

Lecture 2: Propositional Logic

Dr. Chengjiang Long
Computer Vision Researcher at Kitware Inc.
Adjunct Professor at SUNY at Albany.
Email: clong2@albany.edu

Introduction: Logic?

- Logic
 - is the study of the logic <u>relationships</u> between <u>objects</u>
 - forms the basis of all <u>mathematical reasoning</u> and all <u>automated reasoning</u>

Outline

- Defining Propositional Logic
- Precedence of Logical Operators
- Usefulness of Logic
- Logical Equivalences

Outline

- Defining Propositional Logic
- Precedence of Logical Operators
- Usefulness of Logic
- Logical Equivalences

Introduction: Proposition

- Definition: The value of a proposition is called its <u>truth</u> <u>value</u>; denoted by
 - T or 1 if it is true or
 - F or 0 if it is false
- Opinions, interrogative, and imperative are not propositions
- Truth table

Propositions

- Propositional logic operates with statements.
 Statements could be true or false and are called propositions.
- Is the sentence proposition?

Richmond is the capital of Virginia. Yes (True)

2 + 3 = 7. Yes (False)

Open the door.

5 + 7 < 10. Yes (False)

The moon is a satellite of the earth.

Yes (True)

x + 5 = 7. No

x + 5 > 9 for every real number x. Yes (False)

Propositions: Examples

- The following are propositions
 - Today is Monday
 - The grass is wet
 - It is raining
- The following are not propositions
 - C++ is the best language
 - When is the pretest?
 - Do your homework

Opinion Interrogative *Imperative*

Are these propositions?

- 2+2=5
- Every integer is divisible by 12
- Microsoft is an excellent company

Logical connectives

- Connectives are used to create a compound proposition from two or more propositions
 - Negation (denote ~ or ¬ or !)
 - And or logical conjunction (denoted ^) \$\wedge\$
 - Or or logical disjunction (denoted \(\rightarrow\)
 - XOR or exclusive or (denoted ⊕) \$\xor\$
 - Implication (denoted ⇒ or →)
- \$\Rightarrow\$, \$\rightarrow\$
- Biconditional (denoted ⇔ or ↔)
 - \$\LeftRightarrow\$, \$\leftrightarrow\$
- We define the meaning (semantics) of the logical connectives using <u>truth tables</u>

Logical Connective: Negation

- $\neg p$, the negation of a proposition p, is also a proposition
- Examples:
 - Today is not Monday
 - It is not the case that today is Monday, etc.

p	$\neg p$
0	1
1	0

Logical Connective: Logical And

- The logical connective And is true only when both of the propositions are true. It is also called a <u>conjunction</u>
- Examples
 - It is raining and it is warm
 - (2+3=5) and (1<2)
 - Schroedinger's cat is dead and Schroedinger's is not dead.

р	q	p∧q
0	0	0
0	1	0
1	0	0
1	1	1

Logical Connective: Logical Or

- The logical <u>disjunction</u>, or logical Or, is true if one or both of the propositions are true.
- Examples
 - It is raining or it is the second lecture
 - (2+2=5) \lefty (1<2)
 - You may have cake or ice cream

р	q	p∨q
0	0	0
0	1	1
1	0	1
1	1	1

Logical Connective: Exclusive Or

 The exclusive Or, or XOR, of two propositions is true when exactly one of the propositions is true and the other one is false

Example

- The circuit is either ON or OFF but not both
- Let ab<0, then either a<0 or b<0 but not both
- You may have cake or ice cream, but not both

р	q	p⊕q
0	0	0
0	1	1
1	0	1
1	1	0

Logical Connective: Implication (1)

- Definition: Let p and q be two propositions. The implication p→q is the proposition that is false when p is true and q is false and true otherwise
 - p is called the hypothesis, antecedent, premise
 - q is called the conclusion, consequence

р	q	$P \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

Logical Connective: Implication (2)

- The implication of $p\rightarrow q$ can be also read as
 - If p then q
 - p implies q
 - If p, q
 - p only if q
 - q if p
 - q when p
 - q whenever p
 - q follows from p
 - p is a sufficient condition for q (p is sufficient for q)
 - q is a necessary condition for p (q is necessary for p)

Logical Connective: Implication (3)

Examples

- If you buy you air ticket in advance, it is cheaper.
- If x is an integer, then $x^2 \ge 0$.
- If it rains, the grass gets wet.
- If the sprinklers operate, the grass gets wet.
- If 2+2=5, then all unicorns are pink.

Exercise: Which of the following implications is true?

• If -1 is a positive number, then 2+2=5

True. The premise is obviously false, thus no matter what the conclusion is, the implication holds.

• If -1 is a positive number, then 2+2=4

True. Same as above.

• If $\sin x = 0$, then x = 0

False. x can be a multiple of π . If we let $x=2\pi$, then sin x=0 but $x\neq 0$. The implication "if $sin\ x=0$, then $x=k\pi$, for some k" is true.

Logical Connective: Biconditional (1)

- Definition: The biconditional p↔q is the proposition that is true when p and q have the same truth values.
 It is false otherwise.
- Note that it is equivalent to $(p \rightarrow q) \land (q \rightarrow p)$

р	q	$P \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

Logical Connective: Biconditional (2)

- The biconditional p↔q can be equivalently read as
 - p if and only if q
 - p is a necessary and sufficient condition for q
 - if p then q, and conversely
 - p iff q (Note typo in textbook, page 9, line 3)
- Examples
 - x>0 if and only if x^2 is positive
 - The alarm goes off iff a burglar breaks in
 - You may have pudding iff you eat your meat

Exercise: Which of the following biconditionals is true?

- $x^2 + y^2 = 0$ if and only if x=0 and y=0True. Both implications hold
- 2 + 2 = 4 if and only if $\sqrt{2} < 2$ True. Both implications hold.
- $x^2 \ge 0$ if and only if $x \ge 0$

False. The implication "if $x \ge 0$ then $x^2 \ge 0$ " holds. However, the implication "if $x^2 \ge 0$ then $x \ge 0$ " is false. Consider x=-1. The hypothesis $(-1)^2=1 \ge 0$ but the conclusion fails.

Converse, Inverse, Contrapositive

- For the proposition $P \rightarrow Q$,
 - \square the proposition $\neg P \rightarrow \neg Q$ is called its **inverse**,
 - \square the proposition is $Q \longrightarrow P$ called its **converse**,
 - \square the proposition $\neg Q \rightarrow \neg P$ is called its **contrapositive**.
- The inverse and converse of a proposition are not necessarily logically equivalent to the proposition.
- The contrapositive of a proposition is always logically equivalent to the proposition.

Converse, Inverse, Contrapositive

- **Example:** for the proposition "If it rains, then I get wet",
 - Inverse: If does not rain, then I don't get wet.
 - □ Converse: If I get wet, then it rains.
 - Contrapositive: If I don't get wet, then it does not rain.
- Therefore, "If it rains, then I get wet." and "If I don't get wet, then it does not rain." are logically equivalent. If one is true then the other is also true, and vice versa.

Truth Tables

- Truth tables are used to show/define the relationships between the truth values of
 - the individual propositions and
 - the compound propositions based on them

p	q	p∧q	p∨q	p⊕q	$P \rightarrow q$	P <-> q
0	0	0	0	0	1	1
0	1	0	1	1	1	0
1	0	0	1	1	0	0
1	1	1	1	0	1	1

Constructing Truth Tables

Construct the truth table for the following compound proposition

$$((p \land q) \lor \neg q)$$

p	q	p∧q	$\neg q$	$((p \land q) \lor \neg q)$
0	0	0	1	1
0	1	0	0	0
1	0	0	1	1
1	1	1	0	1

Outline

- **Defining Propositional Logic**
- **Precedence of Logical Operators**
- **Usefulness of Logic**
- Logical Equivalences

Precedence of Logical Operators

- As in arithmetic, an ordering is imposed on the use of logical operators in compound propositions
- However, it is preferable to use parentheses to disambiguate operators and facilitate readability

$$\neg p \lor q \land \neg r \equiv (\neg p) \lor (q \land (\neg r))$$

- To avoid unnecessary parenthesis, the following precedences hold:
 - Negation (¬)
 - Conjunction (∧)
 - 3. Disjunction (∨)
 - Implication (→)
 - 5. Biconditional (\leftrightarrow)

Outline

- **Defining Propositional Logic**
- Precedence of Logical Operators
- **Usefulness of Logic**
- Logical Equivalences

Usefulness of Logic

- Logic is more precise than natural language
 - You may have cake or ice cream.
 - o Can I have both?
 - If you buy your air ticket in advance, it is cheaper.
 - Are there or not cheap last-minute tickets?
- For this reason, logic is used for hardware and software <u>specification</u>
 - □ Given a set of logic statements, one can decide whether or not they are <u>satisfiable</u> (i.e., consistent), although this is a costly process...

Bitwise Operations

- Computers represent information as bits (binary digits)
- A bit string is a sequence of bits
- The length of the string is the number of bits in the string
- Logical connectives can be applied to bit strings of equal length
- Example 0110 1010 1101

0101 0010 1111

Bitwise OR 0111 1010 1111

Bitwise AND ...

Bitwise XOR ...

Logic in Programming: Example 1

- Say you need to define a conditional statement as follows:
 - Increment x if all of the following conditions hold: x > 0, x <
 10, x=10
- You may try: If (0 < x < 10 OR x = = 10) x + +;
- But this is not valid in C++ or Java. How can you modify this statement by using logical equivalence
- Answer: If (x>0) AND x<=10, x++;

Logic in Programming: Example 2

Say we have the following loop

```
While
    ((i<size AND A[i]>10) OR
    (i<size AND A[i]<0) OR
    (i<size AND (NOT (A[i]!=0 AND NOT (A[i]>=10)))))
```

- Is this a good code? Keep in mind:
 - Readability
 - Extraneous code is inefficient and poor style
 - Complicated code is more prone to errors and difficult to debug
 - Solution? Comes later...

Outline

- Defining Propositional Logic
- Precedence of Logical Operators
- Usefulness of Logic
- Logical Equivalences

Propositional Equivalences: Introduction

- To manipulate a set of statements (here, logical propositions) for the sake of mathematical argumentation, an important step is to replace one statement with another equivalent statement (i.e., with the same truth value)
- Below, we discuss:
 - Terminology
 - Establishing logical equivalences using truth tables
 - Establishing logical equivalences using known laws (of logical equivalences)

Terminology

Definitions

- A compound proposition that is always true, no matter what the truth values of the propositions that occur in it is called a tautology
- A compound proposition that is always false is called a contradiction
- A proposition that is neither a tautology nor a contradiction is a <u>contingency</u>

Examples

- A simple tautology is $p \lor \neg p$
- o A simple contradiction is $p \land \neg p$

Logical Equivalences: Definition

- **Definition**: Propositions p and q are <u>logically</u> equivalent if $p \leftrightarrow q$ is a <u>tautology</u>.
- Informally, p and q are equivalent if whenever p is true, q is true, and vice versa
- Notation: $p \equiv q$ (p is equivalent to q), $p \leftrightarrow q$, and $p \Leftrightarrow q$
- Alert:
 is not a logical connective \$\equiv\$

Logical Equivalences: Example 1

- Are the propositions $(p \rightarrow q)$ and $(\neg p \lor q)$ logically equivalent?
- To find out, we construct the truth tables for each:

р	q	p→q	¬ <i>p</i>	$\neg p \lor q$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	1	0	1

The two columns in the truth table are identical, thus we conclude that $(p \rightarrow q) \equiv (\neg p \lor q)$

Logical Equivalences: Example 2

• Show that $(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$

p	q	r	p→ r	$q \rightarrow r$	$(p \rightarrow r) \lor (q \rightarrow r)$	p \ q	$(p \land q) \rightarrow r$
0	0	0	1	1	1	0	1
0	0	1	1	1	1	0	1
0	1	0	1	0	1	0	1
0	1	1	1	1	1	0	1
1	0	0	0	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0	0	0	0	1	0
1	1	1	1	1	1	1	1

January 27, 2019

Logical Equivalences: Cheat Sheet (1)

Identities (Equivalences)	Name
p∧T≡p p∨F≡p	Identity laws
p∨T≡T p∧F≡F	Domination laws
p∨p≡p p∧p≡p	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
pVq≡qVp p∧q≡q∧p	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$ \neg(p \land q) \equiv \neg p \lor \neg q \neg(p \lor q) \equiv \neg p \land \neg q $	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv T$ $p \land \neg p \equiv F$	Negation laws

Logical Equivalences: Cheat Sheet (2)

Logical Equivalences Involving Conditional Statements.

```
p \rightarrow q \equiv \neg p \vee q
p \rightarrow q \equiv \neg q \rightarrow \neg p
p \vee q \equiv \neg p \rightarrow q
p \wedge q \equiv \neg (p \rightarrow \neg q)
\neg (p \rightarrow q) \equiv p \wedge \neg q
(p \rightarrow q) \wedge (p \rightarrow r) \equiv p \rightarrow (q \wedge r)
(p \rightarrow r) \wedge (q \rightarrow r) \equiv (p \vee q) \rightarrow r
(p \rightarrow q) \vee (p \rightarrow r) \equiv p \rightarrow (q \vee r)
(p \rightarrow r) \vee (q \rightarrow r) \equiv (p \wedge q) \rightarrow r
```

39

Next class

- Topic: Predicate Logic and Quantifies
- Pre-class reading: Chap 1.3-1.4

