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Fig. 1. Current state-of-the-art methods, including NFOR [Bitterli et al. 2016], KPCN [Bako et al. 2017] and ACFM [Xu et al. 2019], fail to produce a plausible
denoised image for the scene "VeachAjar" because of the absence of specular albedo and the extremely noisy input. In contrast, our proposed model with
auxiliary feature guided self-attention can gather the most relevant information for each pixel from its surrounding region in an edge-preserving manner, thus
better restoring image details while preserving image structures and producing visually pleasing denoising results.
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While self-attention has been successfully applied in a variety of natural
language processing and computer vision tasks, its application in Monte
Carlo (MC) image denoising has not yet been well explored. This paper
presents a self-attention based MC denoising deep learning network based
on the fact that self-attention is essentially non-local means filtering in the
embedding space which makes it inherently very suitable for the denoising
task. Particularly, we modify the standard self-attention mechanism to an
auxiliary feature guided self-attention that considers the by-products (e.g.,
auxiliary feature buffers) of the MC rendering process. As a critical prerequi-
site to fully exploit the performance of self-attention, we design a multi-scale
feature extraction stage, which provides a rich set of raw features for the
later self-attention module. As self-attention poses a high computational
complexity, we describe several ways that accelerate it. Ablation experi-
ments validate the necessity and effectiveness of the above design choices.
Comparison experiments show that the proposed self-attention based MC
denoising method outperforms the current state-of-the-art methods.

CCS Concepts: • Computing methodologies→ Ray tracing.
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1 INTRODUCTION
Monte Carlo (MC) path tracing is a popular realistic rendering tech-
nique widely used in computer animation, film production, video
games, etc. Compared with other rendering techniques, MC meth-
ods are unbiased and exhibit high generality for a variety of visual
rendering effects. Nevertheless, in order to produce high-quality
images without visible noise, MC path tracing requires sampling a
large number of rays which is extremely time-consuming. There
is a long history that graphics researchers attempt to improve im-
age quality using a reduced number of ray samples, such as ray
histogram fusion [Delbracio et al. 2014] and sample-based denois-
ing [Gharbi et al. 2019; Lin et al. 2021; Munkberg and Hasselgren
2020]. Besides these, image-space MC denoising is another popu-
lar technique that first renders a noisy image at a low sampling
rate, and then applies a filtering operator to remove the noise and
reconstruct the target high-quality image.

Traditional image-space MC denoising was achieved by weighted
local regression [Moon et al. 2014], assuming the value of a pixel
can be approximated locally by the Taylor polynomial expansion
of a nearby pixel. However, these methods usually require a bias-
variance trade-off. For example, zero-order regressionmethods [Over-
beck et al. 2009; Rousselle et al. 2012] model the pixel neighborhood
as a constant function [Bitterli et al. 2016], the solution of which
is equivalent to applying a joint bilateral [Tomasi and Manduchi
1998] or non-local means filter [Buades et al. 2005; Rousselle et al.
2012]. The variance of these methods is the smallest, but the bias is
significant. Increasing the order of the regression model can make
it more flexible to fit the training data [Bauszat et al. 2011; Bitterli
et al. 2016; Li et al. 2013; Moon et al. 2014], resulting in a smaller
bias while the variance increases accordingly.
Recently, deep learning approaches have been proposed for MC

denoising [Bako et al. 2017; Gharbi et al. 2019; Kalantari et al. 2015;
Vogels et al. 2018; Xu et al. 2019]. As an early attempt of MC de-
noising using neural network, Kalantari et al. [Kalantari et al. 2015]
employ a multi-layer perception (MLP) network to learn the band-
width for joint bilateral and joint non-local means filters from paired
noisy and non-noisy images. Bako et al. [Bako et al. 2017] use a
convolutional neural network (CNN) to predict the filtering kernel
for each pixel adaptively. Eliminating the intermediate filters, the
network proposed in [Xu et al. 2019] directly outputs the denoised
image given a noisy input.

While various CNN models can already produce impressive MC
denoising results, this paper presents a self-attention based MC
denoising model that achieves better results. Compared with CNNs,
self-attention has several advantages. Firstly, self-attention can di-
rectly compute the interaction between any pair of features, natu-
rally capturing long-range dependencies and having a global recep-
tive field. In contrast, CNNs typically employ small convolutional

kernels. Although the receptive field of a CNN can be enlarged
by stacking more convolutional and pooling layers, the resultant
interaction between two distant features is indirectly computed.
Secondly, convolution is content-independent, i.e., the response at
every spatial position is obtained with the same set of weights tai-
lored for the whole image rather than for each local position. In
contrast, self-attention is content-dependent, which computes the
weights between any pair of pixels according to their features. Intu-
itively, gathering information in a large receptive field with directly
computed adaptive weights can yield better denoising results. More-
over, Wang et al. [Wang et al. 2018] have shown that self-attention
is essentially a non-local means filtering in the embedding space,
thus sharing the same edge-preserving property as non-local means
for image denoising. This is verified in Figure 1 in which previous
state-of-the-art approaches tend to blur the edges of grids on the
floor, while our self-attention based method perfectly preserves
these edges.
Our self-attention based MC denoising starts with a multi-scale

feature extraction stage which uses different sized convolutional
filters to extract features under different receptive fields, as what
has been done in Inception [Szegedy et al. 2015]. This provides
more raw features that are later processed by the self-attention
module. Specifically, we stack a total of five self-attention based
neural blocks. To take advantage of the auxiliary feature buffers,
including normal, depth, and albedo, we modify the standard self-
attention mechanism by introducing auxiliary features into the
computation of queries and keys that are the core ingredients of
self-attention, proposing the auxiliary feature guided self-attention
mechanism. Finally, the output of the last self-attention block is
transformed to a high-quality denoised image by a simple decoder
module. Since self-attention is computationally expensive, we show
several ways to accelerate it, enabling it to run on the consumer
graphics card GeForce RTX 3090.

In summary, the main contributions of this paper are three-fold:

• We propose a novel self-attention based MC denoising deep
learning network comprising a multi-scale feature extractor
and self-attention based neural blocks. To the best of our
knowledge, we are the first that utilize self-attention mecha-
nism for Monte Carlo image denoising.

• Specifically for MC denoising, we revise the standard self-
attentionmechanism to auxiliary feature guided self-attention,
which effectively involves the auxiliary features into the com-
plex denoising process.

• Ablation and comparison experiments show that the pro-
posed self-attention based MC denoising model is effective
and achieves superior performance over the state-of-the-art
approaches.

2 RELATED WORK
Traditional state-of-the-art MC denoising approaches are mainly
based on local neighborhood regression models. More recent meth-
ods utilize deep neural networks to achieve impressive denoising ef-
fects. In the following, we briefly review the above two kinds ofmeth-
ods. For a more comprehensive introduction of MC denoising meth-
ods, please refer to the survey papers [Huo and Yoon 2021; Zwicker
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et al. 2015]. Besides, since our method employs Transformer-based
model and self-attention mechanism, we also introduce their recent
advances and applications.
Traditional Monte Carlo Denoising. Denoising Monte Carlo

rendering can be traced back to the nonlinear image space fil-
ter [Rushmeier and Ward 1994] proposed by Rushmeier et al. This
pioneering idea becomes the basis of later Monte Carlo denoising
methods, such as the cross bilateral filter [Eisemann and Durand
2004; Petschnigg et al. 2004; Xu and Pattanaik 2005], the edge-
avoiding filter [Dammertz et al. 2010] and the non-local means
filter [Buades et al. 2005]. As shown in [Bitterli et al. 2016], these
methods actually perform zero-order regressions. McCool et al. [Mc-
Cool 1999] are the first adding normal, depth, etc., as auxiliary
information into the filtering process, yielding better denoising
results, which becomes an integral part of later state-of-the-art
methods. For example, methods of [Overbeck et al. 2009; Rousselle
et al. 2012] utilize auxiliary feature buffers to guide the non-local
means filtering, making the denoising process more robust [Moon
et al. 2013; Rousselle et al. 2013]. Many other works consider us-
ing first-order [Bauszat et al. 2011; Bitterli et al. 2016; Moon et al.
2014] and even higher-order regression models [Moon et al. 2016].
Although higher-order regression models can better approximate
ground truths than lower ones, they sometimes suffer from overfit-
ting and cannot generalize to complicated scenes.
Learning-based Monte Carlo denoising.Many deep learning

based methods now outperform their traditional counterparts for
a variety of tasks like visual recognition [Hu et al. 2021], object
detection and localization [Islam et al. 2020], and image genera-
tion [Xu et al. 2021], thanks to the strong fitting capabilities of deep
neural networks. Similarly, in the MC denoising domain, Kalan-
tari et al. [Kalantari et al. 2015] utilize a multi-layer perceptron to
learn the filter weights for cross-bilateral and cross non-local means
filters from training data. Bako et al. [Bako et al. 2017] utilize a
CNN to predict filtering kernels themselves for each pixel instead
of the weightings of a filter shared by all pixels. This scheme is
later adopted by [Back et al. 2020; Gharbi et al. 2019; Lin et al. 2020;
Vogels et al. 2018], further unleashing the capabilities of kernel-
based denoising. Recently, orthogonal to kernel prediction, a new
type of scheme directly predicts per-pixel radiance [Lu et al. 2020;
Wong and Wong 2019; Yang et al. 2018, 2019]. For example, Xu
et al. [Xu et al. 2019] propose an adversarial approach for MC de-
noising in which a conditioned feature modulation module deeply
incorporates auxiliary features into the denoising process. Other
than image-space denoising methods mentioned above, recent MC
denoising researchers also pay attention to sample-based denois-
ing [Gharbi et al. 2019; Lin et al. 2021], real-time denoising [Meng
et al. 2020], and interactive denoising based on video sequences
rather than a single image [Chaitanya et al. 2017; Işik et al. 2021;
Vogels et al. 2018]. Inspired by the remarkable denoising results
in [Xu et al. 2019], we also adopt the radiance predicting scheme
and adversarial learning in our model.
Transformer And Self-attention. Transformer was originally

proposed in [Vaswani et al. 2017] for neural machine translation.
Subsequently, the architecture has been extensively researched,
modified, and applied to a variety of downstream tasks [Devlin
et al. 2018; Raffel et al. 2019]. One of the most outstanding works is

GPT-3 [Brown et al. 2020], a massive Transformer-based network
with up to 175 billion parameters that can be applied to other tasks
even without fine-tuning. Inspired by the great accomplishment of
Transformer achieved in the Natural Language Processing field, an
increasing number of computer vision researchers are applying the
Transformer to their works, including image classification [Chen
et al. 2020], super-resolution [Yang et al. 2020], and image synthe-
sis [Zhang et al. 2019]. Although Transformer is now becoming
a prominent force, we have not found Transformer-based models
being applied to MC denoising.

A key component of Transformer is the self-attention mechanism,
which enables effective modeling of the long-range dependencies
in features within one Transformer block. This is different from
CNNs that require stacking multiple convolutional layers in order
to enlarge receptive field so that long-range information can be
indirectly captured. Specifically, self-attention enables a feature in
the embedding space to absorb the information at all other posi-
tions on the feature map in a weighted average manner, controlled
by the attention scores. However, the quadratic computation and
memory complexity limit its scalability. Many works [Child et al.
2019; Ho et al. 2019; Katharopoulos et al. 2020] are therefore de-
voted to address the quadratic issue. For example, in [Ramachandran
et al. 2019], the attention computation is restricted in a local region.
[Wang et al. 2020] utilize two consecutive axial self-attention layers
to calculate attention in the vertical and horizontal directions respec-
tively, significantly reducing the computation complexity. [Liu et al.
2021; Vaswani et al. 2021] propose two different memory-friendly
self-attention mechanisms. We employ these pioneering works to
accelerate our self-attention based MC denoising network while
reducing the memory usage to make it run on a consumer GPU.

3 METHODOLOGY
Monte Carlo path tracing is one of the most important techniques
in realistic rendering which however suffers from extremely high
computational consumption. That is, in order to generate a high-
quality image, it needs to sample a large number of paths for each
pixel, resulting in hours of time cost. To mitigate this problem, a
large amount of work is done to first generate a noisy image with
a low path sampling rate, and the noisy image is then denoised to
obtain the high-quality noise-free image, which significantly reduce
the overall usage time. Auxiliary feature buffers, including normal,
albedo and depth, are usually involved in the denoising process
which provide helpful guidance.

In this paper, we view Monte Carlo denoising as a specific in-
stantiation of the general image denoising problem for which non-
local means filtering [Buades et al. 2005] has been proven to be
very effective [Davy et al. 2019; Lefkimmiatis 2017; Xie et al. 2019].
Non-local means has also been popularly adopted for Monte Carlo
denoising [Kalantari et al. 2015; Rousselle et al. 2012; Zimmer et al.
2015]. Inspired by the fact that the recently developed self-attention
mechanism for machine translation [Vaswani et al. 2017] is essen-
tially a special type of non-local means filter that operates in a
high-dimensional embedding space (see [Wang et al. 2018] or the
supplemental of this paper), we propose a self-attention basedMonte
Carlo denoising method. To better utilize the information in the
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Fig. 2. Overview of our self-attention based MC denoising model. Given a noisy image and three auxiliary buffers, our model outputs the residual between the
input noisy image and the target high-quality noise-free image. The model consists of three main components: multi-scale feature extractors, Transformer
blocks, and a decoder. The multi-scale feature extractors extract features from the input noisy image and auxiliary buffers. Then five sequentially connected
transformer blocks are used to process noisy image features by auxiliary feature guided self-attention. The output of the last transformer block is finally
processed by a simple decoder to obtain the residual. We implement block self-attention for computation acceleration and memory saving. The whole model is
trained in an adversarial manner. For simplicity, we omit the the discriminator in this figure.

auxiliary buffers, we propose auxiliary feature guided self-attention,
which computes the interactions between pixels in an image not
only by the content of the image but also by that of the auxiliary
buffers. In the following, before describing our self-attention based
MC denoising network, we give some mathematical background of
the self-attention mechanism.

3.1 Transformer and Self-Attention
Self-attentionmechanismwas first proposed byVaswani et al. [Vaswani
et al. 2017] for the task ofmachine translation. Based on self-attention,
they proposed a new network architecture called “Transformer”
which comprises a series of Transformer blocks (we call them self-
attention based neural blocks in the above) that perform self-attention
computations.
Let 𝑋 𝑖−1 be the input to the 𝑖th Transformer block, the self-

attention operator is defined as:

SA(𝑋 𝑖−1) = Softmax

(
𝑄𝐾𝑇√
𝑑𝑘

)
𝑉 , (1)

where,
𝑄 =𝑊𝑄𝑋

𝑖−1, 𝐾 =𝑊𝐾𝑋
𝑖−1,𝑉 =𝑊𝑉𝑋

𝑖−1,

with𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 being the learnable linear transformations,
and 𝑑𝑘 being the feature channel dimension of 𝑄 and 𝐾 . As can be
seen, the term 𝑄𝐾𝑇 gives attention scores between the vector slots

of𝑄 and𝐾 , which are finally used to average vector slots of𝑉 . Since
𝑄 , 𝐾 , 𝑉 are all computed from 𝑋 𝑖−1, the attention operator defined
in Equation 1 is called “self-attention”, i.e., the attention between
the vector slots of 𝑋 𝑖−1 themselves.
With the self-attention operator, a Transformer block is easily

implemented as:

𝑋 𝑖−1 = LN
(
SA

(
𝑋 𝑖−1

))
+ 𝑋 𝑖−1,

𝑋 𝑖 = LN
(
FFN

(
𝑋 𝑖−1

))
+ 𝑋 𝑖−1,

(2)

where LN denotes layer normalization [Ba et al. 2016], FFN denotes
a feed-forward network, and 𝑋 𝑖 is the output of the 𝑖th Transformer
block.

3.2 Self-Attention based Monte Carlo Denoising
Figure 2 shows the overview of the proposed self-attention based
Monte Carlo denoising network, comprising three main compo-
nents: multi-scale feature extractors, Transformer blocks with aux-
iliary feature guided self-attention mechanism, and a decoder. Our
network takes a noisy image and three auxiliary buffers (including
normal, depth, and albedo) as input, and outputs the residual be-
tween the input noisy image and the target high-quality image. Note
that most of previous approaches [Bako et al. 2017; Lu et al. 2020;
Xu et al. 2019] separate the noisy image into diffuse and specular
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components and process them separately. Since self-attention brings
heavy computation and memory loads, we directly process the noisy
image in a single pipeline. Our model is trained adversarially, which
means the network shown in Figure 2 is a generator of a Generative
Adversarial Network [Goodfellow et al. 2014], but for simplicity the
discriminator is omitted in the figure.

3.2.1 Multi-scale feature extractor. Firstly, we need to transform the
input noisy image and auxiliary buffers from image space to feature
space. This is usually achieved by convolutional neural networks.
For example, one can simply use a convolutional layer with 256
kernels of size 3× 3 to transform a noisy image in space R𝐻×𝑊 ×3 to
space R𝐻×𝑊 ×256, where𝑊 and 𝐻 are width and height of the input
image. However, we find that features calculated by a single con-
volutional layer limit the performance of subsequent self-attention
modules since features extracted from a single-scale receptive field
cannot fully reflect the original information of the image. To mit-
igate this problem, we propose multi-scale feature extractors as
shown in Figure 2. Specifically, we design 3 convolutional layers
all with 256 kernels but the kernel size of the first convolutional
layer is 1 × 1, the second is 3 × 3, and the third is 5 × 5. The three
convolutional layers are used to extract features at different scales
of receptive fields, a strategy that has also been adopted in Incep-
tion [Szegedy et al. 2015]. By multi-scale feature extraction, we
provide self-attention modules with more raw features, facilitating
the self-attention mechanism to discover more useful information.
Before inputting to self-attention modules, the multi-scale features
are concatenated together in the channel dimension, and further
processed by a convolutional layer with 256 kernels of size 1 × 1.
The input noisy image and auxiliary buffers are processed by two
different multi-scale feature extractors. For noisy image, we obtain
a feature map, denoted by 𝑓 0

𝑁
, in space R𝐻×𝑊 ×256. For auxiliary

features, the obtained feature map, defined as 𝑓𝐴 , is also in space
R𝐻×𝑊 ×256.

3.2.2 Auxiliary feature guided self-attention. After the multi-scale
feature extraction stage, we sequentially stack five Transformer
blocks to extract more representative features. We use the standard
Transformer pipeline as defined in Equation 2 except for the layer
normalization (in practice adding the layer normalization yields
worse results). But for the self-attention operator, there are several
design choices to consider regarding how to make effective use of
the auxiliary features.

Firstly, as shown in Fig. 3 (a), one can simply ignore the auxiliary
features and use the standard self-attention operator defined in
Equation 1, for which the computation of a Transformer block is:

𝑓 𝑖−1𝑁 = SA
(
𝑓 𝑖−1𝑁

)
+ 𝑓 𝑖−1𝑁 ,

𝑓 𝑖𝑁 = FFN
(
𝑓 𝑖−1𝑁

)
+ 𝑓 𝑖−1𝑁 ,

(3)

where 𝑓 𝑖−1
𝑁

is the input to the 𝑖th Transformer block and 𝑓 𝑖
𝑁

is the
output, with 𝑓 0

𝑁
being the features computed from the noisy image

in the multi-scale feature extraction stage. In practice, this scheme
yields relatively poor denoising results because of not using the
helpful auxiliary information. A straightforward way to incorporate
the auxiliary features 𝑓𝐴 into the denoising process is replacing

(a) No Aux. (b) Concatenation (c) AFGSA

Fig. 3. (a) Auxiliary features are not utilized. (b) Auxiliary features are
concatenated with noisy image features before feeding into self-attention
module. (c) The proposed auxiliary feature guided self attention in which
the auxiliary features are just involved in the calculation of𝑄 and 𝐾 .

SA(𝑓 𝑖−1
𝑁

) of Equation 3 by SA((𝑓 𝑖−1
𝑁

; 𝑓𝐴)), where (𝑓 𝑖−1
𝑁

; 𝑓𝐴) indi-
cates the concatenation of 𝑓 𝑖−1

𝑁
and 𝑓𝐴 , as shown in Figure 3 (b). In

this scheme, both the input noisy image and the auxiliary buffers
are involved into the computation of 𝑄 , 𝐾 and 𝑉 , which is not intu-
itively reasonable. We argue that the auxiliary buffers should only
be used to compute 𝑄 and 𝐾 but not 𝑉 . The reasons are two-fold.
Firstly, the auxiliary buffers, including depth, normal and albedo,
usually have clearer edges than the noisy image, making them very
suitable for the computation of edge-preserving weighting (or atten-
tion) scores, i.e., 𝑄𝐾𝑇 . Secondly, since 𝑉 actually represents image
pixel values, it should not be contaminated by the auxiliary features.
Based on this observation, we propose the Auxiliary Feature Guided
Self-Attention (AFGSA) operator:

AFGSA(𝑓 𝑖−1𝑁 , 𝑓𝐴) = Softmax

(
𝑄𝐾𝑇√
𝑑𝑘

)
𝑉 , (4)

where,
𝑄 =𝑊𝑄

(
𝑓 𝑖−1𝑁 ; 𝑓𝐴

)
,

𝐾 =𝑊𝐾

(
𝑓 𝑖−1𝑁 ; 𝑓𝐴

)
,

𝑉 =𝑊𝑉

(
𝑓 𝑖−1𝑁

)
,

in which 𝑄 and 𝐾 are computed from the concatenation of both the
image and auxiliary features, while𝑉 is just from the image features.
Our AFGSA based Transformer block, as shown in Figure 3 (c), is
then defined as:

𝑓 𝑖−1𝑁 = AFGSA
(
𝑓 𝑖−1𝑁 , 𝑓𝐴

)
+ 𝑓 𝑖−1𝑁 ,

𝑓 𝑖𝑁 = FFN
(
𝑓 𝑖−1𝑁

)
+ 𝑓 𝑖−1𝑁 .

(5)

In our implementation, 𝑄 , 𝐾 , and 𝑉 are computed by different 1 × 1
convolutional layers, FFN is a feed-forward network comprising
two 3 × 3 convolutional layers.

3.2.3 Decoder. After five Transformer blocks, the obtained feature
map is 𝑓 5

𝑁
. We design a decoder to transform it from the feature

space to the image space. The structure of the decoder is very simple,
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sequentially stacking three 3 × 3 convolutional layers among which
the first two have 256 kernels and the last one has 3 kernels.

3.3 Network Implementation and Acceleration
In Figure 2, we have annotated the implementation details of all the
convolutional layers. For example, “Conv k1c256” means the convo-
lutional layer has 256 kernels of size 1 × 1. For all the convolutional
layers, the padding type is set to “reflect” and the stride is set to 1,
while normalization layer is not adopted. Let𝐻 and𝑊 be the spatial
shape of the input noisy and auxiliary images, the two feature maps
𝑓 0
𝑁

and 𝑓𝐴 outputted by the multi-scale feature extractors are both
of size 𝐻 ×𝑊 ×𝐶𝑓 𝑒𝑎 (where 𝐻 and𝑊 are both 128 at training, and
𝐶𝑓 𝑒𝑎 = 256). 𝑄 , 𝐾 , and 𝑉 computed in self-attention blocks are also
of size 𝐻 ×𝑊 ×𝐶𝑓 𝑒𝑎 . Note that in order to avoid losing any spatial
information that is essential for image denoising, we do not perform
any type of downsampling operation in the model.

A problem is that the self-attention defined in Equation 4 is in fact
a global self-attention, which is notorious for its high computation
complexity and large memory usage, as the product 𝑄𝐾𝑇 requires
each element in the feature map to compute attention to all the
other elements (as shown in Figure 4 (a)):

𝑓𝑖, 𝑗 =
∑

𝑎∈[1,𝐻 ],𝑏∈[1,𝑊 ]
Softmax𝑎,𝑏

(
𝑞𝑖, 𝑗𝑘

⊤
𝑎,𝑏√
𝑑𝑘

)
𝑣𝑎,𝑏 , (6)

where 𝑞𝑖, 𝑗 indicates the query feature at position (𝑖, 𝑗), 𝑘𝑎,𝑏 rep-
resents the key feature at position (𝑎, 𝑏), 𝑣𝑎,𝑏 stands for the value
feature at position (𝑎, 𝑏), and 𝑓𝑖, 𝑗 is the resulting feature at position
(𝑖, 𝑗). The computation budget and memory needed for storing the
attention matrix of 𝑄𝐾𝑇 are quadratic to the spatial dimensions
of the input feature map, i.e., 𝑂 (𝐻2𝑊 2). As a result, global self-
attention can only be used on downsampled or small feature maps,
limiting its scalability. In the following, we introduce several ways
to optimize it, from local self-attention, to block self-attention.

3.3.1 Local self-attention. In order to reduce computation, one
straightforward way is to restrict the attention computation in a
local region (as shown in Figure 4 (b)) rather than the global feature
map [Ramachandran et al. 2019]:

𝑓𝑖, 𝑗 =
∑

𝑎∈[𝑖−𝑚
2 ,𝑖+

𝑚
2 ],𝑏∈[ 𝑗−𝑚

2 , 𝑗+
𝑚
2 ]

Softmax𝑎,𝑏

(
𝑞𝑖, 𝑗𝑘

⊤
𝑎,𝑏√
𝑑𝑘

)
𝑣𝑎,𝑏 , (7)

where𝑚 indicates the size of the local neighborhood. Adding such
local region constraint significantly reduces the theoretical com-
putational complexity from 𝑂 (𝐻2𝑊 2) to 𝑂 (𝐻𝑊𝑚2). However, al-
though this effectively reduces computation budget, it consumes
even more memory. That is because in practice we have to extract
all local regions and store them in memory before we can perform
self-attention computations in the local neighborhoods. These lo-
cal regions are however seriously overlapped with each other, e.g.,
local patches of two adjacent pixels share an overlapping area of
𝑚 × (𝑚 − 1), which are memory-wasteful.

3.3.2 Block self-attention. In order to balance the computation
and memory usage, we can divide the input feature map into non-
overlapping blocks with spatial size 𝑏×𝑏, resulting in 𝐻

𝑏
×𝑊
𝑏

blocks.
Then we can run global self-attention in each block (as shown in

(a) (b) (c) (d)

Fig. 4. (a) Global self-attention. The receptive field (red) covers the whole
feature map. (b) Local self-attention. The receptive field is confined in the
local window centered at the query point (yellow). (c) Block self-attention.
The receptive field is confined in the block containing the query point. (d)
Block self-attention with expanded band. Besides the block containing the
query point, the receptive field is expanded into the surrounding band
occupying pixels of other blocks.

Figure 4 (c)), the computation complexity of which is only 𝑂 (𝑏2𝑏2).
The whole complexity is 𝑂 (𝐻

𝑏
𝑊
𝑏
𝑏4) = 𝑂 (𝐻𝑊𝑏2). Since there is no

overlapping between blocks, no memory wastes when storing the
blocks. However, this prohibits the transfer of information between
adjacent blocks. For example, for pixels near the boundary of a
block, despite being very close to some pixels in adjacent blocks,
the attention calculation of them cannot gather information from
adjacent blocks. This results in color discrepancy on the boundaries
of each block. Vaswani et al. [Vaswani et al. 2021] solve this prob-
lem by expanding a band of pixels, called “halo”, around each block
(as shown in Figure 4 (d)), making the size of the block become
(𝑏 + 2ℎ) × (𝑏 + 2ℎ) where ℎ is the width of the band. The band
pixels are copied from adjacent blocks if they exist, otherwise are
padded with zero. By the expanded “band”, they actually add some
overlapping between adjacent blocks. Although this introduces a
little waste of memory, it allows a certain extent of information
exchanging between adjacent blocks, enabling smooth information
transition between them. We follow this scheme in implementing
our self-attention mechanism. But note that we just need to expand
𝐾 and 𝑉 while for 𝑄 the expansion is prohibited.

3.4 Training Losses
To ensure pixel-level accuracy and perceptual quality, we use two
types of loss functions as our optimization objectives: a pixel re-
construction loss and an adversarial loss. The overall loss function
is:

𝐿 = _𝑟𝑒𝑐𝐿𝑟𝑒𝑐 + _𝑎𝑑𝑣𝐿𝑎𝑑𝑣, (8)
where _𝑟𝑒𝑐 and _𝑎𝑑𝑣 are two hyper-parameters that control the
balance of the two terms.

Pixel reconstruction loss. We adopt the 𝐿1 distance between
the image generated by the proposed model and the ground truth
as our pixel reconstruction loss:

𝐿𝑟𝑒𝑐 =
𝐼 − 𝐼𝑔𝑡 1 , (9)

where 𝐼 is the denoised output of our network and 𝐼𝑔𝑡 is the ground-
truth.

Adversarial loss. Following [Xu et al. 2019], we view the pro-
posed self-attention based MC denoising network as a generator
and train it in an adversarial manner. The discriminator used in this
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Table 1. Quantitative comparisons with NFOR [Bitterli et al. 2016],
KPCN [Bako et al. 2017] and ACFM [Xu et al. 2019] on the test set. Learning-
based model are trained on 32 spp images. The “re” after a model name
means the model is retrained by ourselves. For ACFM, the results of the
authors’ published model are also reported. The RMSE, PSNR, and 1-SSIM
metrics are measured for each compared model. Bold numbers are the
best, while numbers with a hat are the second best. The differences (by
subtraction) between the best and the second best numbers are calculated.

Model SPP RMSE(10−3)↓ PSNR↑ 1-SSIM↓

NFOR

4 27.469 29.2585 0.1447
8 16.010 31.6135 0.1016
16 8.460 33.6525 0.0751
32 4.682 35.7583 0.0544
128 1.748 39.2909 0.0323

KPCN (re)

4 11.512 30.8417 0.1219
8 6.631 32.9486 0.0888
16 4.132 34.9944 0.0669
32 2.840 36.6687 0.0509
128 1.443 39.6035 0.0300

ACFM

4 10.668 31.5617 0.1166
8 6.019 33.6399 0.0823
16 3.697 35.6662 0.0593
32 2.383 37.4461 0.0446
128 1.192 40.2327 0.0281(-0.0002)

ACFM (re)

4 ˆ10.217 ˆ31.9081 ˆ0.1076
8 ˆ5.365 ˆ33.9380 ˆ0.0781
16 ˆ3.545 ˆ35.7812 ˆ0.0586
32 ˆ2.369 ˆ37.5137 ˆ0.0443
128 ˆ1.189 ˆ40.2571 ˆ0.0283

Ours

4 9.979(-0.24) 32.3770(+0.47) 0.1023(-0.053)
8 4.855(-0.51) 34.6834(+0.75) 0.0713(-0.068)
16 2.766(-0.78) 36.7625(+0.98) 0.0521(-0.065)
32 1.839(-0.53) 38.3812(+0.87) 0.0410(-0.033)
128 1.051(-0.14) 40.8028(+0.55) 0.0286

paper is borrowed from [Xu et al. 2019]. To stabilize the training,
WGAN-GP [Gulrajani et al. 2017] loss is minimized:

𝐿𝑎𝑑𝑣 =𝑚𝑖𝑛
𝐺
𝑚𝑎𝑥
𝐷
E

𝐼∼P𝑔
[𝐷 (𝐼 )] − E

𝐼𝑔𝑡∼P𝑟
[𝐷 (𝐼𝑔𝑡 )]

+_ E
𝐼∼P

𝐼

[(
∇
𝐼
𝐷 (𝐼 )


2 − 1)2],

(10)

where 𝐺 indicates the generator, 𝐷 represents the discriminator, _
is a balance weight, 𝐼 stands for the interpolation between the real
sample 𝐼𝑔𝑡 and the generated sample 𝐼 .

4 EVALUATION
In the following we evaluate our method and compare it with the
previous state-of-the-art approaches. The code and dataset can be
found at https://github.com/Aatr0x13/MC-Denoising-via-Auxiliary-
Feature-Guided-Self-Attention.

4.1 Experimental Settings
Dataset. We use the dataset released by ACFM [Xu et al. 2019]
for training and validation. The dataset contains 1109 shots of 8
scenes provided by [Bitterli 2016] renderedwith Tungsten. Each shot
provides a noisy color image, a noisy diffuse image, a noisy specular
image and three noisy auxiliary feature buffers including depth,
normal, and albedo. The corresponding ground truths of these noisy
images are also provided. All the noisy images are rendered at 32

10-3

10-2

10-1

100

101 102 103

R
M

S
E

Sample per pixel

Ours
ACFM
KPCN
Noisy

Fig. 5. RMSE convergence plots of MC path tracing (Noisy), KPCN [Bako
et al. 2017], ACFM [Xu et al. 2019], and our method (Ours), which show
the average RMSE values of the four methods on the test dataset as the
sampling rate increases from 4 spp to 8192 spp.

samples per pixel (spp) while the ground truth images are rendered
at 32k spp. Following [Xu et al. 2019], we randomly choose 95%
shots as the training dataset, while the remaining 5% shots as the
validation dataset. All shots are divided into patches of size 128×128
by the sampling strategy in [Bako et al. 2017], obtaining 286,649
patches in total, among which 272,230 come from the training shots
and 14,419 from the validation ones.
As stated above, the dataset provided by ACFM [Xu et al. 2019]

contains only noisy images rendered at 32 spp. In order to conduct
comparisons more adequately, we render a test set by ourselves.
Specifically, the newly rendered test dataset contains noisy images
rendered at 4, 8, 16, 32, 128, 256, 512, 1024 spps for each of the 14
default Tungsten scenes [Bitterli 2016], whose ground-truth images
are provided with the scene files. The format of these images is kept
the same as that of the ACFM dataset. During testing, we also split
them into patches of 128 × 128 size, resulting in 3192 patches. Note
that although we use 128 × 128 patches during training, validation,
and testing for comparison, our model can accept larger images as
input for practical use.

Pre-and post-processing. Our method takes a noisy image as
input rather than diffuse and specular components separately. Like
what has done to the specular component in [Bako et al. 2017], we
apply a log transform to the noisy image before feeding it into our
model. Correspondingly, the output of our model is applied with an
inverse-log transformation.

Comparison Metrics.We use three metrics to evaluate the de-
noising results, which are Relative Mean Square Error (RMSE), Peak
Signal-to-Noise Ratio (PSNR) and One Minus Structural Similarity
Index Measure (1-SSIM).

Training Settings. Our model has 5 Transformer blocks. For the
block self-attention, we divide feature maps into blocks of size 𝑏 = 8.
The expanded band is of size ℎ = 3. We implement our method using
PyTorch [Paszke et al. 2019] and also Jittor [Hu et al. 2020], while
only the experimental data of PyTorch are provided below. We run
our method on a single NVIDIA GeForce RTX 3090 GPU with 24GB
memory. Some variants of our model in the ablation study demand
more than 24GB memory at training. In order to circumvent this
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(28.7001/0.0837)
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ACFM
(32.4792/0.0573)

Ours
(33.4241/0.0538)

Reference
(PSNR/1-SSIM)

Ours NFOR
(39.1655/0.0157)
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(38.9923/0.0198)

ACFM
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Ours
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(33.9623/0.0289)
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(38.4350/0.0193)
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Fig. 6. Qualitative comparisons with NFOR [Bitterli et al. 2016], KPCN [Bako et al. 2017] and ACFM [Xu et al. 2019]. The noisy inputs are rendered at 32 spp.
Our method can better restore details and structures of noisy images.
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problem, we utilize the technique of gradient checkpoint of PyTorch
to reduce memory usage. During training, Adam optimizer is used,
learning rate is set to 1e-4 initially and halved every 3 epochs for a
total of 12 epochs, and the batch size is set to 8. The weights in the
loss function are set as _𝑟𝑒𝑐 = 1, _𝑎𝑑𝑣 = 5𝑒 − 3 and _ = 10.

4.2 Comparison with State-of-The-Art Methods
We compare ourmodel with a traditional methodNFOR [Bitterli et al.
2016] and two learning-based image-space MC denoising methods
including KPCN [Bako et al. 2017] and ACFM [Xu et al. 2019]. NFOR
is a traditional non-local denoising method and is shipped with the
tungsten renderer. KPCN is based on kernel prediction and ACFM
is the current state-of-the-art based on radiance prediction. Both of
them have published their codes and model weights. The published
KPCN model was trained on 128 spp. In order to compare with it on
more difficult 32 spp images, we re-train KPCN on the same training
set of ours, using the settings suggested by the authors of KPCN.
We also re-train ACFM, and our re-trained model performs better
than the published ACFM model.
Quantitative comparison results are shown in Table 1. All the

deep learning methods are trained on 32 spp images, but evaluated
on 4, 8, 16, 32, 128, 256, 512, and 1024 spp images. Due to space
limit, we only show the results of 4 to 128 spps, and please refer
to the supplemental material for the results of higher spps. For
KPCN, we report the results by our re-trained model. For ACFM, we
report both the results computed by the published model and our
re-trained model. In the table, bold numbers indicate the best results.
As can be seen, for 4 to 32 spp inputs and all the three comparison
metrics RMSE, PSNR, and 1-SSIM, our method achieves the best
results. One exception occurs for the 128 spp input and the 1-SSIM
metric for which ACFM achieves the best results, but our result
is comparable to that of ACFM (0.0286 vs. 0.0281). We also mark
the second best results in the table, i.e., the numbers with a hat on
them, and compute the difference (by subtraction) between the best
and the second best numbers. The differences tell that our method
surpasses the other methods the most for the 16 spp inputs.
In Figure 5, we plot the RMSE convergence curves of KPCN,

ACFM and our method to illustrate the RMSE values of the three
methods over the entire test set as the input noisy image spp in-
creases. The “Noisy” curve shows the convergence plot of the MC
path tracing algorithm, while the other three curves show the con-
vergence plots of KPCN, ACFM, and our method, respectively. The
convergence plots further confirm the effectiveness of our method.
In Figure 6, we choose four different scenes on which qualita-

tive comparisons are shown. They are “Bathroom”, “VintageCar”,
“Spaceship” and “Classroom”. These scenes contain mirrors, reflec-
tions, refractions, dim regions and tiny structures, covering as many
aspects as possible to fully test a model’s denoising performance.
As can be seen from Figure 6, our model not only accurately recov-
ers low-frequency features, but also does a good job on restoring
high-frequency details. For example, in the green box of "Vintage-
Car", KPCN and ACFM still have visible noise in the seat, while our
denoised image is clear and smooth; for the heat sink in the orange
box, both KPCN and ACFM have varying degrees of blurring, while
our denoised result has the structure and edge details well restored.

Table 2. Ablation study on different types of feature extractor architectures,
where, for example, 3×3means a single convolutional layer of kernel size 3×3
is used for feature extraction, while 1357 means four parallel convolutional
layers of kernel sizes 1× 1, 3× 3, 5× 5 and 7× 7 are used to extract features.

Encoder RMSE(10−3)↓ PSNR↑ 1-SSIM↓
Multi-scale (1357) 2.807 37.0931 0.0586
Multi-scale (135) 2.616 37.4551 0.0531
Multi-scale (357) 2.871 36.9197 0.0618

3×3 2.817 37.1675 0.0594
5×5 2.821 37.0746 0.0609
7×7 2.929 36.7243 0.0661

Table 3. Ablation study on different number of Transformer blocks.

Num.T. RMSE↓ PSNR↑ 1-SSIM↓
4 3.089 37.2391 0.0560
5 2.616 37.4551 0.0531
6 2.701 37.1491 0.0584

Although our model has high computational complexity and
consumes more memory during training, the time and memory
usage drop much at test time since there is no need to compute
gradients and also the discriminator is discarded. Specifically, at test
time, the time and memory costs for a batch (the batch size is 8) of
128× 128 images by KPCN [Bako et al. 2017] are 327.5ms and 5.5GB,
while those by [Xu et al. 2019] are 316.1ms and 2.7GB, and by our
method are 382.5ms and 5.2GB.

5 ABLATION STUDY
In this section, we modify the proposed model in different ways and
investigate the effectiveness of each design choice of our method.
We use the dataset provided by ACFM [Xu et al. 2019] for the abla-
tion study, among which 60% shots are used for training, 20% for
validation, and 20% for testing. Directly performing ablation studies
on the whole dataset is too time-consuming. Instead, we sample
subsets from the corresponding full datasets, obtaining 8414, 2770,
and 2793 patches for training, validation, and testing, respectively.
Instead of 12, we train the ablation models for 24 epochs. In the
following, when performing ablation experiments for some part of
our model, the other parts are kept the same as the full model.

5.1 Multi-Scale Feature Extractor
Firstly, we analyze the role of the multi-scale feature extractor which
is one of the key parts of our network. Six settings are compared,
including single-scale feature extraction with convolutional kernel
sizes of 3, 5, and 7 respectively, and multi-scale feature extraction
with kernel size combinations of (1,3,5), (1,3,5,7) and (3,5,7). Their
denoising results are shown in Table 2.

For single-scale schemes, 3×3 and 5×5 have similar performance
and outperform 7×7. We conjecture that a 7×7 kernel may over-
smooth the original pixels. Similar performance drop can be ob-
served from the multi-scale settings of (1,3,5,7) and (3,5,7) that in-
clude 7×7 convolutional kernels, with (3,5,7) showing a more severe
performance degradation. Therefore, we finally adopt the setting of
(1,3,5) which provides both the original information of pixels (by
1×1 kernels) and their neighborhood information (by 3×3 and 5×5
kernels) to the later self-attention blocks.
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Fig. 7. Ablation study on the proposed auxiliary feature guided self-attention
(AFGSA). AFGSA is compared with two variant models. One is without
auxiliary input (No Aux.), and the other one concatenates noisy image and
auxiliary features together (Concatenation).

Input No Aux. Concat AFGSA Reference
Fig. 8. Denoising results of different ways of utilizing auxiliary features in
the self-attention mechanism. "No Aux." indicates the model does not use
auxiliary features at all; "Concat" stands for directly using the concatenation
of noisy and auxiliary features as input; "AFGSA" represents our proposed
method.

5.2 Number Of Transformer Blocks
The number of Transformer blocks has a non-negligible impact on
the denoising accuracy, computation time and memory usage of our
model.We conduct three experiments having 4, 5, and 6 Transformer
blocks each, the results of which are presented in Table 3. As can
be seen, the best performance is achieved when 5 Transformer
blocks are used. When there are 4 Transformer blocks, the denoising
process may be incomplete which yields worse performance. The
results of 6 blocks show that more blocks do not certainly guarantee
better performance. But with the increase of the number of blocks,
the time and memory consumption at training and testing time
steadily increases.
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Fig. 9. Comparison of the denoising performance of different combinations
of auxiliary features in terms of PSNR.

5.3 Auxiliary Feature Guided Self-Attention
We proposed the auxiliary feature guided self-attention module
(AFGSA) in Section 3.2.2 which effectively involves the auxiliary
features into the attention computation process. To verify its contri-
bution, we compare it with two variants. The first variant (No Aux.)
does not use auxiliary features at all, and the second (Concatenation)
concatenates noisy image and auxiliary features together and then
feeds them into the Transformer blocks. The ablation numerical re-
sults are illustrated in Figure 7, showing that AFGSA yields the best
denoising performance. Figure 8 shows some denoising examples
of the two variants and the AFGSA model. As can be seen, AFGSA
produces the most visually pleasing denoising results with sharper
edges and clearer structures. The reasons have been described in
Section 3.2.2: AFGSA separates the auxiliary and image features
in computing 𝑄 , 𝐾 and 𝑉 , only allowing the auxiliary features to
participate the computation of 𝑄 and 𝐾 . This on one hand takes
advantage of the auxiliary features for edge-preserving filtering
weights computation, and on the other hand prevents them from
contaminating the computation pipeline of the pixel features.

5.4 Importance of Each Auxiliary Feature Buffer
To investigate which auxiliary feature plays a more important role
in guiding the denoising process, we set up seven experiments, each
using a different group of auxiliary feature buffers. The denoising
performance in terms of PSNR as the number of training iterations
increases is illustrated in Figure 9. The self-attention guided by all
the auxiliary features achieves the best results. “Albedo+Normal”,
“Albedo+Depth” and “Albedo” are belonging to the second best camp.
“Normal+Depth”, “Normal”, and “Depth” belong to the third camp.
This ablation study shows that albedo is essential for good denoising,
while depth has the least effect.

5.5 Local and Block Self-Attention
Section 3.3 has introduced the local and block self-attentions for
accelerating our self-attention computation. Here we analyze their
performance under different settings. For local self-attention, the
memory is easily blown up because of the large amount of duplicate
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Table 4. Ablation study on different settings of local and block self-attention, where m is the size of the local window centered around each query pixel. b and
h represent block size and band width defined in the block self-attention.

Method Configuration RMSE(10−3)↓ PSNR↑ 1-SSIM↓ Time(ms)↓ Memory(GB)↓

Local Window
m=7 5.187 34.7629 0.0835 348.3 9.2
m=9 5.163 34.8305 0.0829 404.8 14.3

Block with Band b=8 h=3 2.616 37.4551 0.0531 382.5 5.2
b=16 h=5 2.532 37.5019 0.0558 477.4 7.8

Fig. 10. From left to right: the denoised images by our model with yellow boxes specifying selected patches; zoomed-in patches with red points representing
query pixels for which attention maps to be visualized; self-attention maps of all five Transformer blocks, in which a deeper red color means a higher attention
score while a deeper blue color represents a lower attention score.

content that are extracted and stored for local self-attention com-
putation. During training, the GeForce RTX 3090 GPU with 24GB
memory can only support a maximum local window of size 9. We set
up two experiments for the local method, using windows of size 7
and 9 respectively. For the block self-attention with expanded band,
the memory utilization is lower. With the same memory budget, the
block method can perform attention calculation over a larger local
region. We experiment with two settings for the block method, one
with a small block size of 𝑏 = 8 and band size of ℎ = 3, the other
one with a large block size of 𝑏 = 16 and band size of ℎ = 5.

Table 4 gives the ablation results which show that block method
outperforms the local method by a large margin while consuming
less time and memory. For example, the setting of 𝑏 = 8 and ℎ = 3
needs to compute attention in a larger local block of size 14 × 14
(𝑏 + 2×ℎ), but it consumes less time and memory than the setting of
𝑚 = 9 for the local method which just needs to compute attention
in a 9 × 9 window. We observe that when using a larger block
size (𝑏 = 16, ℎ = 5), metrics of RMSE and PSNR become better,
but 1-SSIM becomes a little worse. We conjecture this is because
larger receptive field may lead to over-smoothing which destroys
structures of image.

6 SELF-ATTENTION MAPS VISUALIZATION
In Figure 10, we visualize the attention maps to show the effects
of our Transformer blocks. The first column shows the chosen two
examples from which we select two patches indicated by the yellow
boxes. The second column shows the zoomed-in patches. There is
a red point in each patch. The third to seventh columns present

the attention maps of the red point with respect to all the other
points in the corresponding patch computed by the five Transformer
blocks of our model, where a deeper red color means a stronger
relationship between points while a deeper blue means a weaker
relationship.

In the first example, the chosen patch contains three regions, one
white region from wheel hub, and two black regions from the tire
separated by the white region. The red point is selected from the
white region. As can be seen in the attention maps, the red point
always has higher attention scores in the white region. In early
attention maps, some pixels in the dark regions have colors other
than deep blue, but in the last attention map they become deep blue.
This tells that the later self-attention blocks have learned that the
red point belongs to the white region and therefore they can stop
the information in other regions from denoising the red point. In the
second example, the problem becomes more challenging since the
red point is similar to points in distant regions, but the Transformer
blocks still recognize these distant regions and assign high attention
scores to them.

7 LIMITATIONS
Despite being optimized, our model still consumes a significant
amount of memory. When processing a 1280 × 720 image, we need
to split it into two halves and denoise them separately to avoid
running out of memory, and finally combine them together to form
the output image. Such a problem also prevents us from processing
specular and diffuse components in two parallel pipelines, which
however may bring additional accuracy gain.
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(28.0839/0.0758) (28.5156/0.0731) (28.5290/0.0723) (PSNR/1-SSIM)

(27.1096/0.2031) (27.6192/0.1883) (27.8813/0.1680) (PSNR/1-SSIM)

(32.7126/0.0824) (33.4723/0.0819) (33.2009/0.0874) (PSNR/1-SSIM)

Ours KPCN
(38.5285/0.0380)

ACFM
(38.5614/0.0379)

Ours
(38.5513/0.0484)

Reference
(PSNR/1-SSIM)

Fig. 11. Limitations of our method. For the “GlassOfWater” and “CurlyHair”
scenes, our results are better than KPCN and ACFM, but there is still some
degree of detail loss compared to the ground truth. For the “LivingRoom”
scene, our result’s specular reflection is not as apparent as that of KPCN
and ACFM. For the last scene, KPCN and ACFM oversmooth the shadow
boundary in the middle of the zoomed-in patch. Although our method
recovers the shadow boundary, it introduces wrinkle-like artifact.

As shown in the first and second rows of Figure 11, our model
restores more details than KPCN and ACFM. But compared with
the ground truth, our results still lose some details. In the third
row, it seems that our method is too aggressive to recover textures
but ignores the specular. This can be solved by separating diffuse
component from specular, as verified in [Xu et al. 2019]. The last row
shows another example regarding our method being too aggressive
on recovering image structures (e.g., shadow boundaries) but leading
to wrinkle-like artifact.
Moreover, since Tungsten dataset does not provide scenes of

challenging effects like motion blur, depth of field, and volumetric
media, we have not evaluated our method on them as what has been
done in KPCN [Bako et al. 2017].

8 CONCLUSION AND FUTURE WORK
We propose the first self-attention based model for Monte-Carlo
denoising problem and experiments show that our method is espe-
cially good at recovering structures and textures of images. This is
because self-attention is essentially a non-local means filter in the
high-dimensional space, sharing edge-preserving properties of non-
local denoising methods. Specifically for our self-attention based
MC denoising model, we design multi-scale feature extractors and
auxiliary feature guided self-attention mechanism to enhance its
denoising performance. Our model reaches a new state-of-the-art

with improvements in terms of both quantitative metrics and qual-
itative effects. For future improvements, we can further optimize
the computational complexity and memory usage of self-attention,
borrowing ideas such as kernel attention [Katharopoulos et al. 2020]
or investigating feature map downsampling approaches while re-
taining spatial information. Methods for better utilizing auxiliary
features are also worth exploring, using more advanced attention
mechanisms such as memory augmented self-attention [Cornia et al.
2020] or cross-attention [Hou et al. 2019].

ACKNOWLEDGMENTS
This research is supported in part by the National Natural Sci-
ence Foundation of China (62072191), in part by the Fundamental
Research Funds for the Central Universities (D2190670), in part
by the National Natural Science Foundation of China (61802453,
61972160), and in part by the Natural Science Foundation of Guang-
dong Province (2019A1515010860, 2021A1515012301).

REFERENCES
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization.

arXiv preprint arXiv:1607.06450 (2016).
Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon. 2020. Deep

combiner for independent and correlated pixel estimates. ACM Trans. Graph. 39, 6
(2020), 1–12.

Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill,
Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-predicting convo-
lutional networks for denoising Monte Carlo renderings. ACM Trans. Graph. 36, 4
(2017), 97–1.

Pablo Bauszat, Martin Eisemann, and Marcus Magnor. 2011. Guided image filtering for
interactive high-quality global illumination. In Computer Graphics Forum, Vol. 30.
Wiley Online Library, 1361–1368.

Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.
Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A Iglesias-Guitián, David

Adler, Kenny Mitchell, Wojciech Jarosz, and Jan Novák. 2016. Nonlinearly weighted
first-order regression for denoising Monte Carlo renderings. In Computer Graphics
Forum, Vol. 35. Wiley Online Library, 107–117.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
2020. Language models are few-shot learners. arXiv preprint arXiv:2005.14165
(2020).

Antoni Buades, Bartomeu Coll, and J-M Morel. 2005. A non-local algorithm for image
denoising. In CVPR, Vol. 2. IEEE, 60–65.

Chakravarty R Alla Chaitanya, Anton S Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive reconstruc-
tion of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM
Trans. Graph. 36, 4 (2017), 1–12.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya
Sutskever. 2020. Generative pretraining from pixels. In International Conference on
Machine Learning. PMLR, 1691–1703.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019. Generating Long
Sequences with Sparse Transformers. arXiv:1904.10509 [cs.LG]

Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi, and Rita Cucchiara. 2020. Meshed-
memory transformer for image captioning. In CVPR. 10578–10587.

Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hendrik PA Lensch. 2010.
Edge-avoiding a-trous wavelet transform for fast global illumination filtering. In
Proceedings of the Conference on High Performance Graphics. Citeseer, 67–75.

Axel Davy, Thibaud Ehret, Jean-Michel Morel, Pablo Arias, and Gabriele Facciolo. 2019.
A non-local CNN for video denoising. In 2019 IEEE International Conference on Image
Processing (ICIP). IEEE, 2409–2413.

Mauricio Delbracio, Pablo Musé, Antoni Buades, Julien Chauvier, Nicholas Phelps, and
Jean-Michel Morel. 2014. Boosting Monte Carlo rendering by ray histogram fusion.
ACM Trans. Graph. 33, 1 (2014), 1–15.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

https://arxiv.org/abs/1904.10509


Monte Carlo Denoising via Auxiliary Feature Guided Self-Attention • 1:13

Elmar Eisemann and Frédo Durand. 2004. Flash photography enhancement via intrinsic
relighting. ACM Trans. Graph. 23, 3 (2004), 673–678.

Michaël Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehtinen, and Frédo Durand. 2019.
Sample-based Monte Carlo denoising using a kernel-splatting network. ACM Trans.
Graph. 38, 4 (2019), 1–12.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
networks. arXiv preprint arXiv:1406.2661 (2014).

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron
Courville. 2017. Improved training of wasserstein gans. arXiv preprint
arXiv:1704.00028 (2017).

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. 2019. Axial
Attention in Multidimensional Transformers. arXiv:1912.12180 [cs.CV]

Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. 2019. Cross
Attention Network for Few-shot Classification. arXiv:1910.07677 [cs.CV]

Shi-Min Hu, Dun Liang, Guo-Ye Yang, Guo-Wei Yang, and Wen-Yang Zhou. 2020. Jittor:
a novel deep learning framework with meta-operators and unified graph execution.
Information Sciences 63, 222103 (2020), 1–21.

Tao Hu, Chengjiang Long, and Chunxia Xiao. 2021. A Novel Visual Representation on
Text Using Diverse Conditional GAN for Visual Recognition. IEEE Transactions on
Image Processing 30 (2021), 3499–3512.

Yuchi Huo and Sung-eui Yoon. 2021. A survey on deep learning-based Monte Carlo
denoising. Computational Visual Media (2021), 1–17.

Mustafa Işik, Krishna Mullia, Matthew Fisher, Jonathan Eisenmann, and Michaël Gharbi.
2021. Interactive Monte Carlo denoising using affinity of neural features. ACM
Trans. Graph. 40, 4 (2021), 1–13.

Ashraful Islam, Chengjiang Long, Arslan Basharat, and Anthony Hoogs. 2020. DOA-
GAN: Dual-order attentive generative adversarial network for image copy-move
forgery detection and localization. In CVPR. 4676–4685.

Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A machine learning
approach for filtering Monte Carlo noise. ACM Trans. Graph. 34, 4 (2015), 122–1.

A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. 2020. Transformers are RNNs:
Fast Autoregressive Transformers with Linear Attention. In Proceedings of the Inter-
national Conference on Machine Learning (ICML).

Stamatios Lefkimmiatis. 2017. Non-local color image denoising with convolutional
neural networks. In CVPR. 3587–3596.

Xian-Ying Li, Yan Gu, Shi-Min Hu, and Ralph RMartin. 2013. Mixed-domain edge-aware
image manipulation. IEEE Transactions on Image Processing 22, 5 (2013), 1915–1925.

Weiheng Lin, Beibei Wang, LuWang, and Nicolas Holzschuch. 2020. A detail preserving
neural network model for Monte Carlo denoising. Computational Visual Media 6, 2
(2020), 157–168.

Weiheng Lin, Beibei Wang, Jian Yang, Lu Wang, and Ling-Qi Yan. 2021. Path-based
Monte Carlo Denoising Using a Three-Scale Neural Network. In Computer Graphics
Forum, Vol. 40. Wiley Online Library, 369–381.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. 2021. Swin transformer: Hierarchical vision transformer using shifted
windows. arXiv preprint arXiv:2103.14030 (2021).

YiFan Lu, Ning Xie, and Heng Tao Shen. 2020. DMCR-GAN: Adversarial Denoising
for Monte Carlo Renderings with Residual Attention Networks and Hierarchical
Features Modulation of Auxiliary Buffers. In SIGGRAPH Asia 2020 Technical Com-
munications. 1–4.

Michael D. McCool. 1999. Anisotropic Diffusion for Monte Carlo Noise Reduction. ACM
Trans. Graph. 18, 2 (April 1999), 171–194. https://doi.org/10.1145/318009.318015

Xiaoxu Meng, Quan Zheng, Amitabh Varshney, Gurprit Singh, and Matthias Zwicker.
2020. Real-time Monte Carlo Denoising with the Neural Bilateral Grid. (2020).

Bochang Moon, Nathan Carr, and Sung-Eui Yoon. 2014. Adaptive rendering based on
weighted local regression. ACM Trans. Graph. 33, 5 (2014), 1–14.

Bochang Moon, Jong Yun Jun, JongHyeob Lee, Kunho Kim, Toshiya Hachisuka, and
Sung-Eui Yoon. 2013. Robust image denoising using a virtual flash image for Monte
Carlo ray tracing. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 139–
151.

Bochang Moon, Steven McDonagh, Kenny Mitchell, and Markus Gross. 2016. Adaptive
polynomial rendering. ACM Trans. Graph. 35, 4 (2016), 1–10.

Jacob Munkberg and Jon Hasselgren. 2020. Neural denoising with layer embeddings.
In Computer Graphics Forum, Vol. 39. Wiley Online Library, 1–12.

Ryan S Overbeck, Craig Donner, and Ravi Ramamoorthi. 2009. Adaptive wavelet
rendering. ACM Trans. Graph. 28, 5 (2009), 140.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),
Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

Georg Petschnigg, Richard Szeliski, Maneesh Agrawala, Michael Cohen, Hugues Hoppe,
and Kentaro Toyama. 2004. Digital photography with flash and no-flash image pairs.

ACM Trans. Graph. 23, 3 (2004), 664–672.
Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael

Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the limits of transfer
learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683
(2019).

Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and
Jon Shlens. 2019. Stand-Alone Self-Attention in Vision Models. InAdvances in Neural
Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. CurranAssociates, Inc. https://proceedings.
neurips.cc/paper/2019/file/3416a75f4cea9109507cacd8e2f2aefc-Paper.pdf

Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2012. Adaptive rendering with
non-local means filtering. ACM Trans. Graph. 31, 6 (2012), 1–11.

Fabrice Rousselle, Marco Manzi, and Matthias Zwicker. 2013. Robust denoising using
feature and color information. In Computer Graphics Forum, Vol. 32. Wiley Online
Library, 121–130.

Holly E. Rushmeier and Gregory J. Ward. 1994. Energy Preserving Non-Linear Filters.
In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’94). Association for Computing Machinery, New York, NY,
USA, 131–138. https://doi.org/10.1145/192161.192189

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015. Going
deeper with convolutions. In CVPR. 1–9.

Carlo Tomasi and Roberto Manduchi. 1998. Bilateral filtering for gray and color images.
In Sixth international conference on computer vision (IEEE Cat. No. 98CH36271). IEEE,
839–846.

Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki Parmar, Blake Hechtman,
and Jonathon Shlens. 2021. Scaling Local Self-Attention For Parameter Efficient
Visual Backbones. arXiv:2103.12731 [cs.CV]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. In Advances in Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Röthlin, Alex Harvill, David
Adler, Mark Meyer, and Jan Novák. 2018. Denoising with kernel prediction and
asymmetric loss functions. ACM Trans. Graph. 37, 4 (2018), 1–15.

Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille, and Liang-Chieh
Chen. 2020. Axial-deeplab: Stand-alone axial-attention for panoptic segmentation.
In ECCV. Springer, 108–126.

XiaolongWang, Ross Girshick, Abhinav Gupta, and Kaiming He. 2018. Non-local neural
networks. In CVPR. 7794–7803.

Kin-MingWong and Tien-Tsin Wong. 2019. Deep residual learning for denoising Monte
Carlo renderings. Computational Visual Media 5, 3 (2019), 239–255.

Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille, and Kaiming He. 2019.
Feature denoising for improving adversarial robustness. In CVPR. 501–509.

Bing Xu, Junfei Zhang, Rui Wang, Kun Xu, Yong-Liang Yang, Chuan Li, and Rui Tang.
2019. Adversarial Monte Carlo denoising with conditioned auxiliary feature modu-
lation. ACM Trans. Graph. 38, 6 (2019), 224–1.

Ruifeng Xu and Sumanta N Pattanaik. 2005. A novel Monte Carlo noise reduction
operator. IEEE Computer Graphics and Applications 25, 2 (2005), 31–35.

Wenju Xu, Chengjiang Long, Ruisheng Wang, and Guanghui Wang. 2021. DRB-GAN:
A Dynamic ResBlock Generative Adversarial Network for Artistic Style Transfer.
arXiv preprint arXiv:2108.07379 (2021).

Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and Baining Guo. 2020. Learning
texture transformer network for image super-resolution. In CVPR. 5791–5800.

Xin Yang, Dawei Wang, Wenbo Hu, Lijing Zhao, Xinglin Piao, Dongsheng Zhou, Qiang
Zhang, Baocai Yin, Qiang Cai, and Xiaopeng Wei. 2018. Fast reconstruction for
Monte Carlo rendering using deep convolutional networks. IEEE Access 7 (2018),
21177–21187.

Xin Yang, Dawei Wang, Wenbo Hu, Li-Jing Zhao, Bao-Cai Yin, Qiang Zhang, Xiao-Peng
Wei, and Hongbo Fu. 2019. DEMC: A deep dual-encoder network for denoising
Monte Carlo rendering. Journal of Computer Science and Technology 34, 5 (2019),
1123–1135.

Han Zhang, Ian Goodfellow, DimitrisMetaxas, andAugustus Odena. 2019. Self-attention
generative adversarial networks. In International conference on machine learning.
PMLR, 7354–7363.

Henning Zimmer, Fabrice Rousselle, Wenzel Jakob, Oliver Wang, David Adler, Wojciech
Jarosz, Olga Sorkine-Hornung, and Alexander Sorkine-Hornung. 2015. Path-space
motion estimation and decomposition for robust animation filtering. In Computer
Graphics Forum, Vol. 34. Wiley Online Library, 131–142.

Matthias Zwicker,Wojciech Jarosz, Jaakko Lehtinen, BochangMoon, Ravi Ramamoorthi,
Fabrice Rousselle, Pradeep Sen, Cyril Soler, and Sung-Eui Yoon. 2015. Recent
Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering.
Computer Graphics Forum (Proceedings of Eurographics - State of the Art Reports) 34,
2 (May 2015), 667–681. https://doi.org/10/f7k6kj

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

https://arxiv.org/abs/1912.12180
https://arxiv.org/abs/1910.07677
https://doi.org/10.1145/318009.318015
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3416a75f4cea9109507cacd8e2f2aefc-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3416a75f4cea9109507cacd8e2f2aefc-Paper.pdf
https://doi.org/10.1145/192161.192189
https://arxiv.org/abs/2103.12731
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10/f7k6kj

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Transformer and Self-Attention
	3.2 Self-Attention based Monte Carlo Denoising
	3.3 Network Implementation and Acceleration
	3.4 Training Losses

	4 Evaluation
	4.1 Experimental Settings
	4.2 Comparison with State-of-The-Art Methods

	5 Ablation Study
	5.1 Multi-Scale Feature Extractor
	5.2 Number Of Transformer Blocks
	5.3 Auxiliary Feature Guided Self-Attention
	5.4 Importance of Each Auxiliary Feature Buffer
	5.5 Local and Block Self-Attention

	6 Self-Attention Maps Visualization
	7 Limitations
	8 Conclusion and Future Work
	Acknowledgments
	References

