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ABSTRACT

It is well known that detail features and context semantics are conducive to improving object detection
performance. However, the current single-prediction detectors do not well incorporate these two types of
information together. To alleviate the limitation of single-prediction on the use of multiple types of in-
formation, we propose a dual detection branch network (DDBN) with adjacent feature compensation and
customized training strategy for semantic diversity predictions. Different from the conventional single-
prediction models, our DDBN is in the form of a single model with dual different semantic predictions.
In particular, two types of adjacent feature compensations are designed to extract detail and context in-
formation from different perspectives. Also, a specialized training strategy is customized for our DDBN
to well explore the diversity of predictions for improving the performance of object detection. We con-
duct extensive experiments on three datasets, i.e., DOTA, MS-COCO, and Pascal-VOC, and the experimental
results strongly demonstrate the efficacy of our proposed model.

Diversity enhancement strategy
Object detection

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

As we know, the prediction is always accompanied by uncer-
tainty [1]. For human visual cognitive systems, when there is un-
certainty in identifying an object, humans often need more clues
(such as internal detail information or external context informa-
tion) to enhance the certainty of prediction. Similarly, if the object
detection model can better grasp these two types of information
at the same time, the detection accuracy of the model can be sig-
nificantly improved.

The previous works have extensively explored these two types
of information. Some models introduce part-level features [2,3] or
fuse lower-level feature maps [4,5] to enhance the representation
ability of the inner detail features. There are also some meth-
ods that leverage expanding the region of interest [6,7] or fus-
ing higher-level semantics layers [8,9] to strengthen the ability
of the detectors to perceive the surrounding context semantics of
the object. However, none of the existing detectors are able to si-
multaneously and effectively use both types of information. This
is mainly due to the fact that the current models [10,11] are all
based on a single-prediction mechanism, i.e., each region of inter-
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est (Rol) is predicted once based on one type of feature, as shown
in Fig. 1(a). Such a single detection branch model fails to employ
multiple types of features on a model at the same time. This mo-
tivates us to design a non-single-prediction model to incorporate
these two types of information effectively.

In this paper, we first propose an effective feature fusion
method, named adjacent feature compensation (AFC), which lever-
ages inherent adjacent features to perform two types of feature
compensations. Our AFC includes adjacent detail compensation
(ADC) and adjacent context compensation (ACC) to achieve dif-
ferent feature representations of these two types of information.
Through our AFC, we can construct two types of features on the
same model at the same time.

Then, we build the first non-single-prediction model in the
community of object detection, i.e, Dual Detection Branch Net-
work (DDBN), as shown in Fig. 1(b). Each detection branch contains
one type of feature and a specialized detection head based on this
type of feature. Our detector with dual detection branches is able
to interpret each Rol from the perspectives of detail features and
context semantics, and then provide two different semantic pre-
dictions. Finally, a better prediction will be obtained for each Rol
via our customized testing strategy (Voting Decision Strategy, see
Algorithm 1), thereby improving the performance of object detec-
tion.

Training our dual detection branch network is very challenging.
This is because the ground truth of the common object detection
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Fig. 1. (a) Traditional single detection branch model (e.g., Faster RCNN) leverages one type of feature to perform single-prediction. (b) Our dual detection branch model
leverages adjacent detail compensation (ADC) and adjacent context compensation (ACC) to produce two types of features, and then performs different semantic predictions

(P4 and P.) for each Rol based on both types of features respectively.

datasets (like DOTA [12], MS-COCO [13], and Pascal Voc [14]) only
includes the coordinates of bounding boxes and the correspond-
ing category labels, without any branch-labels. However, our DDBN
has two detection branches, so how to perform loss regression on
our dual detection branches becomes a tricky problem. Obviously,
adding branch-labels manually is a time-consuming and labor-
intensive task, and excessive manual participation also greatly lim-
its the usability of our model. Therefore, we do not adopt such a
method with branch-labels for training.

For each Rol, our DDBN generates two predictions, which means
that when performing loss calculation with the corresponding
ground truth, we will obtain two loss-values. Now, there are two
processing methods. One is to directly back-propagate the losses
like the traditional regression method [10], ie. these two losses
are back-propagated to the corresponding detection branches re-
spectively for loss learning. And another is to choose one of the
detection branches for loss learning, which is similar to selective
regression method (like MCL [15], FSAF [16]). However, we found
that both these loss regression methods fail to give full play to the
performance of our dual detection branches.

Considering the diversity of objects, for some objects that
mainly depend on context information, the context semantics is
conducive to enhancing the model’s ability to identify these ob-
jects; for some objects with ample detail information, the de-
tail feature is beneficial to detect these objects; for some objects
that contain both context and detail information, both detection
branches can improve detection accuracy. Therefore, to improve
the ability to recognize various objects, the learning method of
our DDBN also needs to vary from objects to objects. We cus-
tomize a diversity enhancement strategy (DES) for training our
DDBN. Since the dual detection branches conduct different loss re-
gressions based on different samples during training, our dual de-
tection branches can provide semantic diversity predictions in test-
ing.

The contributions of the proposed DDBN can be summarized as
follows:

1) We proposed a simple but effective feature representation
method, adjacent feature compensation (AFC), to provide both
detail and context information simultaneously.

2) We construct the first non-single-prediction model, Dual Detec-
tion Branch Network (DDBN), in the community of object de-
tection. The dual detection branch of DDBN can make full use
of the two types of feature generated by AFC, so that our detec-
tor can better grasp the detail feature and the context semantic
of the object to enhance the object detection performance.

3) We customize a specialized diversity enhancement strategy for
our DDBN, which can train each of our dual detection branches

to be a detection expert on subsets of the dataset and then pro-
vide semantic diversity predictions.

4) Our DDBN has brought significant accuracy improvements on
multiple benchmark datasets, which shows the generality and
superiority of our model.

In our DDBN, both the two feature compensation methods and
the dual detection branches are based on the parallel design, which
has little effect on the inference time. Experiments show that our
DDBN has almost the same inference time as the single detection
branch model with single-prediction, but it obtains a significant
accuracy improvement from dual predictions. To the best of our
knowledge, our DDBN is the first dual/multi-prediction approach
based on a single model. As a first multi-prediction model, the de-
sign of our model and the customized training strategy bring some
new insights to the object detection community.

2. Related work

In this section, we briefly review related feature representation,
detection pipeline, and learning methods.

2.1. Feature representation

Feature representation has always been a very important re-
search task in machine learning. Object detection performance also
depends heavily on the ability of features to represent the re-
gion of interest. Before the popularity of deep learning, the scale-
invariant feature transform (SIFT) [17] and the histogram of ori-
ented gradients (HOG) [18] methods were the main feature repre-
sentation methods in object detection. The SIFT feature can effec-
tively deal with the changes in scaling, panning, and rotation. And
the HOG leverages the gradient intensity and distribution of gradi-
ent direction to represent the object of interest.

Since Hinton and Salakhutdinov [19] have made great progress
in the field of deep learning, the ability of feature representation
based on deep models has also improved significantly. Currently,
in the field of object detection, there are mainly two ways to en-
hance the ability of feature representation. One is to construct or
use an advanced backbone with strong ability of feature represen-
tation, such as GoogleNet [20], ResNet [21] and DenseNet [22] etc.
The other is based on the advanced backbone to construct a fea-
ture layer with richer semantics via feature fusion methods [23-
25]. Just like ION [26], PANet [27], NAS-FPN [8], and Efficient-
Det [28] methods, the ability of feature representation is greatly
enhanced by various feature fusing methods. However, since the
conventional single-prediction mechanism only accepts one type of
feature, these advanced feature fusion methods [26] about the de-
tail and context information ultimately employ one type of fused
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feature to describe all objects of interest. Obviously, it is difficult to
use a type of feature to uniformly represent the objects with dif-
ferent semantics, such as internal rich-detail objects and external
context-dependent objects. Therefore, this paper proposes an adja-
cent feature compensation (AFC) method to construct two types of
features at the same time for conducting different feature repre-
sentations separately.

2.2. Detection pipeline

The first popular deep learning based detection pipeline frame-
work is based on RCNN [29], which originally extracted region fea-
tures and then input the features into a linear SVM for classify-
ing. To achieve higher detection speed, Girshick et al. proposed Fast
RCNN [30] which shared the computational cost among candidate
boxes in the same image and introduced a novel Rol-pooling op-
eration to extract feature vectors for each region proposal. For fur-
ther improving the speed of detection, an upgraded version of Fast
RCNN was introduced in [10], the region proposal module and the
classification module were combined, which can share the back-
bone of the Faster R-CNN framework. At present, there are also
some methods (like YOLO [31] and SSD [32]) to remove the step of
region proposals in the pipeline directly, and leverage the prede-
fined anchor proposals to directly perform object classification and
boundary regression. Almost all deep learning detectors [11,33] are
based on the above detection pipelines. However, such pipelines
only provide a prediction for each Rol (i.e., each anchor/proposal).
In order to obtain higher detection performance, our DDBN inter-
prets each Rol separately from two different semantic perspectives:
detail and context. That is, our detector will provide two different
semantic predictions for each Rol. Therefore, compared with the
conventional single-prediction mechanism (one detection pipeline,
one prediction for each Rol), this paper designs the first multi-
prediction architecture to achieve better detection performance.

2.3. Learning method

The learning method of the model is also a key factor that
enables the detector to obtain high detection performance. Typ-
ically, by pre-training on the ImageNet classification dataset and
fine-tuning on the target object detection dataset [29], the de-
tection accuracy of the model has been greatly improved com-
pared with that without pre-training. For avoiding internal co-
variate shift and accelerating deep network training, Batch nor-
malization [34] was introduced to normalize each layer input of
each mini-batch. To overcome the issue of sample imbalance be-
tween categories, some researchers [35] have conducted research
on loss processing for learning better feature representation. To
avoid scale-imbalance problem in anchor matching strategy, the
work [36] proposed scale-balanced loss to enhance detection abil-
ity of small objects.

Although the above methods aim at training detectors with
higher detection performance, they all directly perform loss re-
gression for the traditional single output models. Since our models
have dual outputs, we refer to the training method of multiple out-
puts (structured output) algorithms, such as MCL [15,37], FSAF [16].
The essence of these training methods is selective regression. How-
ever, whether the direct regression method or the selective regres-
sion method is adopted, it is not optimal for our model. There-
fore, according to the characteristics of our dual detection branch
model, we customize a special loss regression method, diversity
enhancement strategy, for training our detector to obtain bet-
ter detection performance. Experiments show that our training
method can indeed effectively improve the detection performance
of our model.
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3. Proposed framework

As illustrated in Fig. 2, we propose a novel object detection
framework (DDBN) to obtain higher detection performance. In this
framework, we construct two types of adjacent feature compen-
sations (including compensation of higher/context semantics and
compensation of lower/detail features) for each scale to bring
about the diversity of semantic representation. And then, the dif-
ferent Rol features (DC-Rol feature and CC-Rol feature) of the same
Rol are input into the dual detection branches to perform semantic
diversity predictions. We are going to describe the details in the
following subsections.

3.1. The overall architecture

Note that many object detection frameworks [11,38] that
achieve high performance are based on residual networks. Con-
sidering the excellent ability of feature extraction from the resid-
ual networks, we adopt the ResNet-101 [39] network as the back-
bone. To specify, we extract information from conv1l to conv5_3.
We also convert the layers of the average pooling, FC and softmax
of ResNet-101 to convolutional layers by subsampling their param-
eters, and these converted convolutional layers can generate more
abstract semantic which is used to detect the larger object. Then
we select conv2_3, conv3_4, conv4_23, conv5_3 and conv_fc as the
detection layers. These layers are used as input to the Region Pro-
posal Networks (RPN) [10] to generate multi-scale proposals which
are also considered as regions of interest (Rol).

By reusing the feature maps of the backbone, our adjacent fea-
ture compensation (see Section 3.2) will generate two types of
richer semantic features. And then the Rols are mapped into these
two types of features for extracting different semantic Rol features
as inputs of our dual detection branches. Our dual detection branch
network (see Section 3.3) will provide two different semantic in-
terpretations (i.e., two predictions: P; and P) for each Rol. In order
to further develop the detection performance of our detector, dur-
ing training, we design a diversity enhancement strategy (DES, see
Section 3.4) to make the branch parameters only learn the train-
ing samples that the input features of the branch are good at. An
overview of our DDBN and customized training method is shown
in Fig. 2

3.2. Adjacent feature compensation

Generally, the adjacent feature layers contain complementary
information [4] of each other, i.e., the lower layer feature map with
smaller receptive field contains the detail information of the higher
layer, and the higher layer feature map with bigger receptive field
contains the context information of the lower layer. Therefore, we
adopt two methods of adjacent feature compensations:

o Adjacent Detail Compensation (ADC)

ADC uses the lower adjacent feature layer with detail features
to compensate for the current detection layer, as shown in
Fig. 3(a). Then 14 x 14 Rol align [40] is conducted on this com-
pensated feature map to extract the corresponding detail com-
pensation based Rol feature (DC-Rol feature) for the detail de-
tection branch, which makes the branch deal with the objects
with ample detail information well.

Adjacent Context Compensation (ACC)

ACC uses the higher adjacent feature layer with context seman-
tics to perform feature compensation of the current detection
layer, as shown in Fig. 3(b). Then 7 x 7 Rol align is conducted
on this compensated feature map to extract the corresponding
context compensation based Rol feature (CC-Rol feature) for the
context detection branch which can well explore the objects of
rich context semantics.
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Adjacent Details Compensation based Feature and Adjacent Contexts Compensation based Feature), and Dual Detection Branches. Our Diversity Enhancement Strategy (DES)
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Fig. 3. Illustration of generating compensation feature: (a) Adjacent detail compen-
sation (ADC), (b) Adjacent context compensation (ACC).

To avoid the compensation feature being over-weighted and the
main information of object at the current detection scale being af-
fected heavily, we introduce a variable A to adjust the ratio of com-
pensation feature to current feature based on the channel number
of compensation feature layers, i.e.,

Ncomp
A= 1
Neyr (1)

where Neomp and Ny are the channel numbers of compensation
feature layer and the current feature layer respectively.

To control the channel number of the compensation feature
with the least cost, we use Pointwise Grouped Convolution (1 x 1
GConv) [41]. To avoid information loss, we adopt upsampling for
unifying the spacial size of feature maps of the compensation layer
and the current layer. Let x;, X¢, and x’c denote the adjacent detail
feature map, the feature map of current detection layer, and the
adjacent context feature map, respectively. Then by adjacent detail
compensation, we get the feature map:

Xge = Fear (Fog (X)), Fup(Xc) ) (2)

where Fqt, Fpe and F,p represent the operations of the Concatena-
tion, the Pointwise Grouped Convolution, and the Upsampling re-

spectively. Then by adjacent context compensation, we get the fea-
ture map:

xéc:FCﬂt(xO Fpg(Fup(xé))) (3)

Therefore, for each detection layer, we use feature layers with
smaller receptive fields for detail compensation, and use feature
layers with larger receptive fields for context compensation. In this
way, two types of features based on different compensation infor-
mation are obtained to conduct different feature representations
on the same scale object.

3.3. Dual detection branches

With the extracted regional features via Rol operations (like Rol
pooling [10] and Rol align [40]), most of the existing object detec-
tors [10,11] just input the Rol feature into a single detection branch
to predict both bounding boxes and corresponding class probabili-
ties. These approaches have achieved good performance in detect-
ing objects with ample detail information or rich context infor-
mation. However, for simultaneously detecting these two types of
objects through a single detection branch, the parameters of this
single detection branch need to learn a trade-off between the fea-
tures of ample details and rich contexts, which prevents the de-
tector from achieving its optimal detection performance for both
types of objects at the same time.

In this paper, we construct dual detection branches, which well
incorporates the detail detection branch and the context detection
branch. The detail detection branch is dedicated to exploring inter-
nal feature differences of the objects, while the context detection
branch focuses on the impact of surrounding semantics on the de-
tected targets. The dual detection branches help our detector to ob-
tain the optimal detection performance of both types of objects at
the same time.

Note that during forward inference, each region proposal (i.e.
Rol) generated by the RPN [10] will be mapped to both the ADC-
based feature map and the ACC-based feature map. Then we lever-
age Rol Align operator to extract the corresponding 14 x 14 detail
compensation based Rol feature (DC-Rol feature) and 7 x 7 con-
text compensation based Rol feature (CC-Rol feature) respectively.
The 14 x 14 DC-Rol feature is input to the detail detection branch,
and the 7 x 7 CC-Rol feature is used as the input of the context
detection branch, then the dual detection branches will produce
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different semantic predictions, as shown in Fig. 2. Therefore, our
model outputs two predictions (P;(sq, Ay) and P:(s¢, Ac)) for each
Rol, where each prediction contains both prediction scores s and
bounding box offsets A of the Rol.

3.4. Diversity enhancement strategy

As mentioned in Section 3.3, our model provides two predic-
tions for each Rol, which also means that when we compare these
two predictions with ground truth (GT), two loss-values will be
generated. Although we can also directly back-propagate the two
losses to their respective detection branches as done in traditional
regression methods [10], it is not optimal for our model. Therefore,
in order to further improve the detection ability of our DDBN, we
customize a diversity enhancement strategy for training our DDBN.
At the training stage, there are the following two cases to be con-
sidered.

1) The two prediction scores of the Rol differ greatly, i.e., the pre-
diction scores differ by more than p. It is obvious that the de-
tection branch with a higher prediction score is better at pre-
dicting the object of the current region proposal, while the
other detection branch with a lower prediction score is not
good at predicting the current region object. To make two de-
tection branches play a greater role in the field that they are
good at, without being affected by the prediction that they
are not good at, we do not allow the detection branch with a
lower prediction score to learn from the loss, which is also good
for parameter stability of this detection branch. Thus, we only
conduct loss calculation and back-propagation on the detection
branch with a higher prediction score. This selective learning
method can promote the diversity of semantic representation
of each branch. Selecting only one branch for learning is bene-
ficial to each branch to be trained as a specialist on one partic-
ular data subset.

If the difference between the two prediction scores is smaller
than g, we argue that both branches are all good at predict-
ing the current Rol object, and this small difference in pre-
diction scores may come from somewhat randomness. There-
fore, we let both branches calculate the loss and perform back-
propagation. Meanwhile, the operation of allocating losses to
two detection branches can increase the number of assigned
samples for each detection branch, which helps reduce the
possibility of overfitting. Because if one branch is always se-
lected for loss regression, it may lead to few samples allo-
cated to another branch, which may cause this branch to overfit
to these few assigned samples. Furthermore, when our model
learns about these two losses, our model has to accept a dou-
ble penalty, especially for the backbone, which will break the
balance of the training samples. Therefore, in this case, we av-
erage the two loss-values.

2

—

In summary, the loss function for our diversity enhancement
strategy can be defined as:

N
L(D) = ZIOSS Wi fa(x:), fe(xi)) (4)

where N is the number of Rol in training images and the corre-
sponding loss of the Rol (x;) can be defined as:

loss(y;, fa(xi), fe(%:))
min 1(y;, fn (X))
mel[d,c]
Zme[d,c] %l(yi, fn(x:))
where the y; is the corresponding ground truth of the Rol (¥;), and

the f;(x;) and fc(x;) are the prediction results via the detail infer-
ence function (fy, i.e., the detail detection branch) and the context

[Sa —scl > 0 (5)

Isqa —Sc| <o
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inference function (fc, ie., the context detection branch) respec-
tively. The multi-task loss (i.e., I(.), defined in [30]) is used to cal-
culate the difference between the prediction and the ground truth.
And the s; and s¢ are the prediction scores from the detail detec-
tion branch and the context detection branch, respectively.

Discussion: It is worth mentioning that the design of our loss
function encourages the dual detection branch network to gener-
ate different semantic interpretations for each Rol, which is mainly
due to the different detection branches learning different training
samples. Furthermore, compared to traditional regression methods,
our customized regression strategy not only makes our network
parameters more stable but also makes it unnecessary for our net-
work parameters to learn a trade-off between categories with large
semantic differences. This is beneficial to the convergence of the
network in training, and also helps to enhance the detection per-
formance of each branch in our detector.

For Eq. 5, when g is 0, our loss function is a selective loss func-
tion, that is, only one detection branch is selected for loss regres-
sion. When p is 1, our loss function is a mean method of multiple
losses in traditional regression. We find that regressing our DDBN
with the selective loss function (i.e., 0 equals 0) can bring about an
improvement in detection accuracy. However, it is still not optimal.
When o takes a value between 0 and 1, it can have a better de-
tection performance. It is worth noting that, in the initial stage of
training, to avoid randomly assigning training samples to different
detection branches, we make the parameter (o) of our DES gradu-
ally decay from 1 to the value (like 0.1) we set, the decay ratio of
the used natural exponential method [42] is set as 0.5.

In the testing stage, with an input image, our DDBN outputs
two prediction sets, one prediction set comes from the detail de-
tection branch and the other one is from the context detection
branch. Instead of directly selecting a prediction set as the output
of this image, we leverage a voting decision strategy (VDS) to au-
tomatically produce a better prediction as the final prediction for
each Rol. Similar to training, we also handle two predictions for
each Rol in two cases. 1) When the predicted score difference is
greater than o, we argue that the prediction with a higher score
is more trustworthy. So we choose the prediction with the higher
score as the final prediction. 2) When the difference between the
two prediction scores is smaller than g, we think that the two
predictions are not much different and are both trustworthy. So
we take the average of the two predictions. For details, please see
Algorithm 1.

Algorithm 1 Voting Decision Strategy.

Input: the predictions of P;(sy, A(dxy, dyy, dwy, dhy))
and P.(s¢, A(dxc, dyc, dwe, dhe))

Output: the final prediction Pying (Sfing» A (dX, dy, dw, dh))
if |sg —sc| > o:

if s4>sc:
Sfinal = Sd
A(dx, dy, dw, dh) = A(dxy, dyy, dwgy, dhy)
else:
sfinal =Sc
A(dx, dy, dw, dh) = A(dx, dyc, dwe, dhe)
else:
if sg>sc:
Sfinal = Sd
else:
Sfinal = Sc

A(dX, dy, dW, dh) _ A(clxd,dyd,dwd.dhd);A(dxc,dyc,dwc,clhc)

Since dual detection branches’ predictions just provide bound-
ing box (bbox) offset, we need to get the final bbox offset (the A of
final prediction) from Algorithm 1 to adjust the Rol coordinate to
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Prob.

Fig. 4. Demonstration of the testing process and two typical examples of our DDBN. The two predictions are used as inputs to the voting decision strategy (VDS) to obtain
the final prediction. The final prediction score is regarded as the confidence in the prediction of the current Rol, and the final bounding box offset A (dx, dy, dw, dh) is used
to adjust the original Rol coordinate (xc, y., w, h) to obtain the final bounding box of the object of interest.

produce the final prediction coordinate of Rol. The overall test pro-
cess based on P; and P is shown in Fig. 4. And Fig. 4 also provides
two typical examples that different detection branches are good at.
The detail detection branch is better at detecting objects with rich
internal features, such as a Basketball Court with ample internal
textures. The context detection branch is better at detecting ob-
jects with complex surrounding semantics, such as the Bridge as a
part of the road, which has a similar appearance to the road, but
the surrounding environment of the Bridge is obviously different
from that of road.

3.5. Implementation details

The implementation of our DDBN is based on the original
FPN [11] in Detectron . Except for our three innovations, other hy-
perparameters and sub-modules (such as RPN) are largely based on
the original FPN. The modifications based on our three innovations
are as follows:

1) We replace the Feature Pyramid in FPN with the feature gen-
eration method of our AFC, which can produce two types of
features as the input of the dual detection branches.

2) Unlike the FPN, which has only one detection head, we use
both 14x14 and 7x7 detection heads to perform dual branch de-
tection.

3) We customize the diversity enhancement learning method to
replace the traditional direct loss regression method to train
our DDBN.

As [29], we utilize network backbone, ResNet101 model, with
its publicly available pre-trained model on the ImageNet classifi-
cation set [43], and then fine-tune on the target detection dataset.
We run our approach on a PC machine with an i5-7640X CPU (with
32 GB memory) and two NVIDIA GTX 1080Ti GPUs (with 11 GB
memory). At the training stage, we adopt synchronized SGD on 2
GPUs. Due to the large size of some images of datasets, a mini-
batch is assigned with 1 image for each GPU. For other hyper-
parameters, we set the momentum as 0.9 and the weight decay
as 0.0005. The learning rate is 0.005 for the first 480K iterations,
0.0005 for the next 160K, and 0.00005 for the last 80K. The size of
1024 x 1024 is set as the maximum scale of our model input.

4. Experiment and analysis

In this section, we firstly conduct ablation experiments and an-
alyze the effectiveness of the components of our model. Then we
further analyze how different categories benefit from different se-
mantic predictions of our dual detection branch model. We also

1 https://github.com/facebookresearch/Detectron

Table 1
The effects among the feature compensation methods, the number
of detection branch, and the training methods.

models mAP o 1 0 0.05 0.1 0.15 0.2
WEFC-S 701 - - - - -
WEFC-D 70.9 71.3 71.3 71.5 713 71.0
ADC-S 714 - - - - -
ADC-D 722 727 731 733 730 728
ACC-S 712 - - - - -
ACC-D 719 724 725 727 722 722
AFC-D 731 747 753 758 751 749

comprehensively evaluate our model performance on three bench-
mark datasets (DOTA [12], MS-COCO [13], Pascal-VOC [14]) by com-
parison with the baseline framework (i.e., FPN). Finally, we com-
pare the accuracy and inference time with the state-of-the-art de-
tectors on the common COCO dataset to evaluate the advancedness
of our DDBN.

Due to the special imaging environment of remote sensing im-
ages, the remote sensing images (DOTA) are not as clear as natu-
ral images (MS-COCO and Pascal-VOC) [12]. The prediction of the
less clear image is usually accompanied by greater uncertainty, so
the capture of detail and context information is more beneficial
to improving the accuracy of remote sensing images (in Table 3,
DOTA obtains the best accuracy improvement), which can better
highlight the roles of different detection branches in our DDBN.
Therefore, we select the DOTA dataset for ablation experiments
and analysis.

For the training set and validation set of DOTA-v1.0, the original
images with ground truth are provided publicly. However, the test-
ing set only provides original images, thus we should send our pre-
dicting results of the testing set to the DOTA-v1.0 server to obtain
the detection accuracy (including AP of each category and mAP).
Therefore, in our ablation experiments, we use the training set to
train and test on the validation set. When comparing with other
detection models, we use the training set and the validation set to
train and test on the testing set.

The short names for some categories of the DOTA dataset are
defined as: BD-Baseball Diamond, GTF-Ground Track Field, SV-
Small Vehicle, LV-Large Vehicle, TC-Tennis Court, BC-Basketball
Court, ST-Storage Tank, SBF-Soccer Ball Field, RA-Roundabout, SP-
Swimming Pool, and HC-Helicopter.

4.1. Ablation study

In ablation studies, we evaluate the effectiveness of our model
from three perspectives: feature compensation method, the num-
ber of detection branches, and training method.

1) For feature compensation, we verify 4 compensation meth-
ods, that is, without feature compensation (WFC, as a baseline),
adjacent detail compensation (ADC), adjacent context compensa-
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Table 2
The comparison of mAP improvements from different values of the pa-
rameter A.
A WFC-D  ADC-D ACC-D AFC-D
1 71.49 72.92 (1.431)  72.45(0.961)  74.42 (2.931)
1/2 7149 7332 (1.831)  72.71 (1.221)  75.78 (4.291)
1/3 7149 73.15 (1.661)  72.52 (1.034)  75.00 (3.511)
1/4 7149 72.68 (1.191)  72.30 (0.811)  74.15 (2.661)

tion (ACC), and adjacent feature compensation (AFC). Note that our
AFC includes ADC and ACC.

2) For the number of detection branches, we verify the differ-
ence between the baseline (traditional single detection branch, de-
noted as -S) and the dual detection branches (denoted as -D).

3) For the training method, we perform different loss learning
strategies by controlling the variable o in Eq. 5. When o equals
1, it is the traditional regression method which directly back-
propagates the losses to corresponding detection branches. When
o is 0, it is the selective regression method, that is, there is one
detection branch to learn the loss in each time. When o takes a
value between 0 and 1, it is our diversity enhancement strategy.

Now, we denote WFC-S, ADC-S, and ACC-S as single detection
branch models based on WFC, ADC, and ACC, respectively. And
WEFC-D, ADC-D, ACC-D, and AFC-D are denoted as dual detection
branch models based on WFC, ADC, ACC, and AFC, respectively.
Note that, since AFC generates two types of features, there is only
one state with dual detection branches based on AFC (i.e., AFC-D),
without the situation with a single detection branch based on AFC
(i.e., no AFC-S). And the WFC, ADC, ACC only output one type of
feature, for performing dual branches detection (i.e., WFC-D, ADC-
D, ACC-D), we conduct the operations of both 7 x 7 Rol Align and
14 x 14 Rol Align on the same feature, and then output 7 x 7 Rol
features and 14 x 14 Rol features into the dual branches to con-
duct ablation detection.

Adjacent feature compensation is useful. By observing
Table 1, we can get the following conclusions: (1) Compared to
WEFC, no matter how many detection branches, our ADC and ACC
can bring about 1% improvement in accuracy (i.e., WFC-S vs ADC-S
and ACC-S, WFC-D vs ADC-D and ACC-D), which means that our
two feature compensation methods (ADC and ACC) are useful. (2)
The AFC with both ADC and ACC has greater accuracy improve-
ments, especially that the dual detection branch models based on
both diversity enhancement strategy and AFC can significantly im-
prove our detection accuracy (when g is 0.1 the accuracy of AFC-D
is over 4% higher than that of WFC-D). Therefore, the adjacent fea-
ture compensation method can bring more diverse semantics in-
put for our dual detection branches, which is beneficial to generate
semantic diversity predictions for improving the detection perfor-
mance of our detector.

To further analyze the influence of adjacent feature compensa-
tion, we conduct exploratory experiments on the ratio A (defined
in Section 3.2) of the feature compensation. We set A with dif-
ferent values for searching the best parameter to explore which
feature compensation ratio can make our dual detection branch
framework achieve the best performance. Since WFC-D does not
carry out feature compensation, the compensation ratio has no im-
pact on WFC-D, and the mAP of WFC-D has no change. Thus, the
WEC-D is considered as baseline. From Table 2, we can observe
that our framework achieves the best performance when A is 1/2,
while too much or too little compensation of features is less con-
ducive to the improvement of accuracy. Therefore, 1/2 is set as the
default value of A in our experiments.

Dual detection branches are effective. In the case of a single
detection branch (-S), it is not possible to perform which branch
is selected for loss learning, so the models with a single detec-
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Table 3
The accuracy comparison of our DDBN with FPN on three different
datasets.
models mAP DateSets DOTA  MS-COCO  PASCAL VOC2012
FPN 75.4 38.8 80.5
Our DDBN 79.3 423 83.4
Gain +3.9 +3.5 +2.9

tion branch have no values when g < 1. From Table 1, by compar-
ing traditional single detection branch (-S) and our dual detection
branches (-D) on different features under the same training condi-
tions (0 = 1), we find that dual detection branches are indeed con-
ducive to the improvement of the final prediction accuracy (WFC-S
vs WFC-D, ADC-S vs ADC-D, ACC-S vs ACC-D). This can be easily
understood as that the dual plausible predictions are made for the
same Rol, and then a better prediction is proposed as the final pre-
diction, which obviously exceeds the situation with only one pre-
diction. This is the charm of our dual predictions.

Diversity enhancement strategy is promising. In training the
dual detection branch models (WFC-D, ADC-D, ACC-D, AFC-D), we
perform different loss regression methods, including traditional re-
gression method (p=1, directly back-propagate the losses of dual
predictions to corresponding detection branches), selective regres-
sion method (0=0, choose a detection branch for the loss back-
propagation) and our customized regression method (o < (0, 1),
i.e., diversity enhancement strategy). The comparison among dif-
ferent training methods of AFC-D in Table 1 indicates that our
customized regression method achieves the best detection accu-
racy (0=0.1 : 75.8% is better than o=1 : 73.1% and p=0 : 74.7%),
which means that our training method (DES) is more beneficial
to improve the detection performance of our model. Moreover, by
observing different feature compensation methods with different
training methods, we find that when o changes from 1 to 0.1, the
accuracy of WFC-D improves by less than 1%, but for our AFC-D
method, it improves over 2%. This shows that the diversity en-
hancement strategy specially designed for training our DDBN can
better take advantage of different semantic interpretations from
our DDBN.

Through the above analysis, we already know that our cus-
tomized training method can indeed bring accuracy improvement
to our DDBN. Now, we visualize the iterative process of the loss to
observe the difference between our customized regression method
and the traditional regression method. From Fig. 5, we can clearly
observe that 1) the process of our customized regression is more
stable when the learning rate changes in the 480Kth iteration, and
2) the fluctuation range of loss is also smaller than traditional re-
gression. These mean that our training strategy can make our net-
work parameters more stable, which is beneficial to the conver-
gence of the network in training.

Therefore, our diversity enhancement strategy not only effec-
tively improves the detection performance of our model but also
makes our detector to perform more stable parameter learning.

4.2. Further analysis

To further explore how different objects benefit from different
semantic predictions, that is, which type of object is suitable for
which detection branch, we provide the following experiments. Us-
ing a WFC detector as a baseline, a single detection branch is ap-
plied to ADC and ACC respectively. By comparison, we can know
which category is benefited from which branch. Then, we observe
whether AFC based dual detection branches can get better detec-
tion results from different detection branches. From Fig. 6, we can
draw the following conclusions:
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Fig. 5. The comparison of different loss regression methods, Traditional Regression (0=1) and Customized Regression (0=0.1), on our DDBN.
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Fig. 6. The comparison of different detection results from detectors with different detection branches.

1) Compared with the WFC detector, there is a large performance
improvement using ADC for the categories with ample detail
information, e.g. TC and BC.

2) Detector based on ACC has better detection ability when the
detected categories depend on rich context information, e.g.
Bridge and Harbor.

3) Since the category of ST has a simple appearance, without rich
detail information and context information, using different de-
tection branches will not significantly improve performance.

4) Our AFC based detector has the best results in all categories,
which means our dual detection branch model can achieve bet-
ter predictions from different detection branches via our VDS
(described in Section 3.4).

4.3. Improvement based on the baseline

As described in Section 3.5, our DDBN method is developed on
ResNet-101-FPN, so the FPN method [11] can be seen as a baseline
for a comprehensive comparison in Fig. 7 and Table 3.

As shown in the first row of Fig. 7, since the Tennis Court (TC)
has more internal texture information, our detail detection branch
(DDBN-P;) has better detection results, which benefits from the
better detail representation ability of our ADC feature. Moreover,
through careful observation, we find that in the detection of the
right Tennis Court affected by tree shadows, our detail detection
branch (DDBN-P;) can more accurately locate the boundaries of
the Tennis Court than FPN. Therefore, the detail detection branch
has a stronger detection ability to the object with ample detail in-
formation.

In addition to VHR (very high resolution) remote sensing im-
ages, there are also low-resolution blurred SAR images. In the sec-

ond row of the Fig. 7, there is a less obvious small ship, which
can be detected by the context detection branch (DDBN-P.), but
neither the detail detection branch (DDBN-P;) nor the baseline
method (FPN) can do this. This is mainly because the water waves
generated by the ship’s running is also a kind of context informa-
tion, which increases the probability of it being recognized by our
DDBN-P..

From the improvement of the detection results of the above
two categories, we can easily get a conclusion that the design
of our dual detection branch model based on context and detail
is reasonable. Furthermore, the two clues (detail information and
context information) grasped by our DDBN can not only enhance
the prediction ability of each object, but also suppress the gener-
ation of false-positive predictions. As shown in the third row of
Fig. 7, since the green region includes an object similar to a per-
son’s head, FPN predicts the region as a person, nevertheless, our
DDBN does not make a wrong prediction for this area. Meanwshile,
we also find an interesting phenomenon, the bounding box of the
detail detection branch is very closer to the target object or even
slightly smaller than the object (like the DDBN-P; of the clock).
However, the bounding box from the context detection branch is
looser, which can be easily observed in the detection results of the
Bear and the ship.

Based on the VDS (described in Section 3.4), our DDBN always
obtains a better prediction from the different predictions of the
dual detection branches. For the right TC in the first row, the pre-
dictions of DDBN-P, have lower prediction scores, thus the predic-
tion of DDBN-P; is chosen as a final prediction of DDBN. And for
the case where both detection branches have good detection capa-
bilities, our VDS can produce a better prediction that has a more
suitable bounding box than FPN, which can be clearly seen from
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(a) FPN (b) DDBN

(c) DDBN-P,
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ship 0.811

(d) DDBN-P.. (e) Ground Truth

Fig. 7. Comparison of detection results from FPN and our DDBN method on the DOTA dataset (row 1&2) and MS-COCO dataset (row 3&4); (a) detection results of FPN
method; (b) detection results of DDBN generated by VDS based on the results of (c) and (d); (c) detection results of the detail detection branch in our DDBN (DDBN-P,); (d)
detection results of the context detection branch in our DDBN (DDBN-P,); (e) the corresponding ground truth. The predictions are displayed with scores greater than 0.7.

the Bear in the fourth row. In short, whether our VDS chooses a
better prediction from DDBN-P; and DDBN-P. (like the cases of the
TC, the ship, and the Clock), or generates a better prediction based
on these two predictions as the DDBN detection result (like the
cases of the Bear), it enables our DDBN to obtain better detection
results than FPN.

Through the comparison of the detection results mentioned
above, we know that our DDBN model has a better detection abil-
ity. To further compare our model with the baseline method, we
quantify the comparison in three different scenarios (i.e., three dif-
ferent datasets: DOTA [12], MS-COCO [13], Pascal-VOC [14]). As
shown in Table 3, our DDBN achieves consistent accuracy improve-
ments, which demonstrates the advanced detection ability of our
detector and its generality in different scenarios. On the other
hand, we also find that the accuracy improvements of our model
are more obvious in the DOTA dataset and COCO dataset. We in-
fer that (1) For the DOTA dataset, remote sensing images are not
as clear as natural images due to the imaging environment. This
means that remote sensing images are more dependent on var-
ious clues (detail or context information) to enhance the recog-
nition ability of objects. And this is what our model is good at,
so our DDBN can bring more obvious accuracy improvement on
remote sensing images. (2) For the COCO dataset, because it has
more categories (80 categories), the traditional single detection
branch must learn the semantics of 80 categories at the same time,
which makes the parameters of this single detection branch have
to learn a tradeoff among 80 categories. However, the dual detec-
tion branches of our model can effectively alleviate this dilemma.

4.4, Comparison with mainstream detectors

Comparison on DOTA. To verify the detection performance of
our DDBN, we first conduct a comparison of the detection accu-

racy with mainstream detectors on DOTA-v1.0 dataset. These main-
stream detectors include popular detectors (Deformable FR-H [24],
RetinaNet [38], [oU-AD RCNN [44], SNIPER [45]), also include some
current SOTA methods (CSL [46], BBAVectors+rh [47]). As shown in
Table 4, it is easy to find that our DDBN achieves the best detec-
tion performance on mAP, and our model has the highest accuracy
in 9 geological categories we find that in 15 classes. This is mainly
due to the better feature representation ability of our model and
the dual-prediction ability based on semantic diversity.

Comparison on COCO. To further evaluate the overall per-
formance of our DDBN, we compare it with several mainstream
methods on the common object detection datasets (MS-COCO) in
Table 5, including classical detection models (SSD [32], FPN [11],
RetinaNet [38], and Mask R-CNN [40]), also including the advanced
methods (FCOS [48], RefineDet [35], Libra R-CNN [49], SWN [50],
DETR [51], and CBNet [52]). At the same time, we also list some
other methods based on information compensation, such as DP-
FCN [2], MPNet [23], CoupleNet [5], ION [26], EfficientDet [28] and
R-FCN [53]. In training, we use the same training hyperparame-
ters of FPN (implementation details described in Section 3.5), like,
720K iterations, 0.9 momentum, and the weight decay of 0.0005.
And for the extra hyperparameters about our DDBN, we set the op-
timal compensation ratio (1) as 1/2, and ¢ as 0.1 for our DES and
VDS.

Accuracy. From Table 5, our DDBN surpasses other object de-
tection methods in detection accuracy (ie., AP). Even compared
with the state-of-the-art methods (SWN, DETR, CBNet), our model
also has better detection accuracy. Meanwhile, because our model
is based on detail and context information compensation, we also
compare with other related information compensation methods,
such as details-based DP-FCN and CoupleNet, MPNet, ION and Ef-
ficientDet based on comprehensive feature fusion, and context-
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Table 4

Detection accuracy comparison with the mainstream detectors on the dataset of DOTA-v1.0.
Detectors backbone Plane BD Bridge GTF SV Lv Ship TC BC ST SBF RA Harbor  SP HC mAP
Deformable FR-H [24] - 86.5 775 427 644 676 636 779 903 778 754 521 56.8 689 62.0 549 679
RetinaNet [38] ResNet101  87.7 79.2 50.5 741 66.0 762 834 895 798 833 622 643 783 748 494 733
IoU-AD RCNN [44] - 88.6 80.2 532 669 763 726 840 907 810 762 571 667 741 554 569 727
SNIPER [45] ResNet101  88.2 79.7 51.0 746 66,5 767 839 904 803 838 627 648 788 753 499 738
CSL [46] ResNet152  90.2 855 54.6 753 704 735 776 908 862 86.7 696 68.0 73.8 711 689 762
BBAVectors-+rh [47] ResNet101  88.6 841 521 69.6 783 804 881 909 872 864 561 656 67.1 721 640 754
DDBN(our) ResNet101  89.8 853 61.2 785 797 84.0 884 909 843 87.1 652 688 84.9 81.8 59.5 793

Table 5

Detection accuracy comparison with the mainstream detectors on COCO test-dev. Note that “ResNet-101-FPN*” here indicates that we
use ResNet-101-FPN as basic framework, but our DDBN replaced feature pyramid with our AFC-based dual detection branches. TTA:
test-time augmentation, which includes multi-scale testing, horizontal flipping, etc.

Methods Backbone TTA AP APsy APys APs APy AP, time(ms)
Information compensation methods

DP-FCN2.0 [2] ResNeXt-101 348 548 384 158 372 49.0 -
CoupleNet + [5] ResNet-101 344 548 372 134 381 50.1 -
MPNet [23] ResNet-101 332 519 363 136 372 478 -
ION [26] ResNet-101 331 55.7 34.6 14.5 35.2 47.2 -
EfficientDet-D1 [28] ResNet-101 393 587 420 192 456 571 -
R-FCN [53] ResNet-101 32.1 543 338 128 349 461 -
Deformable R-FCN [24] ResNet-101 357 568 383 152 388 515 -
FPN-based methods

RetinaNet [38] ResNet-101-FPN 375 571 403 203 420 505 159
Mask R-CNN [40] ResNet-101-FPN 382 603 417 201 411 502 133
Libra R-CNN [49] ResNet-101-FPN 411 621 447 234 437 525 117
FPN [11] ResNet-101-FPN 388 61.1 419 213 418 498 124
DDBN (ours) ResNet-101-FPN* 423 623 463 234 461 56.8 132
Classical and newest methods

SSD513 [32] ResNet-101 312 504 333 102 345 498 -
RetinaNet ResNet-101-FPN 39.1 59.1 423 218 427 502 -
RefineDet512 [35] ResNet-101 418 629 457 256 45.1 54.1 -
FCOS [48] ResNet-101 415 60.7 450 244 448 516 -
SWN [50] ResNeXt-101 40.8 631 438 232 440 511 -
DETR [51] ResNet-101 42.0 624 442 205 458 61.1 -
Deformable DETR [54] ResNeXt-101 v 490 685 532 297 517 628 -
EfficientDet-D7 [28] EfficientNet-B6 v 52.2 71.4 56.3 - - - -
CBNet [52] Triple-ResNeXt152 v 533 719 585 355 558 66.7 -
DDBN (ours) ResNeXt-101-64x4d v 53.7 722 586 373 569 663 -

based R-FCN and Deformable R-FCN. Our model obviously exceeds
these information compensation methods. Through the compari-
son of accuracy, we draw a conclusion that our DDBN can bring
stronger detection performance via the semantic diversity predic-
tions of dual detection branches, which is better than the tradi-
tional single detection branch models with single-prediction.

Inference. Since our model can be seen as a variant of FPN, for
a fair comparison, we choose some FPN-based detectors for time
comparison. By comparing the inference time of different models
(RetinaNet, Mask R-CNN, Libra R-CNN, FPN, and our DDBN), we
find that although we have two detection branches, the parallel
design of these dual detection branches reduces the influence of
diversity predictions on the detection speed.

All in all, our dual detection branch model can bring obvious
improvement in detection accuracy via semantic diversity predic-
tions, but it only requires similar inference consumption of the tra-
ditional single detection branch models.

5. Discussion

At first glance, our dual detection branch model with the dou-
ble number of detection heads seems to be related to the multi-
scale detector. In fact, there is an obvious difference. Multi-scale
detectors with multiple detection heads are primarily used to de-
tect the different-scale objects/Rols, rather than providing different
semantic interpretations for each Rol as our DDBN does.

10

In terms of name, it is easy to mistake our architecture as simi-
lar to the existing architectures named after two branches [55,56].
However, the key difference is that the existing dual-branch net-
works attempt to produce two different temporary features. Lim-
ited by the conventional single-prediction mechanism, these tem-
porary features have to be ultimately concatenated (fused or cas-
caded) into one type of feature again. Therefore, the existing dual-
branch networks are mainly used to generate temporary features,
but our dual detection branch framework focuses on conducting
different detection tasks by introducing a multi-prediction mecha-
nism. Similarly, there are some works [8,28] that have some fea-
ture generation structures similar to our AFC, such as top-down
and bottom-up, these methods also only generate one kind of fea-
ture for the detection task. However, our AFC leverages a simple
and effective fashion to generate different semantic features for
our model to conduct diversity predictions.

Overall, although our model only has two detection branches
to make predictions currently, our studies establish the first
multi-prediction (more than one prediction for each Rol)
model/mechanism, referring to the network design, and the
training and testing strategies of the multi-prediction model.
Through a lot of experiments and analysis, it has been confirmed
that multiple/dual predictions based approach does have better
detection accuracy than the conventional single-prediction models.
Therefore, there will be a number of works to extend this work in
the future.
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6. Conclusion and future work

Different from the single-prediction detectors that just operate
features to improve the utilization of detail and context informa-
tion, we present the first multi-prediction framework (DDBN) to
use different information to conduct different predictions for im-
proving object detection performance. In our model, we leverage
adjacent feature compensation to construct two types of features.
Then, we equip a detection head for each type of feature to form
dual detection branches. A customized training method, the di-
versity enhancement strategy, is used to enable our dual detec-
tion branches to provide different semantic predictions to obtain a
better detection performance. Extensive ablation experiments have
fully demonstrated the effectiveness of our DDBN. Compared with
the baseline detector, significant performance improvements have
been achieved on all three datasets (DOTA, MS-COCO, and PASCAL
VOC), which shows that our model is a general and effective detec-
tor. Finally, by comparing with the current mainstream detectors,
our dual detection branch model is superior to traditional single
detection branch frameworks in object detection.

Through extensive experiments, it has been proved that our
multi-prediction model with semantic diversity can bring signifi-
cant performance improvement of object detection. Since each vi-
sual task usually has its own network architecture and correspond-
ing loss function, our multi-prediction model can not be directly
applied to other computer vision tasks, such as image segmenta-
tion. In the future, we will continue to explore how to apply multi-
prediction mechanism into different visual tasks.
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