
Exploring Matching Rates: From Keypoint Selection to Camera
Relocalization

Hu Lin
Dalian University of Technology

Dalian, Liaoning, China
linhu@mail.dlut.edu.cn

Chengjiang Long∗†
Meta Reality Labs

Burlingame, CA, USA
cjfykx@gmail.com

Yifeng Fei
Dalian University of Technology

Dalian, Liaoning, China
fyf0702@mail.dlut.edu.cn

Qianchen Xia∗
Tsinghua University

Beijing, China
qianchenxia@tsinghua.edu.cn

Erwei Yin
Tianjin Artificial Intelligence

Innovation Center
Tianjin, China

yinerwei1985@gmail.com

Baocai Yin
Beijing University of Technology

Beijing, China
Dalian University of Technology

Dalian, Liaoning, China
ybc@bjut.edu.cn

Xin Yang∗
Key Laboratory of Social Computing
and Cognitive Intelligence (Dalian

University of Technology)
Ministry of Education
Dalian, Liaoning, China
xinyang@dlut.edu.cn

Abstract
Camera relocalization is a challenging task to estimate camera
pose within a known scene, with wide applications in the fields
of Virtual Reality (VR), Augmented Reality (AR), robotics, and etc.
Most existing learning-based methods invariably utilize all the in-
formation within an image for pose estimation. Although these
methods have demonstrated leading pose accuracy in some cases,
they are still far from being sufficient to handle the robustness
under challenging viewpoints with less impacts on the localization
accuracy for viewpoints that are easier to localize. In this paper, we
propose a novel two-branch camera pose estimation framework:
one branch utilizes keypoint-guided partial scene coordinate re-
gression, while the other employs full scene coordinate regression
to assess the credibility of image poses, thereby enabling more
accurate camera localization. In particular, we devise a keypoint
selection method predicated on matching rate which is designed
to measure the matching quality between a 3D keypoint and 2D
keypoints across views. With these selected 3D keypoints, we can
generate 2D supervision mask with the ground-truth camera pose
to supervise the keypoint prediction from the keypoint selection
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network. Meanwhile, we further refine the 2D supervision mask
through the optimization with reprojection errors on the scene co-
ordinate network, which estimates the scene coordinates for points
within the scene that truly warrant attention, also enhances the
localization performance. We also introduce a gated camera pose
estimation strategy on the two-branch pose estimation framework,
employing an updated keypoint selection network for images with
higher credibility and a more robust network for difficult view-
points. By adopting an effective curriculum learning scheme, we
achieve higher accuracy within a training span of just 20 minutes.
Our method’s superior performance is validated through rigorous
experimentation. The code is released at https://github.com/DUT-
ICCD/KP-Guided-Reloc.
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1 Introduction
Certainty is a concept of profound importance in human endeavors,
providing solace through the predictability of contemporary life.
This pursuit of certainty is particularly evident in the field of camera
relocalization, where there is a strong desire for pose estimation
to achieve a similar degree of reliability. Camera relocalization
involves recovering the six degrees of freedom (6-DOF) camera
pose of a query image within a known scene. This functionality is
crucial in various applications such as VR [45], AR [22], robotics [43,
48], and autonomous navigation, and therefore attracts a lot of
researchers to constantly put efforts to make progress towards both
camera relocalization accuracy and efficiency.

The evolution of camera relocalization began with image re-
trieval [35], where the primitive form, scene recognition, is relied
on robust image retrieval for localization. The introduction of ran-
dom regression forests [17, 38], capable of regressing scene coordi-
nates, significantly improved camera relocalization accuracy. Later,
deep learning frameworks [23–25] utilize deep networks for direct
pose regression from images. Then, a new mainstream camera re-
localization based on scene coordinate regression [3, 5–8] were
developed with a network designed as the specific function of cor-
relating input imagery with scene coordinates. With RANSAC plus
PnP, the camera pose can be estimated indirectly from the selected
2D-3D keypoint correspondences. Although the above mentioned
methods are able to estimate the camera poses in some cases, they
are still far from sufficient to meet the high-accuracy requirements
of real-world applications.

We argue that not full scene coordinates are required and a se-
lected partial scene coordinates might further improve the 2D-3D
keypoints correspondences for pose estimation with RANSAC and
PnP. As illustrated in Figure 1, we propose generating keypoints-
guided scene coordinates, which requires integrating a learning-
based keypoint selection process into the entire camera relocaliza-
tion pipeline. This approach raises several questions, i.e., what are
the criteria for keypoint selection? which keypoints should be chosen?
and how should the network be trained to identify these keypoints? It
is worth mentioning that we also need to handle the special cases
when only a smaller number of keypoints available to ensure the
generalization performance.

In this paper, we design a novel camera pose estimation frame-
work based on matching rate to select points genuinely suited for
camera relocalization and introduced a keypoint selection network
along with its corresponding training framework. As illustrated
in Figure 2, we start selecting keypoints for camera relocalization
and develop methods to assess the likelihood of obtaining accurate
camera poses, thereby providing credibility support for practical
applications. This approach not only allows for the evaluation of
the reliability of pose estimations but also enhances the accuracy.

In particular, we explore the matching rate to evaluate each 3D
point from the point clouds obtained via structure from motion
(SfM) reconstruction to initially filter out those low-quality 3D
keypoints. With the selected 3D keypoints, we can reproject them
into a 2D space as supervision mask with the ground-truth camera
pose as guidance to optimize the 2D keypoint selection network.
Such a 2D supervision mask is further refined via reprojection
errors via a learned scene coordinate network.

Query image

Pose estimation with smaller errorKeypoint guided
scene coordinates

Full scene coordinates Pose estimation with larger error

GT Prediction Prediction(Ours)

Query image

Figure 1: The camera relocalization task involves recovering
the 6-DOF camera pose of a query image within a known
scene. Unlike the existing scene coordinate regression based
methods like ACE [9] predicting camera poses from the full
scene coordinates (top), we propose to use partial scene coor-
dinates instead (bottom) with 2D keypoints generated from a
keypoint selection network where we can fully explore con-
fidence measures and keypoint cues into the pose estimation
process to enhance credibility in practical applications and
improve the camera relocalization accuracy.

With the 2D keypoint mask predicted, we feed it together with
the extracted feature from the feature backbone into the scene coor-
dinate regression network to generate the partial scene coordinates,
which can be used to predict the camera pose via RANSAC and
PnP. Based on the predicted camera pose, we introduce the inlier
ratio to assess the confidence on the estimated pose.

We shall emphasize that our proposed pose estimation frame-
work is two-branch with the a well-designed gating mechanism
upon the inlier ratio based confidences. Especially when the confi-
dence of the inlier ratio on the estimated pose from the keypoint-
guided branch is lower than the preset threshold, we resort to the
generic full scene coordinates branch to avoid the final camera
pose biasing towards low-quality keypoints heavily. The experi-
ments conducted on both indoor and outdoor scenarios have clearly
validated the precision and generalization ability of our proposed
two-branch framework.

Our contributions can be summarized in four-fold as follows:
• We explore matching rate to select the high-quality 3D points
to generate 2D supervision masks for the keypoint selection
network.

• We propose to estimate camera pose from a partial scene
coordinates with 2D keypoints as guidance, and output the
confidence on the estimated pose based on the inlier ratio,
which we introduce to enhance the reliability of pose esti-
mations.

• We design a two-branch pose estimation framework with
a gating mechanism to further improve the precision and
evaluative capabilities of camera relocalization.

• We validate our proposed approach with superior perfor-
mance to the competing state-of-the-artmethods, e.g., ACE [3],
on both indoor and outdoor benchmark datasets.
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2 Related Work
The related work involves Camera Relocalization and two relevant
components: Keypoint Selection and Pose Confidence, which aim to
determine better camera poses with increased confidence.

2.1 Camera Relocalization
The current mainstream camera relocalization approaches include
image or feature retrieval-based methods, pose regression methods,
and scene coordinate regression methods.

Image retrieval. The implementation of image retrieval meth-
ods involves searching for a query image [35] from a database of
images with known poses to retrieve similar images, outputting the
pose of the most similar retrieved image. Arandjelovic et al. pro-
posed VLAD [41] for global image feature description. NetVLAD [1]
obtains improvement upon VLAD features with features extracted
by a CNN model. InLoc [39] optimizes pose estimation using syn-
thesized virtual views. R2Former [50] handles both retrieval and
re-ranking with a novel transformer model.

Absolute pose regression. Compared to the two-step process
of extracting features from images and then performing retrieval,
the PoseNet series [23–25] utilizes convolutional neural networks
to extract features from images and subsequently to directly regress
camera poses. Marepo [13] integrates scene coordinate regression
and absolute pose regression methods by performing pose regres-
sion on the regressed scene coordinates. The main challenges of
the above methods are the accuracy [34] of pose estimation.

Scene coordinate regression. Method [38] uses a random for-
est composed of regression decision trees to regress scene coordi-
nates, which represent the coordinates of image pixels in the scene
model. Then perform robust pose estimation using PnP within a
RANSAC algorithm. Method [12] based on random forests enables
real-time learning of new scenes. Method [17] enhances camera
relocalization in dynamic scenes. However, using depth as input
features in random forest methods complicates data acquisition.

Deep learning-based methods attempt to minimize reliance on
depth as much as possible. In DSAC [5], a probabilistic model de-
rived from reinforcement learning makes the optimal selection of
RANSAC differentiable. DSAC++ [6] improves the network model,
training methods, and data representation, further enhancing accu-
racy. ESAC [7] uses a hybrid expert model based on [5] to address
the coverage of large datasets and ambiguity problems. SANet [44]
proposes a scene-agnostic neural architecture that learns to con-
struct hierarchical scene representations. DSAC* [8] improves [5]
by using a better ResNet and an improved training loss function. AE-
CRN [26] introduces RWEI to represent event data[46, 47], enabling
its effective application to scene coordinate regression. SLD [15]
attempts to implicitly encode the observations of scene landmarks
into a CNN. SLD* [16] mitigated the issues of insufficient model
capacity and noisy labels in SLD [15]. D2S [10] attempts to per-
form scene coordinate regression on hand-crafted features. CROSS-
FIRE [28] utilizes dense local features obtained through Neural
Radiance Fields (NeRF) rendering for matching. ACE [3] improves
the DSAC series of methods [5–8] by separating feature extraction
and scene coordinate regression. The ACE Zero [9] has designed
an iterative loop for scene reconstruction [42] and pose estimation
within its pipeline.

However, almost all of the aforementioned methods aim to uti-
lize as much information from the image as possible. Specifically,
among all scene coordinate regression approaches, there is a gen-
eral tendency to estimate scene coordinates based on uniform sam-
pling without distinguishing their importance, thereby delegating
this challenging task to manually designed PnP and RANSAC al-
gorithms. We believe that the selection of keypoints can also be
achieved through learning-based methods, and these keypoints
should be specially designed to select those that contribute to cam-
era relocalization. The most significant difference between our
approach and previous methods is that our method focuses more
on the truly important points in the scene for relocalization,
rather than solely on a global and extensive scene representation.

2.2 Keyoint Selection
Typical hand-crafted methods for keypoint description include
SIFT [27], SURF [2], and ORB [30]. Currently, some learning-based
methods have attempted to select keypoints in images. The work
SuperPoint [14] learns to find corners by generating a set of syn-
thetic shapes annotated with corners. R2D2 [29] proposes to jointly
learn reliable and repeatable detectors and descriptors. SiLK [20]
defines keypoints using high matching probability and models the
cycle matching probability using a double softmax.

However, these methods address the more general problem of
keypoint selection, description, and matching. For visual relocaliza-
tion tasks, specifically designed approaches are more suitable [3].
Inspired by SiLK [20], we design a keypoint selection method based
on the matching rate, which is capable of selecting keypoints
that are better suited for camera relocalization.

2.3 Pose Confidence
Currently, there is limited work on confidence estimation for pose
estimation, with most research focusing on pose verification based
on multiple views. InLoc [39] performs pose verification using view
synthesis. PV [40] focuses on pose verification, significantly en-
hancing it by combining different modalities, namely appearance,
geometry, and semantics. MPV [21] re-estimates the pose itera-
tively by reorganizing local features and performing local feature
matching in similar views. The paper [19] estimates pose confi-
dence through the number of inliers and the spatial distribution of
inliers.

Unlike methods that rely on the number of matches or inliers,
or the distribution of inliers, our proposed evaluation method is
based on a ratio inspired by Lowe’s ratio test in SIFT [27]. We first
use a network to learn from ground truth data to determine which
points are likely to be suitable for pose estimation. Then, we use
PnP and RANSAC to filter the actual inliers, allowing our inlier
ratio to be based on carefully selected data.

3 Proposed Method
Camera relocalization involves learning the scene and estimating
the 6-DOF pose of the camera based on the query image. In this
paper, we propose to further enhance the accuracy of pose esti-
mation in camera relocalization via splitting the scene coordinate
regression into two parts, i.e., a feature extraction network and the
prediction of scene coordinates from the extracted features with
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Reprojection

Scene coordinates

Input image
SCR network
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Reprojection
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Figure 2: Our proposed pose estimation framework consists of two distinct branches with a well-designed gating mechanism for
selecting the final pose. The upper generic branch is responsible for estimating the camera poses of images with a higher degree
of generalizability but without guaranteed accuracy. The lower keypoint-guided branch is equipped with image confidence
estimation, aimed at more accurately estimating the camera poses of images with higher confidence levels. Note that we
explore the matching rate to select high-quality 3D keypoints to reproject into 2D space using the ground-truth camera pose as
supervision to optimize the keypoint selection network. All query images undergo feature extraction via a feature backbone,
and the extracted features are initially input into the keypoint selector network and the keypoint branch of the upper path. In
the keypoint branch, only keypoints are utilized for pose estimation, generating a confidence metric, specifically the Inlier
Ratio. Ultimately, in the Pose Selection phase, a gated mechanism based on the confidence values determine whether to (1)
execute the generalist branch and adopt its output pose or (2) directly use the pose obtained from the keypoint-guided branch
as the final pose output.

a well-designed keypoints selection module. As demonstrated in
Figure 2, our proposed camera relocalization process comprises two
branches. One branch is a keypoint-guided pose estimation process
and the other one is a more generalized branch.

3.1 Explore Matching Rates to Generate 2D
Supervision Mask for Keypoint Selection
Network

To ensure the generated 2D keypoint mask from the keypoint selec-
tion network is consistent with what we expect, we first reconstruct
the 3D point cloud from the multi-view images, and identify good-
quality 3D keypoints by matching rate. The final 2D supervision
mask is generated by reprojecting the selected 3D keypoints into
the 2D space with the ground-truth camera poses.

3D keypoints selection is crucial for camera relocalization which
relies on the establishment of matching relationships between cross-
view images and the foundation of these relationships is the pairing
of 2D keypoints. The selection and matching of keypoints also
represent the primary intuition by which humans and all other
visual animals perform localization. Inspired by SiLK [20], we posit
that the fundamental criteria for keypoints should be their ease of
matching and the likelihood of correct matches.

Matching rate. To evaluate whether a keypoint is easy to match
and has a high likelihood of correct matches, we propose using the
matching rate to measure these keypoints.

Let 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛} be the set of all points in the multi-view
images that successfully match with the same 3D point 𝑝 , and
𝑀 (𝑝) be a function that measures the matching rate of point 𝑝 .
The function𝑀 (𝑝) is designed to reflect the ease of matching and
correctness of the matches, which can be formulated as:

𝑀 (𝑝) =
𝑛∑︁
𝑖=1

𝑤𝑖 ·MQ(𝑝, 𝑝𝑖 ), (1)

where𝑤𝑖 are weights assigned based on the relative importance of
matching with point 𝑝𝑖 , and MQ(𝑝, 𝑝𝑖 ) is a function that returns a
score representing the match quality between the 3D point 𝑝 and
the 2D point 𝑝𝑖 .

MQ(𝑝, 𝑝𝑖 ) = exp
(
− ∥𝜙 (𝑝) − desc(𝑝𝑖 )∥2

2𝜎2

)
, (2)

where 𝑑𝑒𝑠𝑐 (𝑝𝑖 ) represents the feature descriptor of point 𝑝𝑖 , 𝜙 (𝑝) =
1
𝑛

∑𝑛
𝑗 desc(𝑝 𝑗 ), and 𝜎 is a scaling parameter that adjusts the sen-

sitivity of the match quality to differences in the descriptors. By
default, the weights𝑤𝑖 and the scale 𝜎 are both set to 1.

Keypoint selection. Finally, we define the keypoints 𝐾 with
the matching rate as follows:

𝐾 = {𝑝 ∈ 𝑃 | 𝑀 (𝑝) ≥ 𝜏}, (3)

where 𝜏 is a threshold value chosen based on the desired confidence
level for the matches. The specific value of 𝜏 is related to the number
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Figure 3: Visualization of the selected 3D keypoints with
the matching rate and the corresponding 2D supervision
masks on the 7Scenes dataset. From top to bottom are the
point cloud obtained from SfM reconstruction, 3D keypoints
selected via matching rates, 2D projected supervision mask,
and the refined 2D supervision mask via reprojection errors,
respectively.

of images used for reconstruction. Based on our observations, we
suggest that the threshold should be greater than 1. We set its value
as 1.5 in this paper.

We utilize COLMAP [36] to obtain 3D point collection because
we realized that the poses obtained via SfM are more suitable for
visual relocalization [4], as they use the same reprojection error as
the loss function. Figure 3 visualizes the intermediate results on
how we get the final supervision mask for the keypoint selection
network. It is evident that our keypoint collection encompasses the
primary and pivotal regions in the scene while disregarding areas
that are deficient in texture or lack identifiable qualities.

3.2 Refine the 2D Supervision Mask with
Reprojection Error from a 3D Coordinate
Regression Network

Although we are able to filter out the points that should receive the
most attention for the relocalization task based on the matching
rate, in the keypoint branch of the entire camera relocalization
framework, we need to identify these points in the query image and
evaluate whether these points are still inliers from the perspective of
RANSAC-based PnP procedure. Note that after feature extraction by
the convolutional network, the performance of the scene coordinate
regression network in regressing scene coordinates may exhibit
randomness, which suggests that it does not always perform well
at specific points. Therefore, we utilize the trained scene coordinate

regression network to estimate the probability of these keypoints
being inliers, which can further refine the keypoints selection from
the keypoint selection network.

Keypoint probability. We propose a keypoint probability eval-
uation method based on reprojection error, which can be used to
refine the generated 2D supervision mask to train the keypoint
selection network. We use the following formula to convert the
reprojection error into keypoint probability:

𝑘𝑖 = 1 − 1
1 + 𝑒𝜆−𝜖𝑖

, (4)

where 𝜆 is the softness parameter that controls the tolerance level
of the reprojection error. A smaller value indicates that a smaller
reprojection error is required to achieve a higher keypoint probabil-
ity. In this work, we set 𝜆 to 4. 𝜖𝑖 represents the reprojection error
of the scene coordinate estimation, and 𝑘𝑖 represents the keypoint
probability of that point. This formula is inspired by the sigmoid
function.

Regarding the calculation the keypoint probability, we first feed
images into a generic scene coordinate estimation network to obtain
the estimated scene coordinates. We then calculate the reprojection
error of these scene coordinates using the ground-truth pose and
apply the errors into the above Equation 4 to get the final keypoint
probability. We keep out all the 2D keypoints with probability
values larger than the threshold as the final 2D supervision mask.

3.3 Inlier Ratio Based Confidence Calculation
on Estimated Poses

Currently, all vision-based camera relocalization methods aim to
improve overall performance across the entire test set. However, it
is unrealistic to expect camera relocalization methods to perform
efficiently and consistently in challenging scenarios with limited
sampled data or abundant repetitive textures. Therefore, we start
from keypoints to evaluate the confidence of the input images and
their output poses. When the confidence based on keypoint regions
is higher, we should prioritize using the pose estimation results
based on keypoints.

Inlier ratio. To address this, we propose an image pose confi-
dence estimation based on the inlier ratio. The confidence estima-
tion of an image is calculated using the following formula:

𝑟𝑖 =
100 · 𝑁 𝑖

𝑁𝑎
, (5)

where 𝑟𝑖 represents the pose estimation confidence of image 𝑖 ,
𝑁 𝑖 is the number of inliers output by the RANSAC-based PnP
algorithm, and 𝑁𝑎 is the total number of 2D-3D correspondences
provided as input. We consider confidence levels above 90% to be
considerably confident, above 80% to be highly confident, above
60% to be moderately confident, and below 60% to be questionable.

We notice that existing methods perform poorly in terms of con-
fidence in image pose estimation on the test set, particularly in the
"stairs" scene, where the proportion of highly confident estimates
is nearly zero. To address this, we propose a keypoint-guided inlier
ratio estimation method. By introducing an additional network
branch in the relocalization framework to evaluate the confidence
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of scene coordinates. Consequently, our updated confidence esti-
mation is given by:

𝑟 ′𝑖 =
100 · 𝑁 𝑖

𝑁𝑎𝑟
, (6)

where 𝑁𝑎𝑟 denotes the subset of 2D-3D correspondences with
reliable confidence, as estimated using the keypoint network.

3.4 Network Training
In this paper, we train the two-branch framework with a total
of three networks: one to obtain keypoints with the extracted 2D
supervisionmask as guidance, and two scene coordinates regression
networks. We adopt a simple network structure and accelerate
the training of the keypoint selection network using curriculum
learning. This approach enables us to achieve our goal of efficient
training with minimal additional time.

We have ascertained the ground truth probabilities for keypoints
at each point. We employ the Binary Cross Entropy (BCE) loss as
the loss function for our keypoint selection network. This loss is
applied to both the keypoint selection based on matching rate and
reprojection error.:

𝐿𝑘 (𝑘, 𝑘) = − 1
𝑁

𝑁∑︁
𝑖=1

(
𝑘𝑖 log(𝑘𝑖 ) + (1 − 𝑘𝑖 ) log(1 − 𝑘𝑖 )

)
, (7)

where 𝑁 is the number of samples, 𝑘𝑖 represents the ground truth
keypoint probability for the 𝑖-th feature, and 𝑘𝑖 represents the
predicted keypoint probability for the 𝑖-th feature.

Consequently, during the supervision process, we are limited
to methods such as reprojection error for guiding the learning of
scene coordinates. Specifically, the loss used for supervising is:

𝐿𝜋 (x𝑖 , y𝑖 , h∗𝑖 ) =
{
𝑒𝜋 (x𝑖 , y𝑖 , h∗𝑖 ) if y𝑖 ∈ V
||y𝑖 − ȳ𝑖 | |0 otherwise.

, (8)

where x and y are the 2D-3D coordinate pairs, ȳ𝑖 is the dummy
3D scene coordinate, h∗ is the GT pose, andV is the group of 3D
scene coordinate satisfied with the reprojection error 𝑒𝜋 in [3].

We design a novel scene coordinate estimation head. Enhancing
the network depth of the scene coordinate estimation head boosts
its ability to solve scene coordinates in challenging scenarios. We
follow the curriculum training technique adopted in [3] to train our
scene coordinate regression network. This curriculum technique
employs a dynamic inlier threshold based on reprojection error
throughout the training process, which starts with a larger value
and becomes progressively smaller as training progresses, making
the training process increasingly strict. For more details on the
network and training, please refer to the supplementary materials.

3.5 Implementation Details
Our method is implemented with PyTorch upon the publicly avail-
able code from ACE [3]. For the training of the keypoint selection
network, a simple CNN network was adopted. The initial learn-
ing rate is set as 0.0001, and the AdamW optimizer is consistently
employed across all network configurations. When initializing the
typical scene coordinate regression head, we set up a training buffer
with 8.8 million samples, with all features randomly sampled from

random images and augmentations. For training the keypoint selec-
tion network, an 8 million sample training buffer was established,
drawing features from randomly chosen images.

Note that when training the scene coordinate regression net-
work for 2D supervision masks, we utilize all outputs from the
intial keypoint masks projected from the selected 3D keypoints via
matching rates with the ground-truth camera pose. During train-
ing the keypoint-guided scene coordinate regression network, we
fine-tune the initialized head rather than starting the training from
scratch, thus preserving the network’s capability to regress scene
coordinates for non-keypoint features. We follow the implementa-
tion of ACE [3] on the pose estimator but with some changes to
accommodate our approach. Employing the keypoint selection net-
work as a guide, we select points when their estimated probability
value are greater than 0.8, which we observe the corresponding
reprojection error is approximately 5.0.

4 Experiments
We conduct experiments on both the indoor 7Scenes [38] dataset
and the outdoor Cambridge Landmarks [25]1, and report the per-
formance with camera relocalization accuracy for errors within
(5◦, 5𝑐𝑚), (2◦, 2𝑐𝑚) and (1◦, 1𝑐𝑚).

4.1 Indoor Relocalization
The 7Scenes [38] dataset offers a variety of small-scale indoor
scenes captured with handheld devices, along with depth infor-
mation and camera poses. We utilize the camera poses obtained via
structure from motion (SfM) provided in [4] as ground truth (GT).
Besides the primary baseline ACE [3], we also compare against
other scene coordinate regression approaches. As summarized in
Table 2, we present the percentage performance of our method and
others on the 7Scenes [38] dataset within (5◦, 5𝑐𝑚) of error. We
can clearly see that our proposed method is able to further enhance
relocalization performance, especially in challenging scenes such as
“stairs”. We also report the performance of our method compared
to others within (2◦, 2𝑐𝑚) and (1◦, 1𝑐𝑚) error margins in Table
3, respectively. As we can observe, our method not only excels
in percentage performance within the (5◦, 5𝑐𝑚) error margin but
also significantly improves the precision of pose estimation. Such
observations suggest that the precision of camera pose estimates
from our method has been further elevated, offering a guarantee
for the practical application of camera relocalization technology
in real-world scenarios. As shown in Figure 4, we compare the
differences in estimated translations between our method and the
comparison methods. It is evident that our estimated trajectories
are more accurate, as indicated by the less prominent green lines.

4.2 Outdoor Relocalization
The Cambridge Landmarks dataset [25] consists of images of var-
ious historical buildings in the old town area of Cambridge, with
ground truth poses obtained using the SfM [4]. As we can observe
1The two datasets were received and exclusively accessed by the authors Hu Lin and
Prof. Xin Yang for purely academic research only. Hu Lin produced the experimental
results in this paper. Meta did not have access to the datasets as part of this research.
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Table 1: Pose relocalization results compare with other methods on Cambridge Landmarks dataset.

Method Publication Year Type Depth Cambridge Landmarks Average
(cm/◦)Court King’s Hospital Shop St.Mary’s

AS (SIFT) [33] TPAMI 2016 FM X 24/0.1 13/0.2 20/0.4 4/0.2 8/0.3 14/0.2
hLoc(SP+SG) [31] CVPR 2019 FM X 16/0.1 12/0.2 15/0.3 4/0.2 7/0.2 11/0.2
pixLoc [32] CVPR 2021 FM X 30/0.1 14/0.2 16/0.3 5/0.2 10/0.3 15/0.2
GoMatch [49] ECCV 2022 FM X N/A 25/0.6 283/8.1 48/4.8 335/9.9 N/A
HybridSC [11] CVPR 2019 FM X N/A 81/0.6 75/1.0 19/0.5 50/0.5 N/A
PoseNet17 [24] CVPR 2017 APR X 683/3.5 88/1.0 320/3.3 88/3.8 157/3.3 267/3.0
MS-Transformer [37] ICCV 2021 APR X N/A 83/1.5 181/2.4 86/3.1 162/4.0 N/A
SANet [44] ICCV 2019 SCR ✓ 328/2.0 32/0.5 32/0.5 10/0.5 16/0.6 84/0.8
SRC [18] 3DV 2022 SCR ✓ 81/0.5 39/0.7 38/0.5 19/1.0 31/1.0 42/0.7
DSAC* [8] TPAMI 2021 SCR X 98/0.5 27/0.4 33/0.6 11/0.5 56/1.8 45/0.8
ACE [3] CVPR 2023 SCR X 43/0.2 28/0.4 31/0.6 5/0.3 18/0.6 25/0.46
Ours ACM MM 2024 SCR X 46/0.5 21/0.4 23/0.6 5/0.4 12/0.6 22/0.48

Table 2: Pose relocalization results compared with other
methods on 7Scenes dataset.

Scene DSAC DSAC++ Cas. DSAC* ACE Ours
Chess 94.6% 93.8% 100% 96.7% 100% 100%
Fire 74.3% 75.6% 99.7% 92.9% 99.5% 99.9%
Heads 71.7% 18.4% 100% 98.2% 99.7% 100%
Office 71.2% 75.4% 99.5% 87.1% 100% 99.5%
Pumk. 53.6% 55.9% 90.9% 60.7% 99.9% 99.9%
Redki. 51.2% 50.7% 90.7% 65.3% 98.2% 99.7%
Stairs 4.5% 2.0% 94.2% 64.1% 81.9% 88.6%
Avg. 60.2% 60.4% 96.4% 80.7% 97.0% 98.2%

Pumpkin seq-01 Stairs seq-01

ACE

Ours

Figure 4: The difference between the pose trajectories esti-
mated by our proposed method and the ACE compared to
the GT pose trajectory. The blue represents the estimated
translations, the red represents the GT translations, and the
green indicates the discrepancies between the corresponding
translations. Themore prominent the green lines, the greater
the difference.

from Table 1, our proposed method performs exceptionally well in
some scenes, outperforming our main competing method ACE [3]
in most scenarios. This is attributed to our network’s enhanced

Table 3: Results under smaller thresholds. We further detail
the camera relocalization accuracy for errors within (2°, 2cm)
and (1°, 1cm).

Within (2°, 2cm) Within (1°, 1cm)
DSAC* ACE Ours DSAC* ACE Ours

Chess 32.8% 99.0% 99.6% 0.5% 81.9% 91.8%
Fire 55.2% 87.1% 95.2% 14.8% 57.0% 63.9%
Heads 87.3% 98.2% 98.9% 40.0% 85.3% 87.1%
Office 32.1% 81.0% 91.2% 5.9% 28.0% 60.4%
Pumpk. 19.8% 84.5% 88.9% 4.7% 27.0% 60.7%
Redki. 14.9% 87.0% 94.9% 2.6% 45.5% 73.9%
Stairs 11.4% 24.1% 38.0% 1.1% 4.0% 8.1%
Average 36.2% 80.1% 86.7% 9.9% 47.0% 63.7%

capability for scene coordinate inference. During our experiments,
we also observe that a significant reason for poorer performance
on outdoor data was the sparsity of the dataset. Our method show
commendable performance on the training set, yet its capacity to
generalize to new viewpoints was somewhat limited.
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Figure 5: The mean translation error and inlier count beyond
the inlier ratio.

4.3 Ablation Study
4.3.1 The relationship between inlier ratio and error. Ourmethod in-
troduces a confidence-based scene coordinate estimation approach.
We ponder the potential outcomes if we solely rely on the poses
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Table 4: Survival rate and camera relocalization accuracy. We measure the survival rate across three different stages, defined as
the ratio of pose estimates that meet our set confidence criteria, in conjunction with the accuracy of the pose estimation. We set
the confidence threshold to an inlier ratio exceeding 90%. "Init." denotes the network post-initialization, utilizing all coordinate
estimates for pose estimation; "Init. With K.S." refers to the post-initialization network employing keypoint selection for pose
estimation; "Keypoint fine-tune with K.S." indicates the network after keypoint fine-tuning, using keypoint selection for pose
estimation. Note that almost all pose estimates deemed to meet the confidence criteria fall within (5°,5cm), and hence we only
list the percentages for errors within (2°,2cm) and (1°,1cm).

Init. Init. with K.S. Keypoint fine-tune with K.S.
Survival Rate 2°2cm 1°1cm Survival Rate 2°2cm 1°1cm Survival Rate 2°2cm 1°1cm

chess 97/2000 100% 91.8% 1714/2000 99.8% 93.6% 1718/2000 99.8% 93.9%
fire 92/2000 100% 100% 733/2000 93.7% 81.2% 736/2000 95.4% 83.4%
heads 0/1000 0.0% 0.0% 238/1000 100% 98.7% 236/1000 100% 99.2%
office 20/4000 100% 25.0% 3193/4000 86.1% 35.1% 3197/4000 87.4% 42.5%
pumpkin 48/2000 100% 22.9% 1393/2000 94.5% 39.8% 1388/2000 97.6% 54.7%
redkitchen 38/5000 100% 100% 3501/5000 94.6% 50.2% 3483/5000 96.4% 63.6%
stairs 0/1000 0.0% 0.0% 9/1000 100% 0.0% 29/1000 100% 24.1%
Average 42/2429 71.4% 48.5% 1540/2429 95.5% 56.9% 1541/2429 96.7% 65.9%

of images with high confidence. To validate the appropriateness
of our confidence measure, we plotted a curve representing the
relationship between the confidence utilized and the translational
error, as illustrated in Figure 5. For clarity, we scaled and averaged
the data. It is observable from the graph that an increase in error
tends to follow a decrease in confidence. Although this correlation
is not absolute, our observations suggest that there is generally an
inverse relationship between inlier ratio and error, implying that a
higher inlier ratio may be associated with increased error.

4.3.2 Confidence enhancement and survival rate in keypoints selec-
tion branch. We estimate scene coordinates on keypoint and employ
the inlier ratio as a measure of confidence for the precision of im-
age pose estimation. We preserve images with a confidence level of
90% and estimate their camera poses. Table 4 lists the survival rate
and accuracy of our method at various stages for test images. It is
evident that the survival rate of test images was quite low initially
without keypoint guidance. The introduction of keypoint guidance
resulted in a significant increase in the survival rate. We also ob-
serve that the survival rate of the network, further optimized using
keypoint guidance, did not decrease significantly. Meanwhile, the
localization accuracy for the test data with high survival rates was
further improved within error margins of (2◦, 2𝑐𝑚) and (1◦, 1𝑐𝑚).
Moreover, within the subset of high-confidence images, we nearly
achieved 100% accuracy within an error range of (5◦, 5𝑐𝑚), which
validates the practical reliability of our method. Additionally, we
note that in the Stairs scene, our confidence measurement method
was not able to maintain a high survival rate. This could be at-
tributed to the scene’s higher difficulty and the presence of more
repetitive textures, a phenomenon also observed in the Heads scene.

4.3.3 Usage of time and computational. Among all training pro-
cesses, the network trained to identify keypoints based on the
matching rate is the most time-consuming. This is attributed to
the fact that the majority of points in an image are not keypoints,
precluding targeted training. Conversely, all other training activ-
ities in the keypoint selection branch are confined to the regions
of keypoints identified by the matching rate. Our approach does

not significantly increase training duration or computational re-
source usage under standard conditions. The total training time is
approximately 20 minutes using two Nvidia GeForce 2080 Ti GPUs,
which is still acceptable given the desired higher accuracy. During
testing, when the confidence is over the threshold, i.e., 0.9, our
computational load is lower than that of ACE. This is because we
use fewer but more accurate 2D-3D matching points, reducing the
required iterations. However, if the survival rate is below the thresh-
old, we may incur the cost of performing pose estimation twice,
i.e., a keypoint-based pose estimation and then a more generalized
pose estimation.

4.3.4 Limitations. We found several shortcomings that require
further exploration. Firstly, our method faces the challenge of a
low number of keypoints in difficult scenes with sparse textures.
Consequently, fine-tuning the process becomes nearly infeasible,
andwe heavily rely on the initialized generalized network. Secondly,
our approach is limited by the confidence threshold. Currently, we
use a fixed confidence threshold and its performance varies across
different scenes.

5 Conclusion
Measuring the confidence of camera pose estimation is critical in
practical applications. We start selecting keypoints favorable for
camera relocalization and design a keypoint selection scheme based
on matching rate. We then design a keypoint evaluation method
based on reprojection error. Finally, our gated camera pose esti-
mation strategy based on confidence thresholding is introduced
to combine keypoint-guided networks with more generalized net-
works to further enhance camera relocalization accuracy. Notably,
our approach does not significantly increase training duration or
volume compared to state-of-the-art methods, achieving greater
accuracy within a training period of just 20 minutes. Through
extensive experimental comparisons, we have demonstrated the
effectiveness of our proposed method, surpassing state-of-the-art
results.
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