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a b s t r a c t 

It is well known that detail features and context semantics are conducive to improving object detection 

performance. However, the current single-prediction detectors do not well incorporate these two types of 

information together. To alleviate the limitation of single-prediction on the use of multiple types of in- 

formation, we propose a dual detection branch network (DDBN) with adjacent feature compensation and 

customized training strategy for semantic diversity predictions. Different from the conventional single- 

prediction models, our DDBN is in the form of a single model with dual different semantic predictions. 

In particular, two types of adjacent feature compensations are designed to extract detail and context in- 

formation from different perspectives. Also, a specialized training strategy is customized for our DDBN 

to well explore the diversity of predictions for improving the performance of object detection. We con- 

duct extensive experiments on three datasets, i.e. , DOTA, MS-COCO, and Pascal-VOC, and the experimental 

results strongly demonstrate the efficacy of our proposed model. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

As we know, the prediction is always accompanied by uncer- 

ainty [1] . For human visual cognitive systems, when there is un- 

ertainty in identifying an object, humans often need more clues 

such as internal detail information or external context informa- 

ion) to enhance the certainty of prediction. Similarly, if the object 

etection model can better grasp these two types of information 

t the same time, the detection accuracy of the model can be sig- 

ificantly improved. 

The previous works have extensively explored these two types 

f information. Some models introduce part-level features [2,3] or 

use lower-level feature maps [4,5] to enhance the representation 

bility of the inner detail features. There are also some meth- 

ds that leverage expanding the region of interest [6,7] or fus- 

ng higher-level semantics layers [8,9] to strengthen the ability 

f the detectors to perceive the surrounding context semantics of 

he object. However, none of the existing detectors are able to si- 

ultaneously and effectively use both types of information. This 

s mainly due to the fact that the current models [10,11] are all 

ased on a single-prediction mechanism, i.e. , each region of inter- 
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st (RoI) is predicted once based on one type of feature, as shown 

n Fig. 1 (a). Such a single detection branch model fails to employ 

ultiple types of features on a model at the same time. This mo- 

ivates us to design a non-single-prediction model to incorporate 

hese two types of information effectively. 

In this paper, we first propose an effective f eature fusion 

ethod, named adjacent feature compensation (AFC), which lever- 

ges inherent adjacent features to perform two types of feature 

ompensations. Our AFC includes adjacent detail compensation 

ADC) and adjacent context compensation (ACC) to achieve dif- 

erent feature representations of these two types of information. 

hrough our AFC, we can construct two types of features on the 

ame model at the same time. 

Then, we build the first non-single-prediction model in the 

ommunity of object detection, i.e., Dual Detection Branch Net- 

ork (DDBN), as shown in Fig. 1 (b). Each detection branch contains 

ne type of feature and a specialized detection head based on this 

ype of feature. Our detector with dual detection branches is able 

o interpret each RoI from the perspectives of detail features and 

ontext semantics, and then provide two different semantic pre- 

ictions. Finally, a better prediction will be obtained for each RoI 

ia our customized testing strategy (Voting Decision Strategy, see 

lgorithm 1 ), thereby improving the performance of object detec- 

ion. 

Training our dual detection branch network is very challenging. 

his is because the ground truth of the common object detection 

https://doi.org/10.1016/j.patcog.2021.108315
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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Fig. 1. (a) Traditional single detection branch model ( e.g. , Faster RCNN) leverages one type of feature to perform single-prediction. (b) Our dual detection branch model 

leverages adjacent detail compensation (ADC) and adjacent context compensation (ACC) to produce two types of features, and then performs different semantic predictions 

(P d and P c ) for each RoI based on both types of features respectively. 
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atasets (like DOTA [12] , MS-COCO [13] , and Pascal Voc [14] ) only

ncludes the coordinates of bounding boxes and the correspond- 

ng category labels, without any branch-labels. However, our DDBN 

as two detection branches, so how to perform loss regression on 

ur dual detection branches becomes a tricky problem. Obviously, 

dding branch-labels manually is a time-consuming and labor- 

ntensive task, and excessive manual participation also greatly lim- 

ts the usability of our model. Therefore, we do not adopt such a 

ethod with branch-labels for training. 

For each RoI, our DDBN generates two predictions, which means 

hat when performing loss calculation with the corresponding 

round truth, we will obtain two loss-values. Now, there are two 

rocessing methods. One is to directly back-propagate the losses 

ike the traditional regression method [10] , i.e. these two losses 

re back-propagated to the corresponding detection branches re- 

pectively for loss learning. And another is to choose one of the 

etection branches for loss learning, which is similar to selective 

egression method (like MCL [15] , FSAF [16] ). However, we found 

hat both these loss regression methods fail to give full play to the 

erformance of our dual detection branches. 

Considering the diversity of objects, for some objects that 

ainly depend on context information, the context semantics is 

onducive to enhancing the model’s ability to identify these ob- 

ects; for some objects with ample detail information, the de- 

ail feature is beneficial to detect these objects; for some objects 

hat contain both context and detail information, both detection 

ranches can improve detection accuracy. Therefore, to improve 

he ability to recognize various objects, the learning method of 

ur DDBN also needs to vary from objects to objects. We cus- 

omize a diversity enhancement strategy (DES) for training our 

DBN. Since the dual detection branches conduct different loss re- 

ressions based on different samples during training, our dual de- 

ection branches can provide semantic diversity predictions in test- 

ng. 

The contributions of the proposed DDBN can be summarized as 

ollows: 

1) We proposed a simple but effective feature representation 

method, adjacent feature compensation (AFC), to provide both 

detail and context information simultaneously. 

2) We construct the first non-single-prediction model, Dual Detec- 

tion Branch Network (DDBN), in the community of object de- 

tection. The dual detection branch of DDBN can make full use 

of the two types of feature generated by AFC, so that our detec- 

tor can better grasp the detail feature and the context semantic 

of the object to enhance the object detection performance. 

3) We customize a specialized diversity enhancement strategy for 

our DDBN, which can train each of our dual detection branches 
2 
to be a detection expert on subsets of the dataset and then pro- 

vide semantic diversity predictions. 

4) Our DDBN has brought significant accuracy improvements on 

multiple benchmark datasets, which shows the generality and 

superiority of our model. 

In our DDBN, both the two feature compensation methods and 

he dual detection branches are based on the parallel design, which 

as little effect on the inference time. Experiments show that our 

DBN has almost the same inference time as the single detection 

ranch model with single-prediction, but it obtains a significant 

ccuracy improvement from dual predictions. To the best of our 

nowledge, our DDBN is the first dual/multi-prediction approach 

ased on a single model. As a first multi-prediction model, the de- 

ign of our model and the customized training strategy bring some 

ew insights to the object detection community. 

. Related work 

In this section, we briefly review related feature representation, 

etection pipeline, and learning methods. 

.1. Feature representation 

Feature representation has always been a very important re- 

earch task in machine learning. Object detection performance also 

epends heavily on the ability of features to represent the re- 

ion of interest. Before the popularity of deep learning, the scale- 

nvariant feature transform (SIFT) [17] and the histogram of ori- 

nted gradients (HOG) [18] methods were the main feature repre- 

entation methods in object detection. The SIFT feature can effec- 

ively deal with the changes in scaling, panning, and rotation. And 

he HOG leverages the gradient intensity and distribution of gradi- 

nt direction to represent the object of interest. 

Since Hinton and Salakhutdinov [19] have made great progress 

n the field of deep learning, the ability of feature representation 

ased on deep models has also improved significantly. Currently, 

n the field of object detection, there are mainly two ways to en- 

ance the ability of feature representation. One is to construct or 

se an advanced backbone with strong ability of feature represen- 

ation, such as GoogleNet [20] , ResNet [21] and DenseNet [22] etc. 

he other is based on the advanced backbone to construct a fea- 

ure layer with richer semantics via feature fusion methods [23–

5] . Just like ION [26] , PANet [27] , NAS-FPN [8] , and Efficient-

et [28] methods, the ability of feature representation is greatly 

nhanced by various feature fusing methods. However, since the 

onventional single-prediction mechanism only accepts one type of 

eature, these advanced feature fusion methods [26] about the de- 

ail and context information ultimately employ one type of fused 
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rich context semantics. 
eature to describe all objects of interest. Obviously, it is difficult to 

se a type of feature to uniformly represent the objects with dif- 

erent semantics, such as internal rich-detail objects and external 

ontext-dependent objects. Therefore, this paper proposes an adja- 

ent feature compensation (AFC) method to construct two types of 

eatures at the same time for conducting different feature repre- 

entations separately. 

.2. Detection pipeline 

The first popular deep learning based detection pipeline frame- 

ork is based on RCNN [29] , which originally extracted region fea- 

ures and then input the features into a linear SVM for classify- 

ng. To achieve higher detection speed, Girshick et al. proposed Fast 

CNN [30] which shared the computational cost among candidate 

oxes in the same image and introduced a novel RoI-pooling op- 

ration to extract feature vectors for each region proposal. For fur- 

her improving the speed of detection, an upgraded version of Fast 

CNN was introduced in [10] , the region proposal module and the 

lassification module were combined, which can share the back- 

one of the Faster R-CNN framework. At present, there are also 

ome methods (like YOLO [31] and SSD [32] ) to remove the step of

egion proposals in the pipeline directly, and leverage the prede- 

ned anchor proposals to directly perform object classification and 

oundary regression. Almost all deep learning detectors [11,33] are 

ased on the above detection pipelines. However, such pipelines 

nly provide a prediction for each RoI ( i.e. , each anchor/proposal). 

n order to obtain higher detection performance, our DDBN inter- 

rets each RoI separately from two different semantic perspectives: 

etail and context. That is, our detector will provide two different 

emantic predictions for each RoI. Therefore, compared with the 

onventional single-prediction mechanism (one detection pipeline, 

ne prediction for each RoI), this paper designs the first multi- 

rediction architecture to achieve better detection performance. 

.3. Learning method 

The learning method of the model is also a key factor that 

nables the detector to obtain high detection performance. Typ- 

cally, by pre-training on the ImageNet classification dataset and 

ne-tuning on the target object detection dataset [29] , the de- 

ection accuracy of the model has been greatly improved com- 

ared with that without pre-training. For avoiding internal co- 

ariate shift and accelerating deep network training, Batch nor- 

alization [34] was introduced to normalize each layer input of 

ach mini-batch. To overcome the issue of sample imbalance be- 

ween categories, some researchers [35] have conducted research 

n loss processing for learning better feature representation. To 

void scale-imbalance problem in anchor matching strategy, the 

ork [36] proposed scale-balanced loss to enhance detection abil- 

ty of small objects. 

Although the above methods aim at training detectors with 

igher detection performance, they all directly perform loss re- 

ression for the traditional single output models. Since our models 

ave dual outputs, we refer to the training method of multiple out- 

uts (structured output) algorithms, such as MCL [15,37] , FSAF [16] . 

he essence of these training methods is selective regression. How- 

ver, whether the direct regression method or the selective regres- 

ion method is adopted, it is not optimal for our model. There- 

ore, according to the characteristics of our dual detection branch 

odel, we customize a special loss regression method, diversity 

nhancement strategy, for training our detector to obtain bet- 

er detection performance. Experiments show that our training 

ethod can indeed effectively improve the detection performance 

f our model. 
3 
. Proposed framework 

As illustrated in Fig. 2 , we propose a novel object detection 

ramework (DDBN) to obtain higher detection performance. In this 

ramework, we construct two types of adjacent feature compen- 

ations (including compensation of higher/context semantics and 

ompensation of lower/detail features) for each scale to bring 

bout the diversity of semantic representation. And then, the dif- 

erent RoI features (DC-RoI feature and CC-RoI feature) of the same 

oI are input into the dual detection branches to perform semantic 

iversity predictions. We are going to describe the details in the 

ollowing subsections. 

.1. The overall architecture 

Note that many object detection frameworks [11,38] that 

chieve high performance are based on residual networks. Con- 

idering the excellent ability of feature extraction from the resid- 

al networks, we adopt the ResNet-101 [39] network as the back- 

one. To specify, we extract information from conv1 to conv5_3. 

e also convert the layers of the average pooling, FC and softmax 

f ResNet-101 to convolutional layers by subsampling their param- 

ters, and these converted convolutional layers can generate more 

bstract semantic which is used to detect the larger object. Then 

e select conv2_3, conv3_4, conv4_23, conv5_3 and conv_fc as the 

etection layers. These layers are used as input to the Region Pro- 

osal Networks (RPN) [10] to generate multi-scale proposals which 

re also considered as regions of interest (RoI). 

By reusing the feature maps of the backbone, our adjacent fea- 

ure compensation (see Section 3.2 ) will generate two types of 

icher semantic features. And then the RoIs are mapped into these 

wo types of features for extracting different semantic RoI features 

s inputs of our dual detection branches. Our dual detection branch 

etwork (see Section 3.3 ) will provide two different semantic in- 

erpretations ( i.e. , two predictions: P d and P c ) for each RoI. In order

o further develop the detection performance of our detector, dur- 

ng training, we design a diversity enhancement strategy (DES, see 

ection 3.4 ) to make the branch parameters only learn the train- 

ng samples that the input features of the branch are good at. An 

verview of our DDBN and customized training method is shown 

n Fig. 2 

.2. Adjacent feature compensation 

Generally, the adjacent feature layers contain complementary 

nformation [4] of each other, i.e. , the lower layer feature map with 

maller receptive field contains the detail information of the higher 

ayer, and the higher layer feature map with bigger receptive field 

ontains the context information of the lower layer. Therefore, we 

dopt two methods of adjacent feature compensations: 

• Adjacent Detail Compensation (ADC) 

ADC uses the lower adjacent feature layer with detail features 

to compensate for the current detection layer, as shown in 

Fig. 3 (a). Then 14 × 14 RoI align [40] is conducted on this com- 

pensated feature map to extract the corresponding detail com- 

pensation based RoI feature (DC-RoI feature) for the detail de- 

tection branch, which makes the branch deal with the objects 

with ample detail information well. 
• Adjacent Context Compensation (ACC) 

ACC uses the higher adjacent feature layer with context seman- 

tics to perform feature compensation of the current detection 

layer, as shown in Fig. 3 (b). Then 7 × 7 RoI align is conducted 

on this compensated feature map to extract the corresponding 

context compensation based RoI feature (CC-RoI feature) for the 

context detection branch which can well explore the objects of 
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Fig. 2. The overall architecture of our dual detection branch model. It consists of ResNet-101 based backbone, Adjacent Feature Compensation based Layers (including 

Adjacent Details Compensation based Feature and Adjacent Contexts Compensation based Feature), and Dual Detection Branches. Our Diversity Enhancement Strategy (DES) 

is shown in the right, Switch D and switch C have three states: (1) switch on D only, (2) switch on C only, or (3) switch on D and C at the same time. Only when the switch 

is connected, the loss between the prediction and the ground truth is calculated, and then the calculated loss can be back-propagated to the corresponding detection branch 

at the time of regression. 

Fig. 3. Illustration of generating compensation feature: (a) Adjacent detail compen- 

sation (ADC), (b) Adjacent context compensation (ACC). 
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To avoid the compensation feature being over-weighted and the 

ain information of object at the current detection scale being af- 

ected heavily, we introduce a variable λ to adjust the ratio of com- 

ensation feature to current feature based on the channel number 

f compensation feature layers, i.e. , 

= 

N comp 

N cur 
(1) 

here N comp and N cur are the channel numbers of compensation 

eature layer and the current feature layer respectively. 

To control the channel number of the compensation feature 

ith the least cost, we use Pointwise Grouped Convolution (1 × 1 

Conv) [41] . To avoid information loss, we adopt upsampling for 

nifying the spacial size of feature maps of the compensation layer 

nd the current layer. Let x 
′ 
d 
, x c , and x 

′ 
c denote the adjacent detail

eature map, the feature map of current detection layer, and the 

djacent context feature map, respectively. Then by adjacent detail 

ompensation, we get the feature map: 

 

′ 
dc = F cat ( F pg (x 

′ 
d ) , F up (x c ) ) (2) 

here F cat , F pg and F up represent the operations of the Concatena- 

ion, the Pointwise Grouped Convolution, and the Upsampling re- 
4 
pectively. Then by adjacent context compensation, we get the fea- 

ure map: 

 

′ 
cc = F cat ( x c , F pg (F up (x 

′ 
c )) ) (3) 

Therefore, for each detection layer, we use feature layers with 

maller receptive fields for detail compensation, and use feature 

ayers with larger receptive fields for context compensation. In this 

ay, two types of features based on different compensation infor- 

ation are obtained to conduct different feature representations 

n the same scale object. 

.3. Dual detection branches 

With the extracted regional features via RoI operations (like RoI 

ooling [10] and RoI align [40] ), most of the existing object detec- 

ors [10,11] just input the RoI feature into a single detection branch 

o predict both bounding boxes and corresponding class probabili- 

ies. These approaches have achieved good performance in detect- 

ng objects with ample detail information or rich context infor- 

ation. However, for simultaneously detecting these two types of 

bjects through a single detection branch, the parameters of this 

ingle detection branch need to learn a trade-off between the fea- 

ures of ample details and rich contexts, which prevents the de- 

ector from achieving its optimal detection performance for both 

ypes of objects at the same time. 

In this paper, we construct dual detection branches, which well 

ncorporates the detail detection branch and the context detection 

ranch. The detail detection branch is dedicated to exploring inter- 

al feature differences of the objects, while the context detection 

ranch focuses on the impact of surrounding semantics on the de- 

ected targets. The dual detection branches help our detector to ob- 

ain the optimal detection performance of both types of objects at 

he same time. 

Note that during forward inference, each region proposal ( i.e. 

oI) generated by the RPN [10] will be mapped to both the ADC- 

ased feature map and the ACC-based feature map. Then we lever- 

ge RoI Align operator to extract the corresponding 14 × 14 detail 

ompensation based RoI feature (DC-RoI feature) and 7 × 7 con- 

ext compensation based RoI feature (CC-RoI feature) respectively. 

he 14 × 14 DC-RoI feature is input to the detail detection branch, 

nd the 7 × 7 CC-RoI feature is used as the input of the context 

etection branch, then the dual detection branches will produce 
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ifferent semantic predictions, as shown in Fig. 2 . Therefore, our 

odel outputs two predictions ( P d (s d , �d ) and P c (s c , �c ) ) for each

oI, where each prediction contains both prediction scores s and 

ounding box offsets � of the RoI. 

.4. Diversity enhancement strategy 

As mentioned in Section 3.3 , our model provides two predic- 

ions for each RoI, which also means that when we compare these 

wo predictions with ground truth (GT), two loss-values will be 

enerated. Although we can also directly back-propagate the two 

osses to their respective detection branches as done in traditional 

egression methods [10] , it is not optimal for our model. Therefore, 

n order to further improve the detection ability of our DDBN, we 

ustomize a diversity enhancement strategy for training our DDBN. 

t the training stage, there are the following two cases to be con- 

idered. 

1) The two prediction scores of the RoI differ greatly, i.e. , the pre- 

diction scores differ by more than �. It is obvious that the de- 

tection branch with a higher prediction score is better at pre- 

dicting the object of the current region proposal, while the 

other detection branch with a lower prediction score is not 

good at predicting the current region object. To make two de- 

tection branches play a greater role in the field that they are 

good at, without being affected by the prediction that they 

are not good at, we do not allow the detection branch with a 

lower prediction score to learn from the loss, which is also good 

for parameter stability of this detection branch. Thus, we only 

conduct loss calculation and back-propagation on the detection 

branch with a higher prediction score. This selective learning 

method can promote the diversity of semantic representation 

of each branch. Selecting only one branch for learning is bene- 

ficial to each branch to be trained as a specialist on one partic- 

ular data subset. 

2) If the difference between the two prediction scores is smaller 

than �, we argue that both branches are all good at predict- 

ing the current RoI object, and this small difference in pre- 

diction scores may come from somewhat randomness. There- 

fore, we let both branches calculate the loss and perform back- 

propagation. Meanwhile, the operation of allocating losses to 

two detection branches can increase the number of assigned 

samples for each detection branch, which helps reduce the 

possibility of overfitting. Because if one branch is always se- 

lected for loss regression, it may lead to few samples allo- 

cated to another branch, which may cause this branch to overfit 

to these few assigned samples. Furthermore, when our model 

learns about these two losses, our model has to accept a dou- 

ble penalty, especially for the backbone, which will break the 

balance of the training samples. Therefore, in this case, we av- 

erage the two loss-values. 

In summary, the loss function for our diversity enhancement 

trategy can be defined as: 

 (D ) = 

N ∑ 

i 

loss ( y i , f d ( x i ) , f c ( x i ) ) (4) 

here N is the number of RoI in training images and the corre- 

ponding loss of the RoI ( x i ) can be defined as: 

oss (y i , f d ( x i ) , f c ( x i ) ) 

= 

{ 

min 

m ∈ [ d,c ] 
l(y i , f m 

( x i ) ) | s d − s c | � � ∑ 

m ∈ [ d,c ] 
1 
2 

l(y i , f m 

( x i ) ) | s d − s c | < � 

(5) 

here the y i is the corresponding ground truth of the RoI ( x i ), and

he f d ( x i ) and f c ( x i ) are the prediction results via the detail infer- 

nce function ( f , i.e., the detail detection branch) and the context 
d 

5 
nference function ( f c , i.e., the context detection branch) respec- 

ively. The multi-task loss ( i.e. , l(. ) , defined in [30] ) is used to cal-

ulate the difference between the prediction and the ground truth. 

nd the s d and s c are the prediction scores from the detail detec- 

ion branch and the context detection branch, respectively. 

Discussion: It is worth mentioning that the design of our loss 

unction encourages the dual detection branch network to gener- 

te different semantic interpretations for each RoI, which is mainly 

ue to the different detection branches learning different training 

amples. Furthermore, compared to traditional regression methods, 

ur customized regression strategy not only makes our network 

arameters more stable but also makes it unnecessary for our net- 

ork parameters to learn a trade-off between categories with large 

emantic differences. This is beneficial to the convergence of the 

etwork in training, and also helps to enhance the detection per- 

ormance of each branch in our detector. 

For Eq. 5 , when � is 0, our loss function is a selective loss func-

ion, that is, only one detection branch is selected for loss regres- 

ion. When � is 1, our loss function is a mean method of multiple 

osses in traditional regression. We find that regressing our DDBN 

ith the selective loss function ( i.e. , � equals 0) can bring about an 

mprovement in detection accuracy. However, it is still not optimal. 

hen � takes a value between 0 and 1, it can have a better de- 

ection performance. It is worth noting that, in the initial stage of 

raining, to avoid randomly assigning training samples to different 

etection branches, we make the parameter ( �) of our DES gradu- 

lly decay from 1 to the value (like 0.1) we set, the decay ratio of

he used natural exponential method [42] is set as 0.5. 

In the testing stage , with an input image, our DDBN outputs 

wo prediction sets, one prediction set comes from the detail de- 

ection branch and the other one is from the context detection 

ranch. Instead of directly selecting a prediction set as the output 

f this image, we leverage a voting decision strategy (VDS) to au- 

omatically produce a better prediction as the final prediction for 

ach RoI. Similar to training, we also handle two predictions for 

ach RoI in two cases. 1) When the predicted score difference is 

reater than �, we argue that the prediction with a higher score 

s more trustworthy. So we choose the prediction with the higher 

core as the final prediction. 2) When the difference between the 

wo prediction scores is smaller than �, we think that the two 

redictions are not much different and are both trustworthy. So 

e take the average of the two predictions. For details, please see 

lgorithm 1 . 

lgorithm 1 Voting Decision Strategy. 

nput: the predictions of P d (s d , �(dx d , dy d , dw d , dh d )) 

and P c (s c , �(dx c , dy c , dw c , dh c )) 

utput: the final prediction P f inal (s f inal , �(dx, dy, dw, dh )) 

if | s d − s c | � �: 

if s d > s c : 

s f inal = s d 
�(d x, d y, d w, d h ) = �(d x d , d y d , d w d , d h d ) 

else: 

s f inal = s c 
�(d x, d y, d w, d h ) = �(d x c , d y c , d w c , d h c ) 

lse: 

if s d > s c : 

s f inal = s d 
else: 

s f inal = s c 

�(d x, d y, d w, d h ) = 

�(d x d ,d y d ,d w d ,d h d )+�(d x c ,d y c ,d w c ,d h c ) 
2 

Since dual detection branches’ predictions just provide bound- 

ng box (bbox) offset, we need to get the final bbox offset (the � of 

nal prediction) from Algorithm 1 to adjust the RoI coordinate to 
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Fig. 4. Demonstration of the testing process and two typical examples of our DDBN. The two predictions are used as inputs to the voting decision strategy (VDS) to obtain 

the final prediction. The final prediction score is regarded as the confidence in the prediction of the current RoI, and the final bounding box offset �(d x, d y, d w, d h ) is used 

to adjust the original RoI coordinate ( x c , y c , w, h ) to obtain the final bounding box of the object of interest. 
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Table 1 

The effects among the feature compensation methods, the number 

of detection branch, and the training methods. 

models mAP � 1 0 0.05 0.1 0.15 0.2 

WFC-S 70.1 - - - - - 

WFC-D 70.9 71.3 71.3 71.5 71.3 71.0 

ADC-S 71.4 - - - - - 

ADC-D 72.2 72.7 73.1 73.3 73.0 72.8 

ACC-S 71.2 - - - - - 

ACC-D 71.9 72.4 72.5 72.7 72.2 72.2 

AFC-D 73.1 74.7 75.3 75.8 75.1 74.9 
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b

roduce the final prediction coordinate of RoI. The overall test pro- 

ess based on P d and P c is shown in Fig. 4 . And Fig. 4 also provides

wo typical examples that different detection branches are good at. 

he detail detection branch is better at detecting objects with rich 

nternal features, such as a Basketball Court with ample internal 

extures. The context detection branch is better at detecting ob- 

ects with complex surrounding semantics, such as the Bridge as a 

art of the road, which has a similar appearance to the road, but 

he surrounding environment of the Bridge is obviously different 

rom that of road. 

.5. Implementation details 

The implementation of our DDBN is based on the original 

PN [11] in Detectron 

1 . Except for our three innovations, other hy- 

erparameters and sub-modules (such as RPN) are largely based on 

he original FPN. The modifications based on our three innovations 

re as follows: 

1) We replace the Feature Pyramid in FPN with the feature gen- 

eration method of our AFC, which can produce two types of 

features as the input of the dual detection branches. 

2) Unlike the FPN, which has only one detection head, we use 

both 14x14 and 7x7 detection heads to perform dual branch de- 

tection. 

3) We customize the diversity enhancement learning method to 

replace the traditional direct loss regression method to train 

our DDBN. 

As [29] , we utilize network backbone, ResNet101 model, with 

ts publicly available pre-trained model on the ImageNet classifi- 

ation set [43] , and then fine-tune on the target detection dataset. 

e run our approach on a PC machine with an i5-7640X CPU (with 

2 GB memory) and two NVIDIA GTX 1080Ti GPUs (with 11 GB 

emory). At the training stage, we adopt synchronized SGD on 2 

PUs. Due to the large size of some images of datasets, a mini- 

atch is assigned with 1 image for each GPU. For other hyper- 

arameters, we set the momentum as 0.9 and the weight decay 

s 0.0 0 05. The learning rate is 0.0 05 for the first 480K iterations,

.0 0 05 for the next 160K, and 0.0 0 0 05 for the last 80K. The size of

024 × 1024 is set as the maximum scale of our model input. 

. Experiment and analysis 

In this section, we firstly conduct ablation experiments and an- 

lyze the effectiveness of the components of our model. Then we 

urther analyze how different categories benefit from different se- 

antic predictions of our dual detection branch model. We also 
1 https://github.com/facebookresearch/Detectron 

o

a

6 
omprehensively evaluate our model performance on three bench- 

ark datasets (DOTA [12] , MS-COCO [13] , Pascal-VOC [14] ) by com- 

arison with the baseline framework ( i.e. , FPN). Finally, we com- 

are the accuracy and inference time with the state-of-the-art de- 

ectors on the common COCO dataset to evaluate the advancedness 

f our DDBN. 

Due to the special imaging environment of remote sensing im- 

ges, the remote sensing images (DOTA) are not as clear as natu- 

al images (MS-COCO and Pascal-VOC) [12] . The prediction of the 

ess clear image is usually accompanied by greater uncertainty, so 

he capture of detail and context information is more beneficial 

o improving the accuracy of remote sensing images (in Table 3 , 

OTA obtains the best accuracy improvement), which can better 

ighlight the roles of different detection branches in our DDBN. 

herefore, we select the DOTA dataset for ablation experiments 

nd analysis. 

For the training set and validation set of DOTA-v1.0, the original 

mages with ground truth are provided publicly. However, the test- 

ng set only provides original images, thus we should send our pre- 

icting results of the testing set to the DOTA-v1.0 server to obtain 

he detection accuracy (including AP of each category and mAP). 

herefore, in our ablation experiments, we use the training set to 

rain and test on the validation set. When comparing with other 

etection models, we use the training set and the validation set to 

rain and test on the testing set. 

The short names for some categories of the DOTA dataset are 

efined as: BD-Baseball Diamond, GTF-Ground Track Field, SV- 

mall Vehicle, LV-Large Vehicle, TC-Tennis Court, BC-Basketball 

ourt, ST-Storage Tank, SBF-Soccer Ball Field, RA-Roundabout, SP- 

wimming Pool, and HC-Helicopter. 

.1. Ablation study 

In ablation studies, we evaluate the effectiveness of our model 

rom three perspectives: feature compensation method, the num- 

er of detection branches, and training method. 

1) For feature compensation, we verify 4 compensation meth- 

ds, that is, without feature compensation ( WFC , as a baseline), 

djacent detail compensation ( ADC ), adjacent context compensa- 

https://github.com/facebookresearch/Detectron
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Table 2 

The comparison of mAP improvements from different values of the pa- 

rameter λ. 

λ WFC-D ADC-D ACC-D AFC-D 

1 71.49 72.92 (1.43 ↑ ) 72.45 (0.96 ↑ ) 74.42 (2.93 ↑ ) 
1/2 71.49 73.32 (1.83 ↑ ) 72.71 (1.22 ↑ ) 75.78 (4.29 ↑ ) 
1/3 71.49 73.15 (1.66 ↑ ) 72.52 (1.03 ↑ ) 75.00 (3.51 ↑ ) 
1/4 71.49 72.68 (1.19 ↑ ) 72.30 (0.81 ↑ ) 74.15 (2.66 ↑ ) 

t

A

e

n

s

1

p

�
d

v

b

W

b

N

o

w

(  

f

D

1  

f

d

T

W

c

a

t

T

m

b

p

i

t

p

s

m

t

i

f

f

f

c

p

W

t

w

d

d

d

i

Table 3 

The accuracy comparison of our DDBN with FPN on three different 

datasets. 

models mAP DateSets DOTA MS-COCO PASCAL VOC2012 

FPN 75.4 38.8 80.5 

Our DDBN 79.3 42.3 83.4 

Gain + 3.9 + 3.5 + 2.9 
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ion ( ACC ), and adjacent feature compensation ( AFC ). Note that our 

FC includes ADC and ACC . 

2) For the number of detection branches, we verify the differ- 

nce between the baseline (traditional single detection branch, de- 

oted as -S ) and the dual detection branches (denoted as -D ). 

3) For the training method, we perform different loss learning 

trategies by controlling the variable � in Eq. 5 . When � equals 

, it is the traditional regression method which directly back- 

ropagates the losses to corresponding detection branches. When 

is 0, it is the selective regression method, that is, there is one 

etection branch to learn the loss in each time. When � takes a 

alue between 0 and 1, it is our diversity enhancement strategy. 

Now, we denote WFC-S, ADC-S, and ACC-S as single detection 

ranch models based on WFC, ADC, and ACC, respectively. And 

FC-D, ADC-D, ACC-D, and AFC-D are denoted as dual detection 

ranch models based on WFC, ADC, ACC, and AFC, respectively. 

ote that, since AFC generates two types of features, there is only 

ne state with dual detection branches based on AFC ( i.e. , AFC-D), 

ithout the situation with a single detection branch based on AFC 

 i.e. , no AFC-S). And the WFC, ADC, ACC only output one type of

eature, for performing dual branches detection ( i.e. , WFC-D, ADC- 

, ACC-D), we conduct the operations of both 7 × 7 RoI Align and 

4 × 14 RoI Align on the same feature, and then output 7 × 7 RoI

eatures and 14 × 14 RoI features into the dual branches to con- 

uct ablation detection. 

Adjacent feature compensation is useful. By observing 

able 1 , we can get the following conclusions: (1) Compared to 

FC, no matter how many detection branches, our ADC and ACC 

an bring about 1% improvement in accuracy ( i.e. , WFC-S vs ADC-S 

nd ACC-S, WFC-D vs ADC-D and ACC-D), which means that our 

wo feature compensation methods (ADC and ACC) are useful. (2) 

he AFC with both ADC and ACC has greater accuracy improve- 

ents, especially that the dual detection branch models based on 

oth diversity enhancement strategy and AFC can significantly im- 

rove our detection accuracy (when � is 0.1 the accuracy of AFC-D 

s over 4% higher than that of WFC-D). Therefore, the adjacent fea- 

ure compensation method can bring more diverse semantics in- 

ut for our dual detection branches, which is beneficial to generate 

emantic diversity predictions for improving the detection perfor- 

ance of our detector. 

To further analyze the influence of adjacent feature compensa- 

ion, we conduct exploratory experiments on the ratio λ (defined 

n Section 3.2 ) of the feature compensation. We set λ with dif- 

erent values for searching the best parameter to explore which 

eature compensation ratio can make our dual detection branch 

ramework achieve the best performance. Since WFC-D does not 

arry out feature compensation, the compensation ratio has no im- 

act on WFC-D, and the mAP of WFC-D has no change. Thus, the 

FC-D is considered as baseline. From Table 2 , we can observe 

hat our framework achieves the best performance when λ is 1/2, 

hile too much or too little compensation of features is less con- 

ucive to the improvement of accuracy. Therefore, 1/2 is set as the 

efault value of λ in our experiments. 

Dual detection branches are effective. In the case of a single 

etection branch ( -S ), it is not possible to perform which branch 

s selected for loss learning, so the models with a single detec- 
7 
ion branch have no values when � < 1 . From Table 1 , by compar-

ng traditional single detection branch ( -S ) and our dual detection 

ranches ( -D ) on different features under the same training condi- 

ions ( � = 1 ), we find that dual detection branches are indeed con-

ucive to the improvement of the final prediction accuracy (WFC-S 

s WFC-D, ADC-S vs ADC-D, ACC-S vs ACC-D). This can be easily 

nderstood as that the dual plausible predictions are made for the 

ame RoI, and then a better prediction is proposed as the final pre- 

iction, which obviously exceeds the situation with only one pre- 

iction. This is the charm of our dual predictions. 

Diversity enhancement strategy is promising. In training the 

ual detection branch models (WFC-D, ADC-D, ACC-D, AFC-D), we 

erform different loss regression methods, including traditional re- 

ression method ( �= 1, directly back-propagate the losses of dual 

redictions to corresponding detection branches), selective regres- 

ion method ( �= 0, choose a detection branch for the loss back- 

ropagation) and our customized regression method ( � ∈ ( 0 , 1 ) , 

.e. , diversity enhancement strategy). The comparison among dif- 

erent training methods of AFC-D in Table 1 indicates that our 

ustomized regression method achieves the best detection accu- 

acy ( �= 0.1 : 75.8% is better than �= 1 : 73.1% and �= 0 : 74.7%),

hich means that our training method (DES) is more beneficial 

o improve the detection performance of our model. Moreover, by 

bserving different feature compensation methods with different 

raining methods, we find that when � changes from 1 to 0.1, the 

ccuracy of WFC-D improves by less than 1%, but for our AFC-D 

ethod, it improves over 2%. This shows that the diversity en- 

ancement strategy specially designed for training our DDBN can 

etter take advantage of different semantic interpretations from 

ur DDBN. 

Through the above analysis, we already know that our cus- 

omized training method can indeed bring accuracy improvement 

o our DDBN. Now, we visualize the iterative process of the loss to 

bserve the difference between our customized regression method 

nd the traditional regression method. From Fig. 5 , we can clearly 

bserve that 1) the process of our customized regression is more 

table when the learning rate changes in the 480Kth iteration, and 

) the fluctuation range of loss is also smaller than traditional re- 

ression. These mean that our training strategy can make our net- 

ork parameters more stable, which is beneficial to the conver- 

ence of the network in training. 

Therefore, our diversity enhancement strategy not only effec- 

ively improves the detection performance of our model but also 

akes our detector to perform more stable parameter learning. 

.2. Further analysis 

To further explore how different objects benefit from different 

emantic predictions, that is, which type of object is suitable for 

hich detection branch, we provide the following experiments. Us- 

ng a WFC detector as a baseline, a single detection branch is ap- 

lied to ADC and ACC respectively. By comparison, we can know 

hich category is benefited from which branch. Then, we observe 

hether AFC based dual detection branches can get better detec- 

ion results from different detection branches. From Fig. 6 , we can 

raw the following conclusions: 
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Fig. 5. The comparison of different loss regression methods, Traditional Regression ( �= 1) and Customized Regression ( �= 0.1), on our DDBN. 

Fig. 6. The comparison of different detection results from detectors with different detection branches. 
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1) Compared with the WFC detector, there is a large performance 

improvement using ADC for the categories with ample detail 

information, e.g. TC and BC. 

2) Detector based on ACC has better detection ability when the 

detected categories depend on rich context information, e.g. 

Bridge and Harbor. 

3) Since the category of ST has a simple appearance, without rich 

detail information and context information, using different de- 

tection branches will not significantly improve performance. 

4) Our AFC based detector has the best results in all categories, 

which means our dual detection branch model can achieve bet- 

ter predictions from different detection branches via our VDS 

(described in Section 3.4 ). 

.3. Improvement based on the baseline 

As described in Section 3.5 , our DDBN method is developed on 

esNet-101-FPN, so the FPN method [11] can be seen as a baseline 

or a comprehensive comparison in Fig. 7 and Table 3 . 

As shown in the first row of Fig. 7 , since the Tennis Court (TC)

as more internal texture information, our detail detection branch 

DDBN-P d ) has better detection results, which benefits from the 

etter detail representation ability of our ADC feature. Moreover, 

hrough careful observation, we find that in the detection of the 

ight Tennis Court affected by tree shadows, our detail detection 

ranch (DDBN-P d ) can more accurately locate the boundaries of 

he Tennis Court than FPN. Therefore, the detail detection branch 

as a stronger detection ability to the object with ample detail in- 

ormation. 

In addition to VHR (very high resolution) remote sensing im- 

ges, there are also low-resolution blurred SAR images. In the sec- 
8 
nd row of the Fig. 7 , there is a less obvious small ship, which

an be detected by the context detection branch (DDBN-P c ), but 

either the detail detection branch (DDBN-P d ) nor the baseline 

ethod (FPN) can do this. This is mainly because the water waves 

enerated by the ship’s running is also a kind of context informa- 

ion, which increases the probability of it being recognized by our 

DBN-P c . 

From the improvement of the detection results of the above 

wo categories, we can easily get a conclusion that the design 

f our dual detection branch model based on context and detail 

s reasonable. Furthermore, the two clues (detail information and 

ontext information) grasped by our DDBN can not only enhance 

he prediction ability of each object, but also suppress the gener- 

tion of false-positive predictions. As shown in the third row of 

ig. 7 , since the green region includes an object similar to a per- 

on’s head, FPN predicts the region as a person, nevertheless, our 

DBN does not make a wrong prediction for this area. Meanwhile, 

e also find an interesting phenomenon, the bounding box of the 

etail detection branch is very closer to the target object or even 

lightly smaller than the object (like the DDBN-P d of the clock). 

owever, the bounding box from the context detection branch is 

ooser, which can be easily observed in the detection results of the 

ear and the ship. 

Based on the VDS (described in Section 3.4 ), our DDBN always 

btains a better prediction from the different predictions of the 

ual detection branches. For the right TC in the first row, the pre- 

ictions of DDBN-P c have lower prediction scores, thus the predic- 

ion of DDBN-P d is chosen as a final prediction of DDBN. And for 

he case where both detection branches have good detection capa- 

ilities, our VDS can produce a better prediction that has a more 

uitable bounding box than FPN, which can be clearly seen from 
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Fig. 7. Comparison of detection results from FPN and our DDBN method on the DOTA dataset (row 1&2) and MS-COCO dataset (row 3&4); (a) detection results of FPN 

method; (b) detection results of DDBN generated by VDS based on the results of (c) and (d); (c) detection results of the detail detection branch in our DDBN (DDBN-P d ); (d) 

detection results of the context detection branch in our DDBN (DDBN-P c ); (e) the corresponding ground truth. The predictions are displayed with scores greater than 0.7. 
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he Bear in the fourth row. In short, whether our VDS chooses a 

etter prediction from DDBN-P d and DDBN-P c (like the cases of the 

C, the ship, and the Clock), or generates a better prediction based 

n these two predictions as the DDBN detection result (like the 

ases of the Bear), it enables our DDBN to obtain better detection 

esults than FPN. 

Through the comparison of the detection results mentioned 

bove, we know that our DDBN model has a better detection abil- 

ty. To further compare our model with the baseline method, we 

uantify the comparison in three different scenarios ( i.e. , three dif- 

erent datasets: DOTA [12] , MS-COCO [13] , Pascal-VOC [14] ). As 

hown in Table 3 , our DDBN achieves consistent accuracy improve- 

ents, which demonstrates the advanced detection ability of our 

etector and its generality in different scenarios. On the other 

and, we also find that the accuracy improvements of our model 

re more obvious in the DOTA dataset and COCO dataset. We in- 

er that (1) For the DOTA dataset, remote sensing images are not 

s clear as natural images due to the imaging environment. This 

eans that remote sensing images are more dependent on var- 

ous clues (detail or context information) to enhance the recog- 

ition ability of objects. And this is what our model is good at, 

o our DDBN can bring more obvious accuracy improvement on 

emote sensing images. (2) For the COCO dataset, because it has 

ore categories (80 categories), the traditional single detection 

ranch must learn the semantics of 80 categories at the same time, 

hich makes the parameters of this single detection branch have 

o learn a tradeoff among 80 categories. However, the dual detec- 

ion branches of our model can effectively alleviate this dilemma. 

.4. Comparison with mainstream detectors 

Comparison on DOTA. To verify the detection performance of 

ur DDBN, we first conduct a comparison of the detection accu- 
9 
acy with mainstream detectors on DOTA-v1.0 dataset. These main- 

tream detectors include popular detectors (Deformable FR-H [24] , 

etinaNet [38] , IoU-AD RCNN [44] , SNIPER [45] ), also include some 

urrent SOTA methods (CSL [46] , BBAVectors+rh [47] ). As shown in 

able 4 , it is easy to find that our DDBN achieves the best detec-

ion performance on mAP, and our model has the highest accuracy 

n 9 geological categories we find that in 15 classes. This is mainly 

ue to the better feature representation ability of our model and 

he dual-prediction ability based on semantic diversity. 

Comparison on COCO. To further evaluate the overall per- 

ormance of our DDBN, we compare it with several mainstream 

ethods on the common object detection datasets (MS-COCO) in 

able 5 , including classical detection models (SSD [32] , FPN [11] , 

etinaNet [38] , and Mask R-CNN [40] ), also including the advanced 

ethods (FCOS [48] , RefineDet [35] , Libra R-CNN [49] , SWN [50] ,

ETR [51] , and CBNet [52] ). At the same time, we also list some

ther methods based on information compensation, such as DP- 

CN [2] , MPNet [23] , CoupleNet [5] , ION [26] , EfficientDet [28] and

-FCN [53] . In training, we use the same training hyperparame- 

ers of FPN (implementation details described in Section 3.5 ), like, 

20K iterations, 0.9 momentum, and the weight decay of 0.0 0 05. 

nd for the extra hyperparameters about our DDBN, we set the op- 

imal compensation ratio ( λ) as 1/2, and � as 0.1 for our DES and 

DS. 

Accuracy. From Table 5 , our DDBN surpasses other object de- 

ection methods in detection accuracy ( i.e. , AP). Even compared 

ith the state-of-the-art methods (SWN, DETR, CBNet), our model 

lso has better detection accuracy. Meanwhile, because our model 

s based on detail and context information compensation, we also 

ompare with other related information compensation methods, 

uch as details-based DP-FCN and CoupleNet, MPNet, ION and Ef- 

cientDet based on comprehensive feature fusion, and context- 



Q. Lin, C. Long, J. Zhao et al. Pattern Recognition 122 (2022) 108315 

Table 4 

Detection accuracy comparison with the mainstream detectors on the dataset of DOTA-v1.0. 

Detectors backbone Plane BD Bridge GTF SV LV Ship TC BC ST SBF RA Harbor SP HC mAP 

Deformable FR-H [24] - 86.5 77.5 42.7 64.4 67.6 63.6 77.9 90.3 77.8 75.4 52.1 56.8 68.9 62.0 54.9 67.9 

RetinaNet [38] ResNet101 87.7 79.2 50.5 74.1 66.0 76.2 83.4 89.5 79.8 83.3 62.2 64.3 78.3 74.8 49.4 73.3 

IoU-AD RCNN [44] - 88.6 80.2 53.2 66.9 76.3 72.6 84.0 90.7 81.0 76.2 57.1 66.7 74.1 55.4 56.9 72.7 

SNIPER [45] ResNet101 88.2 79.7 51.0 74.6 66.5 76.7 83.9 90.4 80.3 83.8 62.7 64.8 78.8 75.3 49.9 73.8 

CSL [46] ResNet152 90.2 85.5 54.6 75.3 70.4 73.5 77.6 90.8 86.2 86.7 69.6 68.0 73.8 71.1 68.9 76.2 

BBAVectors + rh [47] ResNet101 88.6 84.1 52.1 69.6 78.3 80.4 88.1 90.9 87.2 86.4 56.1 65.6 67.1 72.1 64.0 75.4 

DDBN(our) ResNet101 89.8 85.3 61.2 78.5 79.7 84.0 88.4 90.9 84.3 87.1 65.2 68.8 84.9 81.8 59.5 79.3 

Table 5 

Detection accuracy comparison with the mainstream detectors on COCO test-dev. Note that “ResNet-101-FPN 

� ” here indicates that we 

use ResNet-101-FPN as basic framework, but our DDBN replaced feature pyramid with our AFC-based dual detection branches. TTA: 

test-time augmentation, which includes multi-scale testing, horizontal flipping, etc. 

Methods Backbone TTA AP AP 50 AP 75 AP S AP M AP L time(ms) 

Information compensation methods 

DP-FCN2.0 [2] ResNeXt-101 34.8 54.8 38.4 15.8 37.2 49.0 - 

CoupleNet + [5] ResNet-101 34.4 54.8 37.2 13.4 38.1 50.1 - 

MPNet [23] ResNet-101 33.2 51.9 36.3 13.6 37.2 47.8 - 

ION [26] ResNet-101 33.1 55.7 34.6 14.5 35.2 47.2 - 

EfficientDet-D1 [28] ResNet-101 39.3 58.7 42.0 19.2 45.6 57.1 - 

R-FCN [53] ResNet-101 32.1 54.3 33.8 12.8 34.9 46.1 - 

Deformable R-FCN [24] ResNet-101 35.7 56.8 38.3 15.2 38.8 51.5 - 

FPN-based methods 

RetinaNet [38] ResNet-101-FPN 37.5 57.1 40.3 20.3 42.0 50.5 159 

Mask R-CNN [40] ResNet-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2 133 

Libra R-CNN [49] ResNet-101-FPN 41.1 62.1 44.7 23.4 43.7 52.5 117 

FPN [11] ResNet-101-FPN 38.8 61.1 41.9 21.3 41.8 49.8 124 

DDBN (ours) ResNet-101-FPN 

� 42.3 62.3 46.3 23.4 46.1 56.8 132 

Classical and newest methods 

SSD513 [32] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8 - 

RetinaNet ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2 - 

RefineDet512 [35] ResNet-101 41.8 62.9 45.7 25.6 45.1 54.1 - 

FCOS [48] ResNet-101 41.5 60.7 45.0 24.4 44.8 51.6 - 

SWN [50] ResNeXt-101 40.8 63.1 43.8 23.2 44.0 51.1 - 

DETR [51] ResNet-101 42.0 62.4 44.2 20.5 45.8 61.1 - 

Deformable DETR [54] ResNeXt-101 � 49.0 68.5 53.2 29.7 51.7 62.8 - 

EfficientDet-D7 [28] EfficientNet-B6 � 52.2 71.4 56.3 - - - - 

CBNet [52] Triple-ResNeXt152 � 53.3 71.9 58.5 35.5 55.8 66.7 - 

DDBN (ours) ResNeXt-101-64x4d � 53.7 72.2 58.6 37.3 56.9 66.3 - 
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ased R-FCN and Deformable R-FCN. Our model obviously exceeds 

hese information compensation methods. Through the compari- 

on of accuracy, we draw a conclusion that our DDBN can bring 

tronger detection performance via the semantic diversity predic- 

ions of dual detection branches, which is better than the tradi- 

ional single detection branch models with single-prediction. 

Inference. Since our model can be seen as a variant of FPN, for 

 fair comparison, we choose some FPN-based detectors for time 

omparison. By comparing the inference time of different models 

RetinaNet, Mask R-CNN, Libra R-CNN, FPN, and our DDBN), we 

nd that although we have two detection branches, the parallel 

esign of these dual detection branches reduces the influence of 

iversity predictions on the detection speed. 

All in all, our dual detection branch model can bring obvious 

mprovement in detection accuracy via semantic diversity predic- 

ions, but it only requires similar inference consumption of the tra- 

itional single detection branch models. 

. Discussion 

At first glance, our dual detection branch model with the dou- 

le number of detection heads seems to be related to the multi- 

cale detector. In fact, there is an obvious difference. Multi-scale 

etectors with multiple detection heads are primarily used to de- 

ect the different-scale objects/RoIs, rather than providing different 

emantic interpretations for each RoI as our DDBN does. 
10 
In terms of name, it is easy to mistake our architecture as simi- 

ar to the existing architectures named after two branches [55,56] . 

owever, the key difference is that the existing dual-branch net- 

orks attempt to produce two different temporary features. Lim- 

ted by the conventional single-prediction mechanism, these tem- 

orary features have to be ultimately concatenated (fused or cas- 

aded) into one type of feature again. Therefore, the existing dual- 

ranch networks are mainly used to generate temporary features, 

ut our dual detection branch framework focuses on conducting 

ifferent detection tasks by introducing a multi-prediction mecha- 

ism. Similarly, there are some works [8,28] that have some fea- 

ure generation structures similar to our AFC, such as top-down 

nd bottom-up, these methods also only generate one kind of fea- 

ure for the detection task. However, our AFC leverages a simple 

nd effective fashion to generate different semantic features for 

ur model to conduct diversity predictions. 

Overall, although our model only has two detection branches 

o make predictions currently, our studies establish the first 

ulti-prediction (more than one prediction for each RoI) 

odel/mechanism, referring to the network design, and the 

raining and testing strategies of the multi-prediction model. 

hrough a lot of experiments and analysis, it has been confirmed 

hat multiple/dual predictions based approach does have better 

etection accuracy than the conventional single-prediction models. 

herefore, there will be a number of works to extend this work in 

he future. 
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. Conclusion and future work 

Different from the single-prediction detectors that just operate 

eatures to improve the utilization of detail and context informa- 

ion, we present the first multi-prediction framework (DDBN) to 

se different information to conduct different predictions for im- 

roving object detection performance. In our model, we leverage 

djacent feature compensation to construct two types of features. 

hen, we equip a detection head for each type of feature to form 

ual detection branches. A customized training method, the di- 

ersity enhancement strategy, is used to enable our dual detec- 

ion branches to provide different semantic predictions to obtain a 

etter detection performance. Extensive ablation experiments have 

ully demonstrated the effectiveness of our DDBN. Compared with 

he baseline detector, significant performance improvements have 

een achieved on all three datasets (DOTA, MS-COCO, and PASCAL 

OC), which shows that our model is a general and effective detec- 

or. Finally, by comparing with the current mainstream detectors, 

ur dual detection branch model is superior to traditional single 

etection branch frameworks in object detection. 

Through extensive experiments, it has been proved that our 

ulti-prediction model with semantic diversity can bring signifi- 

ant performance improvement of object detection. Since each vi- 

ual task usually has its own network architecture and correspond- 

ng loss function, our multi-prediction model can not be directly 

pplied to other computer vision tasks, such as image segmenta- 

ion. In the future, we will continue to explore how to apply multi- 

rediction mechanism into different visual tasks. 
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