] as inputs can still compete with 3D
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Fig. 1. Tllustration of the necessity to use clips. In the training phase, there
are corresponding samples for the different orders of punches, while in the
test phase, the correct order is hard to predict if given only the frame. When
clips are utilized for the order prediction task, such confusion can be solved
well by using the dynamic information that the clip contains.

CNN s in action recognition. In [12], several successful image
classification model structures are extended and trained on
Kinetics [6] video dataset. The authors conclude that 3D CNNs
and Kinetics may make significant advances in areas connected
to various video tasks, just as 2D CNNs and ImageNet do.

At present, although large-scale video datasets begin to
sprout [6], [13], how to learn meaningful representations from
unlabeled data is always a hot focus due to the heavy cost
of annotation. A method called self-supervised learning is
developed to adopt supervised machine learning techniques on
unlabeled data by designing pretext tasks. For instance, there
are self-supervised tasks such as predicting relative positions
of image patches [14], solve jigsaw puzzles [15], image color
channel prediction [16] and image inpainting [17]. For video
data, since the particularity of temporal information exists,
some recent works also attempt to leverage the temporal
relationship among frames, such as order verification [18], [19]
and order prediction [20] of frames.

The existing framework of self-supervised works tends to
leverage the video in frame-level. The features of frames
are extracted by 2D CNNs, then integrated to predict the
verification results or the actual order of the input frames. The
trained CNNs can be used either as a feature extractor or a pre-
trained model for fine-tuning on classification and detection.
Compared with order verification [18], [19], order prediction
[20] contains richer supervisory signals and indicates better
performance in several validation experiments. Admittedly,
order prediction with frames sometimes contains ambiguity,
as shown in Fig. 1. During the training, there are two different
kinds of ordered frames. The top is the boxer hitting the
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sandbag with his left fist first, and the bottom is the opposite,
which will make the model confusing about the task. To
conquer this deficiency as far as possible, [20] takes forward
and backward orders as the same category. It is a compromise
under the circumstances that merely frames and 2D CNNs are
applied.

By contrast, we recommend using clips and 3D CNNs
directly to make the task more explicit. Because each clip con-
tains internal dynamics, the order will be more distinguishable
if given a shuffled sequence of clips. We integrate 3D CNNs
into the clip order prediction task. Firstly, several clips of fixed
length and interval are randomly sampled from the video for
shuffling, then 3D CNNs are utilized to extract the features of
these clips, and ultimately, these features are fed into a simple
neural network to predict the actual order of the shuffled clips.
These optimized 3D CNNs can learn visual prior knowledge
via clip order prediction tasks, which can be applied to other
video-related tasks for better performance.

We shall point out that the foundation of the proposed
approach in this paper is firstly published in our previous work
[21]. In the previous work, when the number of clips per tuple
increases, the entire framework exhibits turbulent training and
is hard to converge. This paper extends the initial paper by
adopting two curriculum learning strategies to settle the matter,
and enumerating more experimental comparisons and analyses
to better understand the proposed self-supervised learning
method for video applications involving nearest neighbor
retrieval, action recognition, and video question answering. To
summarize, the main contributions of the paper are as follows:

« We propose to use video clips in order prediction, which
is more consistent with video dynamics and enables the
self-supervised spatiotemporal learning of 3D CNNs.

o Two curriculum learning strategies are proposed to ease
the training of the model. We also give detailed analyses
of the clip order prediction results to better understand
the proposed task.

« By experimenting with C3D, R3D and R(2+1)D networks
under diverse task settings, we prove that the proposed
method has wide applicability.

e We evaluate the learned 3D CNNs in nearest neighbor
retrieval and action recognition tasks, and we get state-
of-the-art performances in both tasks, which also shows
the effectiveness of the proposed method. In addition, we
further evaluate the efficiency of trained models as feature
extractors on video question answering task.

The rest of the paper is organized as follows. We first review
related works in Section II, then we explain the details
of the proposed method in Section III. In Section IV, the
implementation and results of the experiments are provided
and analyzed. Finally, we conclude our works in Section V.

II. RELATED WORK
In this section, we briefly introduce recent researches of

action recognition, self-supervised learning, and curriculum
learning that related to our work.

A. Action Recognition

As one of the classical problems in the field of computer
vision, the basic pipeline of action recognition is to extract
features first, then classify them. Nowadays, there are three
primary methods for action recognition, which are the tradi-
tional methods [22]-[27], 2D CNNs-based methods, and 3D
CNNs-based methods respectively.

Since AlexNet [1] made a breakthrough in image classi-
fication, researches that use 2D CNNs in action recognition
tasks have emerged [11], [28], [29]. In [11], the input video
is decomposed into the spatial flow and the optical flow.
The deep 2D CNNs are utilized to process each stream, and
the action categories are predicted through the later fusion.
[29] proposes three fusion methods to integrate the temporal
information of the video. It also implements multiresolution
by dividing the input frames into context streams and fovea
stream. Some other improved models based on the two-stream
model are also used for action recognition, such as trajectory-
pooled deep convolutional descriptors (TDD) [30], temporal
segment network (TSN) [31], etc.

The 3D CNNs [5], [32], [33] extend 2D CNNSs to the
temporal domain and extract spatiotemporal features for action
recognition. In [6], 2D CNNs trained on ImageNet are con-
verted to 3D CNNs by inflating all filters and pooling kernels.
[5] proposes the C3D network in which 3D convolution
kernels are stacked and followed by fully connected layers. In
recent studies, ResNet [2] architecture is also extended from
2D convolution kernel to 3D convolution kernel. [7] proposes
a novel ResNet structure called P3D ResNet, which constructs
three types of bottleneck building blocks and interleaves them.
The decomposition of 3D convolution to 2D spatial and 1D
temporal convolutions are proposed in [33]. In [12], they focus
on training very deep 3D CNNs from scratch and point out that
training deeper 3D CNNs on large datasets is more effective.

B. Self-Supervised Learning

Self-supervised learning is a technique for learning repre-
sentations or priors by completing a specific surrogate task,
in which supervisory signals are generated automatically. It
provides a compelling way to leverage abundant unlabeled
data. In self-supervised learning, data structures are designed
to generate diverse pretext tasks. The learned model from
pretext tasks can be directly reused on downstream tasks
either for feature extraction or for fine-tuning. Because of
this characteristic, self-supervised learning is widely used in
computer vision tasks for the numerous unlabeled images and
videos.

For the proxy task that uses images, the representation of the
image is prevailingly learned by restoring the spatial informa-
tion. For instance, [14] proposes to learn image representation
by predicting the relative position between two image patches.
These patches are sampled from the same image in eight
spatial arrangements. In [15], nine tiles are extracted from
the image and shuffled according to a predefined permutation
set to make jigsaw puzzles. Based on the hamming distance
between all possible permutations, the permutation set is
determined by a greedy algorithm. [34] proposes to learn
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Fig. 2. Left: the overview of clip order prediction framework. (a) sample and shuffle: evenly sample non-overlapping clips and randomly shuffle them. (b)
feature extraction: use 3D CNNs to extract the features of all clips. 3D CNNs are randomly initialized. (c) order prediction: the extracted features are pairwise
concatenated and transformed, then concatenated together again and fed into a fully-connected layer to predict the actual order. The dotted lines indicate that
the corresponding weights are shared. Right: the overall process of task-based curriculum learning. As the number of clips per tuple increase from 3 to 5, the

difficulty of the task changes from easy to hard.

visual features by training 2D CNNs to recognize the rotation
degree of images. In addition, [17] exploits an encoder-
decoder architecture to tackle the image inpainting task, while
[16] employs image colorization as the pretext task to learn
semantic features of images.

Compared with image, video is temporal-coherent and dy-
namic, thus most studies regard the temporal information in the
video as the supervisory information. [35] utilizes transitive
relations to learn representations invariant to inter-instance and
intra-instance variations among object patches. These object
patches are extracted from unlabeled videos via motion cues.
In [36], ranking machines are utilized to capture the evolution
of appearances among the frames, and the learned functional
parameters can be used as the video representation. In [18],
video representation is learned by judging whether the frame
sequence is ordered. [19] proposes to the odd-one-out network
to identify odd elements in a group of related elements. [20]
proposes another related task in which the actual order of input
frames should be predicted. The task is formulated as a multi-
category classification problem, with forward and backward
orders grouped into the same category. Since the number of
possible permutations or orders explodes as patches or frames
are added, permutations are always predefined, as mentioned
earlier in [15]. While in [37], they propose a reinforcement
learning algorithm, which exploits 2D CNNs to predict the
spatial and temporal order of frames, and updates training
permutations according to the network states adaptively.

Most of the above studies use frames as the input to com-
plete the proxy task of video, thus the learned CNNs are purely
capable of extracting features for still images. In order to better
leverage the strength of 3D CNNs and the internal dynamics of
videos, we extend the order prediction task [20] from frames to
clips in our previous work. Recent studies have also attempted
to take advantage of the dynamics of videos. In [38], they

propose a motion and appearance statistics prediction task to
capture high-level concepts of videos. [39] expands the jigsaw
task from 2D to 3D, so as to learn intricate spatiotemporal
video representation. [40] proposes to learn representations by
predicting the transformations applied to the current clip given
its surrounding ones, while [41], [42] utilize the video speed
recognition as a proxy task. In this paper, we optimize our
approach in more complex task settings to enable the model to
learn richer spatiotemporal information and internal dynamics.

C. Curriculum Learning

Aiming at training complex network in deep learning,
Bengio et al. [43] proposes curriculum learning. The main
idea is to imitate the characteristics of human learning, from
simple to hard to learn the curriculum gradually, so that
model can perceive a better local optimum and accelerate
training simultaneously. [44] proposes an algorithm that can
automatically discover the favorable sequence of tasks. [45]
applies curriculum learning to neural machine translation by
rearranging the order of samples according to similarity scores.
[46] proposes a novel framework that integrates the original
curriculum learning with the self-paced learning [47].

In our previous work [21], we indicate that as the number
of clips per tuple increases, the complexity of the prediction
task overgrows in a factorial level. And at the same time, the
model converges slowly during the training, while a higher
learning rate will fluctuate the training process. In this work,
we apply the curriculum learning in two ways, which considers
both the sample and task difficulty. The concrete details will
be explained in the next section.

III. CLIP ORDER PREDICTION

In this section, we will begin with a brief overview of the
proposed clip order prediction method, then describe each part
of it in detail.
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The clip order prediction task mainly consists of three
processes: sample and shuffle, feature extraction and order
prediction. The left of Fig. 2 shows the overall framework.
In the process of sample and shuffle, we evenly sample and
shuffle multiple clips. In feature extraction, several 3D CNNs
with the shared weights are used to extract the features of
the clips separately. In the process of order prediction, we
follow the classification model proposed in [20]. The extracted
features are pairwise concatenated and forwarded through two
linear layers, and finally through the softmax operation to
obtain the probability distribution on each permutation.

Next, we introduce several definitions of clip order pre-
diction proxy task, then elaborate on the three processes
mentioned above. A clip is composed of continuous frames
with a uniform sampling size ¢ X [ X h x w from the video,
where ¢, [, h and w denotes the number of channels, clip
length, height and width of each frame respectively. The size
of the 3D convolution kernel is ¢ X d X d, where ¢ is the
temporal depth and d is the spatial size. We define an ordered
clip tuple as C = (c1,¢2,...,c,), and the features extracted
by 3D CNNs are expressed as F = (f1, fo,..., fn). The
subscripts here represent the chronological order.

A. Sample and Shuffle

In this process, we randomly sample consecutive frames,
namely clips, from the video. For NN clips, the possible
permutation set encompasses N! elements. Taking N = 7,
the aggregate of possible permutations will be 7! = 5040.
The difficulty of classification task surges when the number
of clips per tuple increases. Previous works [15], [37] select a
few specific orders from all possible orders during the training.
Since clip order prediction is purely a proxy task, and we focus
on the learning of 3D CNNs, this task should be solvable.
Otherwise, if the entire proxy task is too complex, it is hard
to learn a desirable video representation. Therefore, we limit
the number of clips to between 2 and 5, and the maximum
number of elements in the permutation set is just 120, which
greatly reduces the training difficulty of the model.

Considering an extreme case where two clips are overlapped
by 1 frame, then the order task can be settled by simply
comparing the pixels of the frames. To avoid such a situation
where the whole framework handles the task by comparing
low-level characteristics like texture and color, we sample clips
from the video evenly spaced by m frames. After sampling, the
clips are shuffled to form the input. The shuffle step is forced
to be random, no particular permutations are preferred. In the
training phase, the number of generated samples belonging to
diverse order categories is roughly the same.

B. Feature Extraction

Three kinds of 3D CNNs, C3D [5], R3D [33] and R(2+1)D
[33], are used to extract features from previous shuffled clips.
The structures of various convolutional blocks are exhibited
in Fig. 3. The same 3D CNNs are used for all clips in one
tuple, as Fig. 2 (b) shows. We will illustrate the architecture
of each network in detail below.

(c) R(2+1)D Conv Blocks

(a) C3D Conv Blocks (b) R3D Conv Blocks

Fig. 3. Three kinds of 3D conv blocks. (a) C3D Conv Blocks: the classic 3D
convolution kernel with size ¢ X d X d, which are stacked to form the C3D
network. (a) R3D Conv Blocks: classic 3D convolution kernels with a shortcut
connection. (¢) R(2+1)D Conv Blocks: the 3D kernel are decomposed into a
spatial 2D kernel (1 x d X d) and a temporal 1D kernel (¢ X 1 x 1). Batch
normalization and ReLU layers are omitted for clarity.

1) C3D: The model is an extension of 2D CNNs with
a temporal dimension. 3D CNNs extract both temporal and
spatial dimensions via 3D convolution, and are capable of
modeling the dynamics of video, which is well-suited for
spatiotemporal learning [5], [48]. The C3D network consists
of 8 successively stacked convolutional layers, 5 staggered
pooling layers, and followed by two fully connected layers
terminally. In [5],the author concludes that the homogeneous
setting of 3 x 3 x 3 convolution kernel is the best practice.

2) R3D: Residual learning principle [2] is a milestone for
the architecture design of 2D CNNs. To effectively train the
deep network and solve the network degradation problem, the
bypass mechanism is introduced in ResNet. It prompts the per-
formance of many image-related tasks, such as classification,
detection, and segmentation to the state-of-the-art. R3D uses
a similar design in 3D convolution, and it can be used for
video processing to perceive spatiotemporal information. The
operations of the basic convolutional block are as follows:

T, = ./_'.2(.7:1(:131)) + ’H(ml) (D)

Where x; and x, represent the input and output of the block
respectively, F stands for 3D convolution operation, and H is
a function that scales the x; to the size of x, when necessary.
The convolution block is composed of two 3D kernels, with
batch normalization and ReLU layers appended. There are
5 convolutional layers in total, and the specification can be
referred in Table 1 of [33].

3) R(2+1)D: 3D convolution can be decomposed into two
separate and successive operations, one is 2D spatial convolu-
tion, the other is 1D temporal convolution. The procedure can
be refactored by first applying spatial convolution then tem-
poral convolution. The specific operations of the convolution
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block are as follows:
zm = Ti(S1(xi))
Lo = 7—2(82($m)) + H(x;)

Where x;, ,, and x, correspond to the input, middle, and
output of the block, respectively, and S represents the spatial
convolution, 7 represents the temporal convolution, and H is
the same as the previously mentioned function. The overall
architecture is the same as R3D, except that more nonlinear
layers like ReLU are inserted into the block, which means that
the number of nonlinearities is doubled while the number of
parameters to be optimized is almost the same.

Recent research indicates that the R(2+1)D network can
achieve the state-of-art results on four action recognition
benchmarks [33]. Both R3D and R(2+1)D networks employ
the global spatiotemporal pooling layer to aggregate the ac-
tivations after the convolutional layers. The gained vector is
viewed as the semantic feature of the input clip. We modify
the original C3D network to follow a similar design to the
other two network structures.

2

C. Order Prediction

The order prediction is formulated as a classification task
with a tuple of clip features as input and the possibility
distribution of various orders as output. Experiments certify
that the network in [20] has significant effects on both order
prediction and learning of the underlying feature extractors.
Therefore, we adopt the same method by leveraging a simple
multi-layer perceptron, and the extracted features are pairwise
concatenated at first. Given the extracted features, the opera-
tions are as follows:

hi = go(Wi(fill f5) + b1)
a=Ws|_ hy+ by
exp(a:)
S5 exp(a;)
Where || means the concatenation of vectors, gy is a nonlinear
function, W and b are the parameters of linear transformation,
hy; captures the relationship between f; and f;, a is the logits,
and p; is the probability that the order belongs to class <.

Suppose a tuple contains 3 clips, and clips C = {(co, ¢3,¢1)
are obtained via shuffling, and corresponding features F' =
(f2, f3, f1) are extracted. As shown in Fig. 2 (c), the extracted
features are firstly pairwise concatenated as (fas, fo1, f31),
and then transformed into tuples of 3 vectors to capture the
relationship among each clip. These vectors are concatenated
again and fed into the full-connected layer, and finally through
the softmax function to output the probability of each order.
The sum of the probabilities is 1 and the order corresponding
to the maximum value is the prediction. The target classes
are permutations of (1,2, 3), one of which is the actual order
(2,3,1).

The cross-entropy loss is used to calculate the deviation
between the target and the predicted value. The formula is
defined as follows:

€)]
Di =

C
L==> yilog(p:) )
i=1

Where y; and p; represent the possibility that the sample
belongs to the class ¢ order in the groundtruth and prediction
respectively, and C' represents the number of all possible
orders. After the calculation, the loss L is backpropagated, and
the SGD optimizer is used to optimize the model parameters.

D. Curriculum Learning

1) Task-based: The right of Fig. 2 shows the overall process
of task-based curriculum learning. As the number of clips per
tuple increases, the complexity level of the task promotes. With
reference to the idea of curriculum learning, we define L,
L4 and L5 as cost functions with the number of the clips
per tuple is 3, 4, and 5, separately, while the clip length and
interval length are fixed. At first, we optimize a relatively easy
target L3. Since the task is simply a classification task with 6
classes, the model converges easily. In this case, the parameters
6 of the model are trained to complete the clip prediction task
corresponding to the 3 clips per tuple and obtain the minimum
value at £3. Then we gradually increase the number of clips
per tuple, that is, raise the difficulty of the training, while
maintaining the optimal parameters of L. Here L3 is the
highly smoothed version of the L. Since the model has been
able to arrange 3 clips, add another clip is only a slight change,
and 6 can be gradually updated to reach the minimum value
of £4. Similarly, based on the model of 4 clips per tuple, the
optimization of the model of 5 clips per tuple is carried out,
and 6 eventually reaches the minimum value of L. Initially,
the model parameters tend to learn from tasks of shorter tuple
length. The next training procedure involves minor changes in
model parameters. With the continued training of the model,
the parameters gradually adapt to the evolution from simple
to complex tasks and enable the model to accomplish more
complex tasks in the end.

2) Sample-based: For a convergent model, it still has the
bias to sort specific kinds of videos better. But actually, all
videos contain different dynamics that are useful for spatiotem-
poral learning. We propose a simple and effective strategy to
help the model learn more visual knowledge from the existing
data. During the training process, when the model converges,
if the softmax value of the correct order is lower than the
specific threshold ¢, we determine that it is hard for the model
to order the shuffled clip sequence. In the subsequent training,
we increase the proportion of these hard samples by removing
other simple ones. By continuously training on hard examples,
the model can learn more comprehensive visual priors.

IV. EXPERIMENTS

In the section, we first describe the implementation details
and analyze the results of clip order prediction experiments
concretely, then evaluate the learned 3D CNNs via nearest
neighbor retrieval, action recognition and video question an-
swering tasks.

A. Video Clip Order Prediction

Although the purpose of the proposed self-supervised
method is to learn visual knowledge from unlabeled videos,
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we choose the experiment on UCF101 [49] dataset without
labels because of its diversity and wide usage. UCF101 is an
action recognition dataset of realistic action videos, collected
from YouTube, having 101 action categories. With 13,320
videos from 101 action categories, UCF101 has large diversity
regarding actions and with the presence of large variations
in camera motion, object appearance and pose, object scale,
viewpoint, cluttered background, illumination conditions, etc.
We utilize the currently popular PyTorch [50] deep learning
library to implement the entire framework. Unlike the origi-
nal C3D network, the C3D network used in this article is
modified by replacing the two fully connected layers with the
global spatiotemporal pooling layer, which is also utilized in
the R3D network. We adjust the R3D network by applying
non-repeating blocks in conv{2-5}_x to obtain a total of
9 convolutional layers. The R(2+1)D network follows the
same architecture as the R3D network, with only the 3D
kernel decomposed. The nonlinear layers we use are ReLU. In
addition, the dropout regularization layers are applied between
the fully-connected layers with p = 0.5 to against overfitting.
To express the experiment clearly, we use cl, it, tl to
represent the clip length, interval length, and the number of the
clips per tuple, and the basic unit of ¢l and ¢t is frame. The pre-
viously mentioned self-supervised learning method is trained
and tested on split 1 of UCF101. On-the-fly data augmentation
is applied to prepare the input data. We randomly split 800
videos from the training set to do validation during training.
The input video clips are first resized to 128 x 171, and
then randomly cropped to 112 x 112 in the training. During
validation or testing, the clip is cropped to the center. Since 3D
CNNss [5], [12], [33] universally demand a 16-frames clip as
input, we also choose ¢l = 16 frames. To avoid trivial solutions
for the task, we assign it = 8 and 16 frames respectively. In
order to make a comprehensive comparison of the effects of
tuple length, we experiment with ¢/ = 3, 4 and 5 clips.
Mini-batch stochastic gradient descent is utilized to opti-
mize the model parameters. Memory consumption has always
been an obstacle in large batches training of neural networks,
especially for 3D CNNs. Recently [51] shows that small mini-
batch size provides more up-to-date gradient calculations and
yields more stable and reliable training. Thus we adopt small
batches of 8 tuples for training. The learning rate, momentum
and weight decay are set to 0.001, 0.9 and 0.0005, respectively.
The training process contains 300 epochs, and the best model
with the lowest validation loss is saved for further analysis.
It is inevitable that the complexity of classification task
raises as tl increases, which is also verified in our previous
work [21] that training from scratch causes unstable training
when tl is larger than 3. Therefore, we adopt the task-
based curriculum learning strategy stated before. Initially, the
network is trained with ¢/ = 3, and when ¢/ increases, the
network is fine-tuned based on the network trained with the
previous tl. The network that has performed a simpler order
task lays down a solid foundation for the optimization of a
harder one. The comparison of accuracy on the validation
set between C3D trained from scratch and C3D with task-
based curriculum learning is displayed in Fig. 4, where ¢l =
16, it = 8 and tl = 4. As we can see, randomly initialized
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Fig. 4. The accuracy in the training process of the C3D network on the
validation set when the number of clips per tuple is 4. Note that C3D is trained
end-to-end from scratch, while C3D (task-based) is trained under task-based
curriculum learning.

TABLE I
CLIP ORDER PREDICTION RESULTS ON UCF101. C3D, R3D AND
R(2+1)D NETWORKS ARE TRAINED WITH CLIP ORDER PREDICTION
FRAMEWORK SEPARATELY. * MEANS THAT THE SAMPLE-BASED
CURRICULUM LEARNING STRATEGY IS APPLIED.

Model cl it tl Accuracy
16 8 (16) 3 68.5 (57.9)
C3D 16 8 (16) 4 49.5 (65.4)
16 8 (16) 5 23.2 (40.4)
16 8 (16) 3 68.4 (20.6)
R3D 16 8 (16) 4 52.2 (10.6)
o 16 8046 5 282(27)
R3D* 16 8(-) 3 701 ( - )
16 8 (16) 3 64.2 (46.7)
R(2+1)D 16 8 (16) 4 50.2 (70.8)
16 8 (16) 5 27.9 (51.9)

C3D makes merely a puny growth in accuracy before the 200
epoch. Even if the maximum is achieved after 200 epochs,
it cannot compete with the minimum of C3D (task-based)
even in 10 epochs. It can be seen that C3D (task-based) has
a faster convergence rate than randomly initialized C3D. For
the following experiments, we will use the task-based training
strategy for ¢/ larger than 3 if not specified.

The results of C3D, R3D and R(2+1)D on the clip prediction
task under variant cl, ¢ and t! conditions are exhibited
in Table I. The task-based training is utilized for both it
= 8 and 16 separately. Considering that the accuracies of
random guessing for these tasks are 16.7%, 4.2% and 0.8%
corresponding to tl of 3, 4 and 5, the framework indeed learns
to analyze the content of clips and reason the order out. For
it = 8, when ¢l increases, the accuracy decreases for all of
the three models, which is reasonable since the difficulty of
the task grows quickly. But there are also abnormal behaviors
when it increases. For C3D and R(2+1)D model, when it = 16,
though the task complexity grows from ¢/ = 3 to 4, the order
accuracy is also improved apparently. While under the same
situation, the accuracy decreases for R3D. In our experiment,
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Fig. 5. The comparison of clip order prediction accuracy in different

categories on UCF101 for R3D and R3D (sample-based), where ¢l = 16,
it =8, tl = 3.

the R3D model can get an accuracy of 20.6% in 300 epochs,
and if trained with another 300 epochs, its accuracy can raise
to 29.2% and still seems to improve. This means when ¢/
= 4, the R3D converges very slowly compared to C3D and
R(2+1)D, which may result from the architecture design.

For sample-based curriculum learning, we experiment with
the R3D network. To reduce the impact of randomness, we col-
lect the softmax value of the predictions in several convergent
epochs to measure the difficulty of the corresponding video.
If every classification is correct and the softmax value of the
correct order is greater than the threshold 0.8 in these epochs,
we will screen out such simple samples in the following
training process. The order prediction accuracy of the model
trained in this way is displayed as R3D* in Table 1. Obviously,
the accuracy has been improved further.

In addition, since the dataset we use has labels, we also cal-
culate the average order prediction accuracy by each category
on split 1 of UCF101, and several categories are displayed in
Fig. 5. We discern that some categories that contain quick and
repetitive actions, juggling balls, boxing speed bag, hula hoop
and so on, all have an order accuracy of more than 70%, while
it seems hard to arrange these disordered clips by human.
We speculate that our trained 3D CNNs may have learned
some video priors that are not visually accessible to human,
such as flow direction, camera locations, etc. Meanwhile, we
also perceive that there are some common characteristics on
several categories with low accuracies, such as biking, skijet
and walking with dog. In this way, the movement trend of
each clip is likely to occur, making it difficult to attain the
correct prediction. The sample-based training can enforce the
model to spend more time learning from these hard samples
and get higher accuracy correspondingly.

B. Nearest Neighbor Retrieval

As mentioned above, to complete the task, 3D CNNs
inevitably analyze and understand the content of clips. As
a feature extractor, the 3D CNNs is trained together with
the whole framework. To facilitate comparison, we choose

TABLE II
FRAME AND CLIP RETRIEVAL RESULTS ON UCF101. THE TOP ROWS ARE
BASED ON 2D CNNS, WHILE THE BOTTOM ROWS ARE BASED ON 3D
CNNS. * MEANS THAT THE SAMPLE-BASED CURRICULUM LEARNING
STRATEGY IS APPLIED.

Method Topl  TopS Topl0 Top20  Top50
Jigsaw [20] 19.7 285 33.5 40.0 49.4
OPN [15] 199 287 34.0 40.6 51.6
Biichler et al. [37] 25.7 36.2 422 49.2 59.5

_SpeedNet [42] 130 281 375 495 _ 650
C3D (random) 16.0 22.5 26.7 314 39.3
C3D (16-8-3) 12.5 29.0 39.0 50.6 66.9
C3D (16-8-4) 15.3 325 42.7 53.8 69.7

_CID68S) 152 318 417 532 694
R3D (random) 10.5 17.2 21.5 27.0 36.7
R3D (16-8-3) 14.1 30.3 40.0 51.1 66.5
R3D (16-8-3)* 15.0  31.9 41.7 53.1 68.5
R3D (16-8-4) 178  35.0 44.6 55.3 70.0

CRID(685) 167 336 433 539 689
R(2+1)D (random)  10.2 17.3 21.9 27.7 385
R(2+1)D (16-8-3) 10.7 259 354 47.3 63.9
R(2+1)D (16-8-4) 14.1 31.1 40.8 52.0 67.5
R(2+1)D (16-8-5) 16.5 33.7 43.5 54.4 69.1

TABLE III

CLIP RETRIEVAL RESULTS ON HMDBS51 WITH THE PROPOSED
SELF-SUPERVISED LEARNING METHOD. * MEANS THAT THE
SAMPLE-BASED CURRICULUM LEARNING STRATEGY IS APPLIED.

Model Topl Top5 Topl0 Top20  TopS0
C3D (random) 7.7 12.5 17.3 24.1 37.8
C3D (16-8-3) 7.4 22.6 34.4 48.5 70.1
C3D (16-8-4) 8.2 23.6 35.7 50.3 70.9
C3D (16-8-5) 7.2 21.6 329 47.6 69.5
R3D (random) 5.5 11.3 16.5 23.8 37.2
R3D (16-8-3) 7.6 229 344 48.8 68.9
R3D (16-8-3)* 7.8 23.3 35.2 49.1 69.5
R3D (16-8-4) 8.9 24.2 35.7 50.4 70.5
R3D (16-8-5) 8.7 232 349 49.1 69.0
R(2+1)D (random) 4.6 11.1 16.3 239 39.3
R(2+1)D (16-8-3) 5.7 19.5 30.7 45.8 67.0
R(2+1)D (16-8-4) 7.8 22.3 34.1 48.7 68.9
R(2+1)D (16-8-5) 8.3 232 35.0 494 69.7

the nearest neighbor retrieval experiment used in [18], [37]
to evaluate the quality of the learned representation. Besides
UCF101, here we also utilize the HMDB51 [52] dataset as
a comparison and supplement. HMDBS51 is collected from
various sources, mostly from movies, and a small proportion
from public databases such as the Prelinger archive, YouTube
and Google videos. The dataset contains 6,849 clips divided
into 51 action categories, each containing a minimum of 101
clips.

In the nearest neighbor retrieval experiment of [37], they
extract 10 frames per video and choose the pool5 layer of Caf-
feNet [53] as the representation. We follow the experimental
setup in [37] to extract 10 clips per video likewise. Since the
pool5 representation of CaffeNet has the dimension of 256 x 6
x 6, we apply a max-pooling operation instead of the original
global spatiotemporal pooling in three 3D CNNs to get a 512
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X 2 x 3 x 3 spatiotemporal representation, which is the same
size as the other one. We conduct the validation process on
split 1 of UCF101. The clips extracted from the test set are
utilized to query clips from the training set. For each test clip,
we compute the top k nearest neighbors in the training set by
using cosine distance. It is considered as a correct prediction
when the classes of top k£ nearest neighbors incorporate the
class of test clip.

In Table II, we compare the experimental results for k=1, 5,
10, 20, 50 with existing self-supervised methods on UCF101.
The methods in top row adopt 2D CNN:s, specifically, CaffeNet
as the feature extractor, and 3D CNNss in the bottom are trained
by the proposed self-supervised method. The results of random
initialized 3D CNNss are also displayed for reference. It can be
seen that 3D CNNs trained under the proposed self-supervised
method outperform the randomly initialized counterparts and
other self-supervised 2D CNNs particularly when £ increases.
Biickler et al. [37] shows competitive results when k is less
than 10. They focus on an adaptive learning approach in which
training samples and permutation sets can be adjusted by their
model given the network states. It is promising to apply this
approach here and get a promotion as well when assigning
more clips per tuple. With the help of the task-based training
method, we can see that the performance improves when ¢/
becomes larger most of the time, which means that improve
the difficulty of the task appropriately is helpful for learning
meaningful representations. The contrast between R3D (16-
8-3) and R3D (16-8-3)* indicates the valid improvement of
feature representative capability of R3D trained by the sample-
based curriculum learning strategy. In addition, we conduct
the same experiment on split 1 of HMDBS51, and the similar
results are displayed in Table III. These feature extractors are
purely trained on UCF101, that is, they are not theoretically
exposed to videos from HMDBS51, in spite of several videos
that are duplicated in both datasets. Compared with the results
of random initialization, the accuracy of the network trained
by the proposed self-supervised method has been significantly
improved.

To intuitively perceive the effect of clip interval length on
various feature extractors, we also visualize the results of clip
retrieval on UCF101 with ¢ = 8, 16 and &k = 1, 5, 10 in
Fig 6. It is apparent that when it = 16, no matter how many
clips are taken for each tuple, the retrieval accuracy of C3D is
improved to some extent, while that of R3D is decreased, and
there is no obvious change in R (2+1)D. Combined with the
results from Table. I, we can get that although the proposed
method can help to learn meaningful representations, the actual
architectural design of 3D CNNs is also important under
different task settings.

We further evaluate the learned representation on video
level, the results are shown in Fig. 7. The video representation
is the average of the 10 extracted clip features, and we can
find consistent improvements for all kinds of 3D CNNs in
both datasets. The top2 videos retrieved from UCF101 are
visualized in Fig. 8. The leftmost columns are the videos
used for the query, and the remaining columns show the
top2 videos retrieved by various feature extractors. As we can
see, the self-supervised trained 3D CNNs have the capability
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Fig. 6. Clip retrieval results of various models on UCF101, where it = 8, 16
and k = 1, 5, 10 respectively.
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Fig. 7. Comparison of video retrieval results with various optimal models of
3D CNNs on UCF101 and HMDBS1.

to retrieve videos with similar appearance or motion. For
instance, when querying the video about playing violin, C3D
network finds videos of playing cello and playing sitar, which
are also musical performances and incorporating orchestral
instruments. While for diving video, C3D and R3D networks
also retrieve skijet videos, both of which are water-related
sports.

In Fig. 9, we utilize the trained R3D (16-8-4) network
to perform video retrieval experiment between UCF101 and
HMDB51. We use a video from one dataset to retrieve videos
from another dataset. Since the categories contained in two
datasets are diverse, we cannot evaluate the performance of
video retrieval quantitatively, but can only understand the state
of video retrieval in a qualitative way. The sampled results
show that the query video is more or less similar to the
retrieved videos. For instance, the iconic objects or colors in
the video are basically the same. When querying the video
of biking, videos with bicycles, people and dark grey roads
will appear. This further confirms the generality of the self-
supervised trained model.

From the above experimental results, it can be seen that
the task of clip order prediction indeed encourages 3D CNNs
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Fig. 8. Video retrieval samples on UCF101 with different models under various training settings. The first column contains the query videos from the test
set, and the remaining columns represent the top2 videos retrieved from the training set. The actual class for each video is shown at the bottom, and the green

color indicates that the prediction is correct.
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Fig. 9. The cross-dataset retrieval samples. The dataset names on the left and
top represent the query and retrieval source, respectively. The actual class for
each video is shown at the bottom.

to learn more general spatiotemporal representations of video
clips. Since the optimal performance is accomplished by
applying curriculum learning strategies, we can conclude that
the proposed strategies help to train 3D CNNs better and learn
more meaningful spatiotemporal representations.

We also extract the features from each convolutional layer
of C3D, R3D and R(2+1) networks, then pool and convert

TABLE IV
CLIP RETRIEVAL RESULTS ON UCF101 FROM DIFFERENT LAYERS, IN
WHICH ALL 3D CNNS ARE TRAINED UNDER THE TASK SETTING OF cl =
16, it = 8 AND tl = 3.

Model Layer Topl Top5 Topl0 Top20 Top50
1 184 332 41.7 51.1 64.7
2 205 352 433 52.6 65.3
C3D 3 233 405 49.6 59.6 72.7
4 18.6 365 46.0 56.5 70.9
5 125 290 39.0 50.6 66.9
1 18.8  32.1 39.9 48.9 61.8
2 199 349 434 52.6 65.4
R3D 3 206 373 46.4 56.0 69.6
4 169 346 442 55.0 69.6
5 14.1 30.3 40.0 S51.1 66.5
1 132 273 36.6 472 63.0
2 18.7 348 43.8 53.4 66.6
R(2+1)D 3 16.8  34.1 43.7 54.0 67.8
4 12.8 292 39.3 50.7 67.0
5 107 259 35.4 473 63.9

them into 9216-dimensional vectors as the clip features, and
do nearest neighbor retrieval as before. The results are shown
in Table IV. These 3D CNNs are all trained under the setting of
cl =16, it = 8 and tl = 3 on split 1 of UCF101. It can be seen
that when k = 1, 5, 10, 20, 50, all highest accuracies obtained
by three kinds of 3D CNNs networks appear in the layer 2 or
3. We speculate that the features in the middle layer are more
suitable for the task of video retrieval since they contain both
low-level and high-level features.
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C. Action Recognition

Apart from using the trained model as the feature extractor
directly, another possible application of these models is to
do fine-tuning. 3D CNNs can be used for many downstream
video-related tasks, here we take the most typical instance.
In this part, we take the trained 3D CNNs as the initialized
models and fine-tune them for action recognition on both
UCF101 and HMDB51.

To obtain the action recognition results of the video, we
adopt the settings of [33]. 10 clips are sampled from the video
to get clip-level predictions, which are then averaged as the
video-level prediction. To be specific, all three networks output
a 512-dimension vector after the global spatiotemporal pooling
layer, and we append a fully-connected layer with softmax
on top of it as described in [33]. Only the fully-connected
layers are randomly initialized, while the others are initialized
from the self-supervised training one correspondingly. The
hyperparameters and data preprocessing steps are the same
as before. All networks are fine-tuned for 150 epochs.

Table V shows the comparison of the classification accuracy
with other existing self-supervised methods. Since the exper-
iments rely on massive computing resources, and the average
classification accuracy over 3 splits is approximately the same
as that of split 1, the experiments based on curriculum learning
expanded in this paper are conducted on split 1 of UCF101 and
HMDBS51. For a more comprehensive comparison and refer-
ence, we not only show the results of the randomly initialized
training of 2D CNNS and 3D CNN:s, but also display the accu-
racy of the fine-tuned pre-training model from larger datasets.
Comparing with 2D CNNs, the 3D CNNss trained from scratch
can achieve higher accuracy than some 2D CNNs after fine-
tuning, which proves the benefits of spatiotemporal modeling
capability of 3D CNNs over videos. For the C3D network,
the models trained by the proposed self-supervised learning
method achieve a 5.3% and 8.7% improvement on UCF101
and HMDBS51 compared with the randomly initialized model.
For R3D and R(2+1)D networks, they gain lower accuracy
if only trained from scratch on both datasets, but after the
initialization of the proposed self-supervised training method,
the accuracy of the two networks has been greatly improved,
even exceeding that of C3D network. The R(2+1)D network
get the state-of-the-art results among these self-supervised
methods and achieves an improvement of 18.3% and 15.3%
on UCF101 and HMDB51 respectively. Compared with R3D
(16-8-3), R3D (16-8-3)* that trained under the sample-based
curriculum learning strategy also obtains certain improvement
on both datasets.

As mentioned before, the self-supervised training only
utilizes split 1 of UCF101. Since all fine-tuned networks
obtain the homologous improvement on both UCF101 and
HMDBS51, it demonstrates that the proposed self-supervised
learning method has a wide range of applicability and fa-
vorable generalizability. Meanwhile, the application of both
task-based and sample-based curriculum learning strategies
improves the accuracy of action recognition, which proves that
our strategies indeed reinforce the capability of 3D CNNs to
learn more meaningful visual priors from the unlabeled videos.

10

TABLE V
ACTION RECOGNITION RESULTS ON UCF101 AND HMDBS51. THE TOP
ROWS ARE FRAME-BASED METHODS AND THE BOTTOM ROWS ARE
CLIP-BASED METHODS. * MEANS THAT THE SAMPLE-BASED CURRICULUM
LEARNING STRATEGY IS APPLIED.

Methods UCF101 HMDB5S1
Shuffle&Learn [18] 50.2 18.1
VGAN [54] 52.1 -
Luo et al. [55] 53.0 -
OPN [20] 56.3 22.1
Jigsaw [15] 51.5 22.5
Biichler et al. [37] 58.6 25.0
ImageNet pre-trained 67.1 28.5
Wang et al. [38] 58.8 32.6
3D ST-puzzle [39] 63.4 30.8
Kinetics pre-trained 96.8 74.5
C3D (random) 61.6 232
C3D (VCP) [40] 68.5 32.5
C3D (16-8-3) 65.6 28.4
C3D (16-8-4) 66.9 31.8
C3D (16-8-5) 66.1 31.9
R3D (random) 54.4 21.5
R3D (16-8-3) 64.9 29.5
R3D (16-8-3)* 65.5 31.4
R3D (16-8-4) 66.0 28.0
R3D (16-8-5) 65.0 29.7
R(2+1)D (random) 56.2 22.0
R(2+1)D (PRP) [41] 72.1 35.0
R(2+1)D (16-8-3) 72.4 30.9
R(2+1)D (16-8-4) 72.2 37.3
R(2+1)D (16-8-5) 74.5 34.8
70
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Fig. 10. The pre-trained R3D network parameters are used to initialize the
model and the results are obtained by hierarchical fine-tuning on UCF101.
Note that the convolutional layer in the figure represents the boundary between
frozen and fine-tuned. The layers that are shallower than it are frozen, while
both itself and the deeper layers are fine-tuned.

To explore the contribution of different layers when fine-
tuning to action recognition, we carry out a hierarchical fine-
tuning approach based on the R3D network. As shown in
Fig 10, by selecting several layers as a split point, the shal-
lower layers are frozen and deeper layers are fine-tuned with
the same hyperparameters as before accordingly. We find that
the fine-tuning of the network by freezing the Convl1 layer only
outperforms other variants, including the fine-tuning of the
entire R3D network. It is widely agreed that the generality and
reusability of the extracted representation of a convolutional
layer depend on the depth of the layer in the model, and the
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TABLE VI
EXPERIMENT RESULTS ON ACTIVITYNET-QA. “W/ PRE-TRAINED” MEANS THE RANDOMLY INITIALIZED MODEL PRE-TRAINED ON ACTION
RECOGNITION TASK, “W/ $S-VCOP” MEANS THE MODEL OBTAINED BY SELF-SUPERVISED LEARNING ON VIDEO CLIP ORDER PREDICTION TASK.

Models Motion  Spat. Rel.  Temp. Rel. Free All
Y/N Color Obj. Loc Num Other

C3D w/ PRE-TRAINED 2.0 8.5 2.1 570 306 179 142 462 282 290
_CDw/Ss-veor 37 92 21 600 320 198 17.1 450 289 304

R3D w/ PRE-TRAINED 28 9.6 3.1 579 293 164 109 467 282 292
_R3Dw/SS-vcop 25 94 L5 590 319 189 163 459 300 302

R(2+1)D w/ PRE-TRAINED 1.8 8.7 29 506 296 142 119 474 263  29.1

R(2+1)D w/ SS-VCOP 24 10.4 2.4 5908 310 192 142 464 292 303

shallower layer of the model always extracts more local and
generic features. For this reason, it can be inferred that the
R3D network trained under the clip order prediction task has
already learned the most universal representations of video,
such as visual edge, atomic motion and so on.

D. Video Question Answering

To further test the generalizability of the learned 3D CNNs,
we evaluate them on the video question answering task, which
requires the model to give correct answers in the context of
videos and questions. The trained model can be used either as
a feature extractor or a pre-training model in this task. Since
fine-tuning requires lots of computing resources, here we just
verify its effectiveness as a feature extractor. Considering the
balance between model complexity and training time, we adopt
the extended soft-attention (E-SA) model mentioned in [56],
and conduct experiments on the ActivityNet-QA dataset [57].

The E-SA model first uses a Long Short-Term Memory
(LSTM) network to encode the words in the question, then
uses the encoded representation to attend on the extracted clip
features, and finally uses the question and weighted video rep-
resentation to predict the answer. The ActivityNet-QA dataset
contains 58,000 QA pairs for 5,800 videos sampled from
20,000 videos in ActivityNet [58]. Each video corresponds
to 10 pairs of questions and answers, which mainly include
motion, spatial relation and temporal relation and free types.
For free type, there are questions for yes/no, color, object,
location, number and so on. The variety of questions and the
complexity of the video make the dataset very challenging.

For video features, we sample 20 evenly distributed clips
from each video and use the trained 3D CNNs to extract 20
feature vectors as the video representation. Note that each clip
contains 16 frames and the dimension of the feature vector is
512. For the question feature, we transform each word through
the embedding layer and input them to the LSTM networks to
get the question representation. Following the settings in [56],
we use GloVe [59] as the word embedding, and the hidden
size of the LSTM networks is set to 300 in order to match
that of the word embedding.

Two kinds of models are used as feature extractors in
the experiment, including the randomly initialized model pre-
trained with the action recognition task and the model pre-
trained with video clip order prediction task under the 16-8-3
setting. In Table VI, we report the results under two types of

models with C3D, R3D and R(2+1)D networks. Obviously,
the optimal results are obtained from the feature extractor that
is pre-trained directly with the task of video clip prediction,
which proves that the features extracted by the proposed self-
supervised method are more meaningful and transferable.

V. CONCLUSION

In this paper, we reveal the drawback of frame-based order
prediction task and propose the clip order prediction task
to learn the spatiotemporal representation of video better.
Building on our previous work, we apply the curriculum
learning in two ways, which considers both the sample and
task difficulty, to enable the network to learn under more
complex settings. We conduct experiments on three types of
3D CNNs and give comprehensive analyses about the clip
order prediction task. We evaluate the capability of 3D CNNs
as both fixed feature extractors and pre-trained models re-
spectively in nearest neighbor retrieval, action recognition and
video question answering tasks. Compared with the existing
self-supervised learning methods, the models trained by the
proposed method have achieved state-of-the-art results in near-
est neighbor retrieval and action recognition tasks. Meanwhile,
the promising results obtained in the video question answering
application also prove that the models trained by the proposed
method have good generalization. Besides, the improvements
gained by C3D, R3D and R(2+1)D networks also show that
the proposed methods are widely applicable for different 3D
convolutional architectures.

While our study shows promising results in action recog-
nition, it still cannot compete with those methods that fine-
tuning from models trained with supervision on larger, labeled
datasets such as Kinetics. The experimental results indicate
that the clip order prediction task can not only assist 3D CNNs
to learn better spatiotemporal representations of videos, but
also provide good initialization parameters for other video-
related tasks. Although the results are exciting, there are still
open problems. For example, after the self-supervised training,
the model performs better by using the shallow or middle
layers than the whole network in different evaluation tasks,
which means that deep layers are not trained well. Either the
training methods or new proxy tasks are still needed in order to
fully release the power of self-supervised learning. We expect
that our work will stimulate more research interests in self-
supervised learning with 3D CNNs.
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